
Performance Analysis of WebRTC-based Video
Streaming over Power Constrained Platforms

M. Bacco∗, M. Catena∗, T. de Cola†, A. Gotta∗ and N. Tonellotto∗

∗CNR, Institute of Information Science and Technologies, Italy
†DLR, Institute of Communications and Navigation, Oberpfaffenhofen, Germany

Abstract—This work analyses the use of the WebRTC frame-
work on resource-constrained platforms. WebRTC is a con-
solidated solution for real-time video streaming, and it is an
appealing solution in a wide range of application scenarios. We
focus our attention on those in which power consumption, size
and weight are of paramount importance because of size, weight
and power requirements, such as the use case of unmanned aerial
vehicles delivering real-time video streams over WebRTC to peers
on the ground. The testbed described in this work shows that
the power consumption can be reduced by changing WebRTC
default settings while maintaining comparable video quality.

I. INTRODUCTION

Nowadays, enabling efficient mobile multimedia delivery on
portable devices is one of the key objectives of the wireless
industry in the continuous upgrade of current networks and
in the design of new ones. As a matter of fact, smartphones,
Internet of Things (IoT) devices or other resource-constrained
platforms can be in principle used to run a large gamma
of applications, but the main limitation they suffer from is
the energy efficiency because of the short battery duration.
Therefore, the possibility to deploy services on energy-efficient
mobile platforms is a very important topic for both industrial
and research communities. In particular, the case of video-
streaming application is particularly appealing because of the
numerous applications, such as environmental monitoring [1]
and remote surveillance, just to cite a few. In the light of this
motivation, this paper focuses on a video-streaming service
running on resource-constrained platforms.

Amongst all the possible protocol solutions enabling video-
streaming services, this work considers the use of Web Real-
Time Communications (WebRTC), a recent IETF standard [2]
based on the use of the Real-time Transport Protocol (RTP).
In more detail, WebRTC is a suite of communication pro-
tocols that enables real-time communications over peer-to-
peer connections, such as video streaming, web conferen-
cing, chat and data exchange provided by web applications
building on JavaScript and HTML5 software technologies. As
such, WebRTC is already supported by the most common
web browsers for desktop and mobile platforms. In fact, the
ambition of WebRTC embraces a broader number of possible
application scenarios: security (e.g., the Amaryllo camera with
integrated WebRTC support), remote presence on work sites
[3], e-health [4], and emergency scenarios [5]. More recently,
its applicability has been also extended towards IoT domains
to monitor and control smart objects, as discussed in [6].

In particular, the WebRTC framework can be considered
as an enabling technology in resource-constrained hardware
platforms, although a deep understanding of all protocol per-
formance implications is actually still missing. More precisely,
a comprehensive characterization of energy efficiency has been
not yet provided by the scientific community, to the best of
authors’ knowledge. As a first attempt to shed some more
light on this aspect, this work experimentally analyses the
power consumption of WebRTC on a Raspberry board, a
small-sized low-power system powered by an ARM processor,
which in spite of its dimensions is capable of video encoding
and streaming at a good quality. Thus, the main aim of
this work is in providing a simple but comprehensive case
study on the feasibility of WebRTC-based video streaming
on a Raspberry platform, by analysing the trade-off between
achievable video quality and energy efficiency. To this end,
we extensively tested WebRTC under both automatic and
manual configurations, i.e., when framework-dependent input
parameters are automatically or manually set, respectively, in
order to meet a given set of requirements.

The rest of this paper is organized as follows: Section
II illustrates the current state of the art of video-streaming
applications running on low power systems. Section III in-
troduces the scenario taken as reference in this work, whose
experimental characterization is provided in Section IV by
means of a dedicated testbed. The conclusions are drawn in
Section V.

II. RELATED WORKS

The problem of power consumption in multimedia mobile
devices (e.g., implementing streaming capabilities) has been
quite explored by the scientific community, which has come
up with different solutions to compensate the limited duration
of batteries. For example, reference [7] explores the problem
of energy conservation from a communication standpoint, ana-
lyzing the possible battery savings with respect to the various
functionalities provided by the proposal stack. A seminal work
about energy management in handsets from different angles is
contained in [8], which is also the baseline for the work in [7],
where both cross-layer and per-layer approaches to achieve
satisfactory energy efficiency figures are discussed.

As far as energy profiling is concerned, an exhaustive review
of the techniques explored so far in the ecosystem of mobile

978-1-5386-4727-1/18/$31.00 ©2018 IEEE



applications running on devices powered by batteries is pro-
vided in [9]. By exploiting a thematic taxonomy, reference [9]
describes the open research issues on this topic and underlines
the need of a lightweight but accurate energy profiling model,
yet to come according to the authors. Such a model should
provide a simple way to predict energy consumption when
the application behavior is known or can be predicted.

The analysis of energy consumption in the specific case of
WebRTC-based applications is reported in [10], where Long-
Term Evolution (LTE) devices are taken as references. Moving
to the case of resource-constrained devices, the works in [11],
[12], [13] deserve some attention as they are the very few
ones that consider Raspberry PI platforms. In more words,
reference [11] describes the use of WebRTC over Raspberry PI
2 B for large scale disasters scenarios, enabling real-time video
streaming from an Unmanned Aerial Vehicle (UAV) powered
by on-board battery to first responders (e.g., rescue teams)
operating on the ground. The authors investigate the maximum
number of users that can be simultaneously connected to the
on-board server and the frames per second (fps) that provide an
acceptable trade-off between quality and computational load.
On the other hand, the authors in [12] considered Raspberry
PI 3 as on-board platform for an UAV, as in our case, to imple-
ment a WebRTC-based gaming system. The main limitation in
such a scenario is represented by the available power on-board
the UAV, stored in lightweight and small capacity batteries that
Commercial Off-the-Shelf (COTS) UAVs typically carry. A
comparison on power consumption among different platforms,
both non-constrained and constrained ones, is provided in
[13], also suggesting techniques to further reduce the power
consumption of Raspberry boards, which we implemented in
our testbed.

Battery capacity consumption in resource-constrained de-
vices is also analyzed in [14], which aims at measuring the
power required to implement video encoding and streaming
operations on a Imote2 wireless sensor node, equipped with
a PXA271 XScale processor. In this case, an H.264 video
codec is used and the received video quality is estimated
through the ROPE (Recursive Optimal per Pixel Estimate)
method. The most interesting point of this work is the design
of a framework able to minimise the battery consumption,
consisting in the proper configuration of coding and transmis-
sion parameters aiming at matching the distortion threshold,
without the need to continuously estimate the relevant param-
eters for each video frame. Finally, reference [15] analyses the
performance level provided by WebRTC on mobile devices in
terms of several metrics, aiming at providing a comprehensive
characterization. Nevertheless, energy issues are not taken into
account.

The work contained in this paper investigates the power
consumption and its impact on subjective video quality on a
Raspberry PI, providing real-time video streaming services. In
order to enhance overall performance with respect to power
consumption, power absorption minimization is carried out
to prolong the battery duration, as also proposed in [11].
Moreover, it provides a solution alternative to what proposed

Fig. 1: Raspberry PI 3 model B: a credit-card-sized
computer that features an ARM CPU (quad core 1.2GHz
Broadcom BCM2837 64bit), a Wi-Fi chipset (Broadcom

BCM43438), 1GB RAM.

Fig. 2: The Adafruit INA219 DC current sensor in use to
estimate the power absorbed by the Raspberry during its

functioning.

in [16], which considered the GStreamer framework to de-
liver real-time video streams from moving vehicles (such as
UAVs) to fixed receivers. In particular, [16] applied multipath
techniques to increase the reliability when delivering video
streams, neglecting however energy consumption implications.
By contrast, this work provides insights on the latter by relying
on the use of the WebRTC framework, focusing on power
consumption and achievable Quality of Experience (QoE), in
order to provide a set of different solutions to be used in
scenarios with different requirements.

III. TESTBED

This section describes the testbed we designed. The aim
is in experimentally exploring the possibility of reducing
the power consumption of WebRTC on resource-constrained
devices while maintaining an overall video quality and fluidity
comparable with that achievable at default settings.

The WebRTC-based sender application runs on a Raspberry
PI 3 Model B, shown in Figure 1. The power absorbed by
the Raspberry is estimated by using an Adafruit INA219
DC current sensor, shown in Figure 2. The current sensor is
connected to the white cable in Figure 3, according to the
schematics in Figure 4. In addition to the Raspberry and the



Fig. 3: Measurement system: the Arduino board is installed
on a wood panel, along with the breadboard (on the right),

according to the schematics in Figure 4. The Raspberry is on
the left (inside the dark grey case).

Fig. 4: Schematics: the Raspberry is on the left (green
board), the Arduino in the middle (blue board), and the

sensor current (along with a display for debugging purposes)
is installed on the breadboard on the right (white colored).

current sensor, an Arduino board has been used to control the
current sensor and to store the readings: in order to achieve
that, a pre-loaded script is launched on the Arduino board
at the bootstrapping. In fact, an USB cable (in yellow) is
visible in Figure 3, connecting the Raspberry to the Arduino
board, the latter used to perform monitoring tasks on different
hardware so that energy measurements are not biased by such
a task.

A. Platform in use

Our intent is in establishing if WebRTC can be used to
stream a video when running on top of a resource-constrained
platform, such as a Raspberry board. The requirements under
consideration are: (i) reduced form factor, in order to have a
small and lightweight platform ready for deploying; (ii) low
power consumption, in order to have a platform that can run on
batteries; (iii) the use of a COTS board for contained operating
costs. For instance, consider an UAV streaming towards a
fixed ground station by means of a Wi-Fi connection in a
precision agriculture scenario [17], [18] or similar. Because of
the limited payload that a small UAV can carry and the limited
available power, a lightweight and energy-efficient platform is
the preferred choice. A Raspberry is a resource-constrained
platform with low overall power consumption (see Section
III-B), yet capable of video encoding at a reasonable quality:

TABLE I: Power consumption of the
Raspberry PI 3 Model B in idle conditions (baseline).

CPU frequency Average value 5th percentile 95th percentile

600 MHz 1,231.9 mW 1,185.7 mW 1,362.6 mW
1,200 MHz 1,435.7 mW 1,376.7 mW 1,637.5 mW

because of this, it has been chosen as reference platform for
this testbed.

B. Power measurement

As anticipated before, the current sensor in Figure 2 has
been used to monitor the power consumption. In details,
current and voltage are sampled at a rate of 10Hz by the script
running on the Arduino board. Before the testbed, which is
described in Section IV, we estimated the power consumption
of the Raspberry board in idle conditions, in order to assess
a reference baseline. The HDMI connector has been turned
off because not in use in our testbed, in order to minimize
unnecessary power consumption. The results are reported in
Table I, showing the power consumption [mW] when the CPU
is forced to work at 600 or at 1,200 [MHz]. Along with the
average instantaneous value, the 5th and the 95th percentile
are shown with the intent of fully characterizing the power
absorption in idle conditions.

C. Parameters under consideration

In this section, the parameters used as inputs are described,
in order to characterize the different configurations we con-
sidered. Each tuple (set of parameter values) generates a
different output, so that we collected a large amount of data:
according to the metrics described in Section III-D, the most
relevant results are then shown in Section IV.

Table II summarizes the considered parameters. We varied
the video source rate in the range 170-1,700 [Kbps] with steps
of 170. The maximum rate is imposed by the framework when
using a fixed resolution of 640×480 pixels, as in our tests.
Then, we considered the impact of using 1 or 2 concurrent
video encoding threads, which affects the video quality on
the one hand and the power consumption on the other hand.
In addition, two CPU frequency values have been taken into
account (as provided by the dynamic voltage frequency scaling
driver of the Raspberry): 600 and 1,200 MHz, set in userspace
during the manual tests, and set by the on-demand governor
of the operating system (i.e., Raspbian) during the automatic
tests. CPU frequency impacts on the video quality on the
one hand and on the power consumption on the other hand.
Eventually, we tested the impact of the so-called cpu used
parameter1 of the VP8 video codec in use. The parameter
provides a trade-off between encode quality and encode speed
by varying the CPU utilization according to the formula
target cpu utilization = (100 (16 − cpu used)/16)%. The

1Further details on it can be found in the WebM documentation, available
at https://www.webmproject.org/docs/encoder-parameters/, in Section 2.



TABLE II: Parameters used in our testbed.

Name Value / range of values

Source rate 170 - 1,700 Kbps
Number of threads 1 - 2

CPU frequency 600 - 1,200 MHz
cpu used (WebM VP8) 10 - 15

lower the value of the parameter cpu used, the larger the use
of the CPU, thus the larger the available set of resources
allocated to the encoding process; vice versa, the impact on the
CPU is reduced. It is worth underlining here that this setting
also depends on other running tasks: in order to remove any
side effects due to CPU time allocated to unwanted tasks in
our testbed, only WebRTC-generated threads are running in
user-space during the tests.

D. Performance metrics

In this section, the performance metrics under considera-
tion are described. Since our interest lies in the trade-off
between video quality and power consumption, we selected
the following five metrics of interest: (i) fps to characterize
the fluidity of the video; (ii) the Peak signal-to-noise ratio
(PSNR) to evaluate the video quality; (iii) the Structural
SIMilarity (SSIM) index, as complement to PSNR, to en-
rich the evaluation of the video quality; (iv) the average
instantaneous power consumption; (v) subjective video quality,
evaluated by ten different users2. Furthermore, the so-called
Quantization Parameters (QP) are logged: they are automa-
tically set by the framework according to the other input
parameters. QP range into 1−56, with decreasing video quality
as QP increase.

IV. PERFORMANCE EVALUATION

In this section, the results provided by our extensive testbed
are reported, with the objective of characterizing the video
quality and fluidity, and the power consumption of a resource-
constrained platform, such as a Raspberry PI 3 Model B, when
WebRTC runs on top of it. In our tests, we used the crowd run
video3, which we converted to a resolution of 640x480 pixels
and to 30 fps. The aspect ratio is 4:3 and the pixel format is
YUV420. The video codec in use is VP8, the default video
codec in WebRTC. The aforementioned video has been chosen
because of the high dynamicity of the scene, captured from
above, in order to mimic a video stream from an UAV, which
is our reference test-case.

We now present the results of our testbed, in a graphical
manner (see Figure 5) for an easier visual assessment, and in
a more precise numerical manner (see Table III). Table III
is divided into four subsections referring to the four radar
charts in Figure 5: the first subsection is referred to the
configuration with default settings (see Figure 5a); the other
three subsections are related to manual settings, emphasizing

2Two example tests are available at: http://wnlab.isti.cnr.it/webrtc.
3The crowd run video is available at https://media.xiph.org/video/derf.

alternatively high quality, high framerate, or minimum power
consumption (see Figures 5b, 5c, and 5d). The four radar charts
in Figure 5 contain multiple plots each: each plot refers to a
given set of parameters. Thus, each chart shows how different
outputs per configuration can be achieved by varying the value
of the parameters. The numerical values of the parameters
and of the related results in the radar charts can be found
in Table III. In fact, each row of Table III refers to a plot
in the radar charts, and the first column helps in matching
numerical and graphical results. To ease the reader, Table III
reports the settings in use on the left, and the results on the
right. The second column of Table III reports the value of the
parameter cpu used, and the third column reports the average
source rate4 [kbps]. The fourth column reports the (forced)
CPU frequency value, then QP and the number of used threads
can be read in the fifth and sixth columns. The seventh,
eighth, and ninth columns are related to the aforementioned
quality metrics (fps, PSNR, and SSIM), while the tenth column
reports the subjective evaluation, according to the following
ranking: (bad, poor, fair, good, excellent). Then, the last col-
umn show the absolute value of power consumption, and the
so-called additional power consumption (%) that is calculated
as the additional power spent to run the test w.r.t. the baseline
values in Table I. Figure 5 shows normalized values in the
scale 0 − 100%, where 100% means that that value is the
highest one found during the whole testbed.

Figure 5a shows the setup provided by WebRTC in au-
tomatic mode (default settings): the main goal is the video
quality, at the cost of power consumption and average fra-
merate. It must be noted that no acceleration in hardware is
available for WebRTC default video-codecs as we write: it
is likely that the average framerate may benefit from such a
feature. Empirically, we conclude that the default settings of
WebRTC ignore power consumption as an optimization ob-
jective: such a choice can have a sensible impact in scenarios
where energy efficiency cannot be neglected. Figure 5b shows
the cost of obtaining the highest video quality in our testbed:
PSNR and SSIM reach peak values, but at the cost of a very
low framerate (1 fps). It means that such a setup can be useful
only in scenarios in which such limitations can be accepted
in favor of a higher resolution video stream. Figure 5b also
shows that increasing source rates have a negligible effect on
power consumption, so that the highest value can be selected
with no additional cost. Figure 5c shows the configurations
that provide a fluid framerate: in order to achieve such an
objective, video quality must be partially sacrificed. In fact,
very low source rates can be chosen and low/medium values
of the quality metrics are visible. CPU must be set at the
higher frequency value, thus causing medium to high power
consumption. This setup should be used only when a fluid
video is to be preferred to the overall video quality. Figure
5d shows the setup that provides the minimum power con-
sumption: video quality can be privileged over framerate, or

4Such an average value may be different from the chosen ones in Section
III-C because the video encoder may slightly deviate from the input value
because of performance reasons.



(a) default settings (automatic configuration) (b) high quality (manual configuration)

(c) high framerate (manual configuration) (d) minimum power consumption (manual configuration)

Fig. 5: Comparison between achievable performance level when using manual or automatic (default) configurations
(refer to Table III for numerical results).

vice versa. Minimum power consumption implies that the CPU
is set to the low frequency value (600 MHz), and a low source
rate must be set. It is worth underlining here that no automatic
configuration can provide such a low consumption level, which
can prove of interest in very low-power scenarios.

To conclude, it is worth noting in Table III that PSNR
and SSIM metrics of the high quality manual configuration
(see Figure 5b) have higher values than those obtained by
the default settings (see Figure 5a); furthermore, lower energy
consumption is visible. Thus, manual settings can provide
higher video quality and lower power consumption, but at the
cost of a slightly lower framerate. In extreme cases, manual
settings can reduce the energy consumption up to 30% w.r.t.
default settings while providing comparable video quality and
fluidity: for instance, compare lines 3 and 10 of Table III.

In this experimental work, we aimed at assessing if a
reasonable power saving would be possible in low-power
scenarios: this is confirmed by our extensive testbed here
presented and discussed, showing that the power absorption
can be reduced from 3.2-3.4 [W] to approximately 2.3 [W]
with no appreciable differences in the delivered video quality
and fluidity.

V. CONCLUSIONS

In this work, we tested the use of the WebRTC platform for
real-time video streaming running on a resource-constrained
platform, such as a Raspberry PI board. Size, weight and
power requirements have been taken into account having in
mind a reference use case that involves video-streaming from
an UAV towards a fixed ground receiver node. The main



TABLE III: Settings and results of the considered configurations.

SETTINGS RESULTS
Reference scenario cpu Source rate CPU freq. QP # of Avg PSNR SSIM Subjective Avg power

(#, ref., setting) used [Kbps] [Mhz] threads fps [dB] video quality consumption [mW]
1. Fig. 5a - auto 10 170 1,200 56 1 9 27.9 0.798 good 3,207 (+123%)
2. Fig. 5a - auto 10 340 1,200 48 1 3 30.3 0.864 good 3,320 (+131%)
3. Fig. 5a - auto 10 1,698 1,200 6 1 2 43.5 0.986 excellent 3,450 (+140%)

4. Fig. 5b - manual 13 1,178 600 3 1 1 46.2 0.991 excellent 2,325 (+89%)
5. Fig. 5b - manual 10 1,187 600 2 1 1 46.5 0.992 excellent 2,314 (+88%)
6. Fig. 5b - manual 12 1,342 600 2 1 1 46.1 0.991 excellent 2,357 (+91%)
7. Fig. 5b - manual 13 1,350 600 2 1 1 46.1 0.991 excellent 2,346 (+90%)
8. Fig. 5b - manual 12 1,513 600 2 1 1 46.2 0.991 excellent 2,337 (+90%)
9. Fig. 5b - manual 10 1,529 600 2 1 1 46.6 0.992 excellent 2,331 (+89%)
10. Fig. 5b - manual 14 1,700 600 2 1 1 46.2 0.991 excellent 2,375 (+93%)
11. Fig. 5c - manual 13 170 1,200 56 2 24 27.8 0.794 good 3,021 (+110%)
12. Fig. 5c - manual 15 170 1,200 56 1 20 28 0.797 fair 2,960 (+106%)
13. Fig. 5c - manual 14 340 1,200 56 2 21 28 0.799 good 3,303 (+130%)
14. Fig. 5d - manual 15 170 600 56 1 8 28 0.797 poor 2,263 (+84%)
15. Fig. 5d - manual 15 170 600 56 2 19 28 0.798 good 2,260 (+83%)
16. Fig. 5d - manual 12 340 600 44 1 2 31.5 0.889 fair 2,272 (+84%)

objective is the energy characterization of such a setup, in
order to clarify the energetic impact of the WebRTC platform
and the achievable video quality. To obtain that, we conducted
an extensive testbed comparing results coming from default
(automatic) and manual settings, investigating the relationship
among available input parameters and showing that the default
settings of the WebRTC framework privileges video quality
over energy efficiency. Then, we have shown how comparable
video quality can be delivered at a lower energetic cost
(reduced up to 30% w.r.t. default settings), thus opening to
scenario with stricter consumption constraints. In the near
future, we plan to test the proposed setup on-board of an UAV
to also characterize the impact of a realistic communication
channel.
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