corrfitter Documentation
Release 6.0

G.P. Lepage

February 07, 2017

1 corrfitter - Least-Squares Fit to Correlators

1.1 Introduction
1.2 BasicFits e
1.3 FasterFits
1.4 Faster Fits — Postive Parameters
1.5 Faster Fits — Marginalization
1.6 Faster Fits— Chained Fits
1.7 Faster Fits — Faster Fitters
1.8 Faster Fits — Processed Datasets
1.9 Variations e
1.10 Very Fast (But Limited) Fits
1.11 3-Point Correlators,
1.12 Testing Fits with Simulated Data
1.13 Bootstrap Analyses oo
1.14 TImplementation
1.15 Correlator Model Objects

1.16 corrfitter.CorrFitter Objects

1.17 corrfitter.EigenBasisObjects

1.18 FastFitObjects
Annotated Example: Two-Point Correlator

2.1 Introduction e e
22 Code e
23 Results e
2.4 Correlated Data?
2.5 FastFitand Effective Mass

Annotated Example: Transition Form Factor and Mixing

3.1 Introduction
32 Code e e
33 Results e e
3.4 Variation: Marginalization
3.5 Variation: Chained Fit
3.6 Testthe Analysis
37 MIXING .« o v o e e e e e e e e e e
Annotated Example: Matrix Correlator

4.1 Introduction
42 Code e
43 Results e
44 FitStability

CONTENTS

00 W W W

................... 10

................... 13

................... 24

................... 34

4.5 Alternative Organization
5 Indices and tables
Python Module Index

Index

67

69

71

corrfitter Documentation, Release 6.0

Contents:

CONTENTS 1

corrfitter Documentation, Release 6.0

2 CONTENTS

CHAPTER
ONE

CORRFITTER - LEAST-SQUARES FIT TO CORRELATORS

1.1 Introduction

This module contains tools that facilitate least-squares fits, as functions of time t, of simulation (or other statistical)
data for 2-point and 3-point correlators of the form:

Gab (t) = <b(t) a(0)>
Gavb (t,T) = <b(T) V(t) a(0)>

where T > t > 0. Each correlator is modeled using corrfitter.Corr2 for 2-point correlators, or
corrfitter.Corr3 for 3-point correlators in terms of amplitudes for each source a, sink b, and vertex Vv, and
the energies associated with each intermediate state. The amplitudes and energies are adjusted in the least-squares fit
to reproduce the data; they are defined in a shared prior (typically a dictionary).

Anobjectoftype corrfitter.CorrFitter describes a collection of correlators and is used to fit multiple models
to data simultaneously. Fitting multiple correlators simultaneously is important if there are statistical correlations be-
tween the correlators. Any number of correlators may be described and fit by a single corrfitter.CorrFitter
object.

We now review the basic features of corrfitter. These features are also illustrated for real applications in a series
of annotated examples following this section. Impatient readers may wish to jump directly to these examples.

About Printing: The examples in this tutorial use the print function as it is used in Python 3. Drop the outermost
parenthesis in each print statement if using Python 2; or add

from _ future import print_function

at the start of your file.

1.2 Basic Fits

To illustrate, consider data for two 2-point correlators: Gaa with the same source and sink (a), and Gab which
has source a and (different) sink b. The data are contained in a dictionary data, where data[’Gaa’]
and data[’Gab’] are one-dimensional arrays containing values for Gaa (t) and Gab (t), respectively, with
t=0,1,2...63. Each array element in data [’ Gaa’] and data[’Gab’] is a Gaussian random variable of
type gvar .GVar, and specifies the mean and standard deviation for the corresponding data point:

>>> print (data['Gaa'])
[0.1597910(41) 0.0542088(31) ... 1
>>> print (data['Gab'])
[0.156145(18) 0.102335(15) ...]

corrfitter Documentation, Release 6.0

gvar .GVars also capture statistical correlations between different pieces of data, if they exist.

We want to fit this data to the following formulas:

Gaa(t,N) = sum_i=0..N-1 a[i]lx*2 * exp(-E[1]*t)
Gab (t,N) = sum_i=0..N-1 a[i]l«b[i] * exp(-E[i]~*t)

Our goal is to find values for the amplitudes, a[1] and b [1], and the energies, E [1], so that these formulas repro-
duce the average values for Gaa (t, N) and Gab (t, N) that come from the data, to within the data’s statistical errors.
We use the same a [i]s and E [1i]s in both formulas. The fit parameters used by the fitter are the a[i]sand b [i]s,
as well as the differences dE[i]=E[1]-E[i-1] for i>0 and dE[0]=E[0]. The energy differences are usually
positive by construction (see below) and are easily converted back to energies using:

E[i] = sum_J=0..1 dE[]]

A typical code has the following structure:

import corrfitter as cf

def main() :

data = make_data('mcfile') # user-supplied routine
models = make_models () # user—-supplied routine
N =4 # number of terms in fit functions
prior = make_prior (N) # user-supplied routine
fitter = cf.CorrFitter (models=models)
fit = fitter.lsgfit (data=data, prior=prior) # do the fit
print (fit)
print_results (fit, prior, data) # user—-supplied routine
if _ name_ == '__ _main__ ':
main ()

We discuss each user-supplied routine in turn.

1.2.1 a) make_data

make_data ("mcfile’) creates the dictionary containing the data that is to be fit. Typically such data comes from
a Monte Carlo simulation. Exactly how the data are assembled depends upon how Monte Carlo results are stored.

Imagine, for example, that the simulation creates a file called ' mcfile’ with layout

first correlator: each line has Gaa(t) for t=0,1,2...63
Gaa 0.159774739530e+00 0.541793561501e-01

Gaa 0.159751906801e+00 0.542054488624e-01

Gaa

second correlator: each line has Gab(t) for t=0,1,2...63
Gab 0.155764170032e+00 0.102268808986e+00

Gab 0.156248435021e+00 0.102341455176e+00

Gab

4 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 6.0

where each line is one Monte Carlo measurement for one or the other correlator, as indicated by the tags at the start of
the line. (Lines for Galb may be interspersed with lines for Gaa since every line has a tag.) A data file in this format
can be analyzed using:

import gvar as gv
import corrfitter as cf

def make_data(filename) :
dset = cf.read_dataset (filename)
return gv.dataset.avg_data (dset)

This reads the data from the file into a dataset, which is a dictionary whose values are two-dimenional arrays where
the first index labels the Monte Carlo sample, and the second index labels time: for example,

>>> print (dset['Gaa'])
[[0.159774739530e+00 0.541793561501e-01 ... 1,
[0.159751906801e+00 0.542054488624e-01 ... 1,
.

Function gvar.dataset.avg_data () then averages over the Monte Carlo samples. Thus data =
make_data (‘mcfile’) creates a dictionary where data [’ Gaa’] is a one-dimensional array of gvar .GVars,
indexed by time, obtained by averaging over the Gaa data in the "mcfile’, and data [’ Gab’] is a similar array
for the Gab correlator. The correlator values for different ts are typically correlated with each other.

Other data formats are readily adapted to this purpose. For example, the same Monte Carlo data might be stored in an
hdfs file:

import h5py
import gvar as gv

def make_data (filename) :
h5file = hbSpy.File(filename, 'r')
dset = dict (
Gaa=h5file['/run5/Gaa'], Gab=hfile['/run5/Gab']
)
return gv.dataset.avg_data (dset)

Here we assume h5file[’ /run5/Gaa’] and hfile[’ /run5/Gab’] are hdf5 datasets that have been config-
ured, again, as two-dimensional numpy arrays, where the first index is the Monte Carlo sample (configuration) index,
and the second index is time.

Function corrfitter.read_dataset () canread hdf5 files, so this last example could also be handled by

def make_data(filename) :
dset = cf.read_dataset (filename, h5group='/run5")
return gv.dataset.avg_data (dset)

provided filename endsin ’ . h5’. This reads in all hdf5 datasets in group /run5.

1.2.2 b) make_models

make_models () identifies which correlators in the fit data are to be fit, and specifies theoretical models (that is, fit
functions) for these correlators:

import corrfitter as cf

def make_models () :
tdata = range (64)

1.2. Basic Fits 5

corrfitter Documentation, Release 6.0

tfit = tdatal[2:]

models = [
cf.Corr2(datatag="Gaa', tdata=tdata, tfit=tfit, a='a', b=
cf.Corr2(datatag='Gab', tdata=tdata, tfit=tfit, a='a', b=
]

return models

'a', dE='dE'),
'b', dE='dE'),

For each correlator, we specify: the key used in the input data dictionary data for that correlator (datatag); the
t values, tdata=[0,1,2...63], associated with each element of the fit data for the correlator; the subset of
tdata values, tfit=[2,3,4...63], to be used in the fit; and fit-parameter labels for the source (a) and sink
(b) amplitudes, and for the intermediate energy-differences (dE). Fit-parameter labels identify the parts of the prior,
discussed below, corresponding to the actual fit parameters (the labels are dictionary keys). Here the two models, for
Gaa and Gab, are identical except for the data tags and the sinks. make_models () returns a list of models; the only
parts of the input fit data that are fit are those for which a model is specified in make_models ().

Note that if there is data for Gba (t, N) in addition to Gab (t,N), and Gba = Gab, then the (weighted) average of
the two data sets will be fit if models [1] is replace by:

cf.Corr2(
datatag='Gab', tmin=1, tmax=63, a='a', b='b', dE='dE",
otherdata="'Gba',
)

Alternatively one could add a third Corr2 to models for Gba, but it is more efficient to combine it with Gab, before
the fit, if they are equivalent.

The arrays tdata and t £it provide more flexibility than is often needed. Here, because there is data for all t values
starting with 0, we could have defined the correlator objects more simply, in terms of the minimum and maximum t
values used in the fit: for example,

cf.Corr2(datatag='Gaa', tmin=2, tmax=63, a='a', b='a', dE='dE")

corrfitter.Corr2 creates the obvious choices for tdata and t £it from the information given.

1.2.3 ¢) make_prior

This routine defines the fit parameters that correspond to each fit-parameter label used in make_models () above. It
also assigns a priori values to each parameter, expressed in terms of Gaussian random variables (gvar . GVars), with
a mean and standard deviation. The prior is built using a Python dictionary (we use gvar.BufferDict but others
would work):

import gvar as gv

def make_prior (N):

prior = gvar.BufferDict ()

prior['a']l] = gv.gvar(N = ['0.1(5)"])
prior['b'] = gv.gvar(N = ["1(5)"'])
prior['dE'] = gv.gvar(N = ['0.25(25)"'])

return prior

make_prior (N) associates arrays of N Gaussian random variables (gvar .GVars) with each fit-parameter label,
enough for N terms in the fit function. These are the a priori values for the fit parameters, and they can be retrieved us-
ing the label: setting prior=make_prior (N), for example, implies that prior[’a’] [i], prior[’b’] [1]
and prior [’dE’] [1] are the a priori values for a[i],b[i] and dE[1] in the fit functions (see above). The a
priori value for each a[1] hereissetto 0.140.5, while that foreachb[1] is 1+£5:

6 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 6.0

>>> print (prior(['a'
[0.10(50) 0.10(50
>>> print (prior [’
[1.0(5.0) 1.0(5.0

1)
0.10(50) 0.10(50)]
1
1

)
b 1
) .0(5.0) 1.0(5.0)]

Similarly the a priori value for each energy difference is 0.2540.25. (See the Lsgfit documentation for further
information on priors.)

1.2.4 d) print_results

The actual fit is done by fit=fitter.lsqgfit (...),and print (£it) right afterwards prints a summary of
the fit results. Further results are reported by print_results (fit, prior, data): for example,

def print_results(fit, prior, data):
print (fit)

a = fit.p['a'] # array of alils
b = fit.p['b'] # array of blils
dE = fit.p['dE"'] # array of dE[i]s
E = np.cumsum (dE) # array of E[i]ls
print ('Best fit values:)

print (' a[0] =',al0])

print (' b[0] ="',b[0])

print (' E[0] =',E[0])

print ('b[0]/a[0] =',b[0]/al0])

outputs = {'E0':E[0], 'a0' 0], 'b0/al0':b[0]/a[0]1}

:al[0], 'bO0':bl
inputs = {'a'=prior['a'], 'b'=prior['b']

'data'=[datal[k] for k in data]
print (fit.fmt_errorbudget (outputs, input

'dE'=prior['dE'],

)
s))

The best-fit values from the fit are contained in £it .p and are accessed using the labels defined in the prior and
the corrfitter.Corr2 models. Variables like a[0] and E[0] are gvar.GVar objects that contain means and
standard deviations, as well as information about any correlations that might exist between different variables (which
is relevant for computing functions of the parameters, like b [0] /a [0] in this example).

The last line of print_results (fit, prior, data) prints an error budget for each of the best-fit results for
al0],b[0],E[0] andb[0]/a[0], which are identified in the print output by the labels * a0’, "b0’, "E0’ and
"b0/a0’, respectively. The error for any fit result comes from uncertainties in the inputs — in particular, from the
fit data and the priors. The error budget breaks the total error for a result down into the components coming from each
source. Here the sources are the a priori errors in the priors for the * a’ amplitudes, the ' b’ amplitudes, and the
" dE’ energy differences, as well as the errors in the fit data data. These sources are labeled in the print output by
"a’,'b’",’dE’, and ' data’, respectively. (See the gvar/lsgfit tutorial for further details on partial standard
deviations and gvar. fmt_errorbudget ().)

Plots of the fit data divided by the fit function, for each correlator, are displayed by calling fit.show_plots ()
provided the matplot1lib module is present.

1.3 Faster Fits

Good fits often require fit functions with several exponentials and many parameters. Such fits can be costly. One
strategy that can speed things up is to use fits with fewer terms to generate estimates for the most important parameters.
These estimates are then used as starting values for the full fit. The smaller fit is usually faster, because it has fewer
parameters, but the fit is not adequate (because there are too few parameters). Fitting the full fit function is usually
faster given reasonable starting estimates, from the smaller fit, for the most important parameters. Continuing with the
example from the previous section, the code

1.3. Faster Fits 7

corrfitter Documentation, Release 6.0

data = make_data('mcfile')
fitter = cf.CorrFitter (models=make_models())
p0 = None
for N in [1,2,3,4,5,6,7,8]:
prior = make_prior (N)
fit = fitter.lsgfit (data=data, prior=prior, pO0=p0)
print_results (fit, prior, data)
p0 = fit.pmean

does fits using fit functions with N=1. . . 8 terms. Parameter mean-values £it . pmean from the fit with N exponen-
tials are used as starting values pO for the fit with N+1 exponentials, hopefully reducing the time required to find the
best fit for N+1.

1.4 Faster Fits — Postive Parameters

Priors used in corrfitter.CorrFitter assign an a priori Gaussian/normal distribution to each parameter. It is
possible instead to assign a log-normal distribution, which forces the corresponding parameter to be positive. Consider,
for example, energy parameters labeled by ’ dE’ in the definition of a model (e.g., Corr2 (dE='dE’, ...)). To
assign log-normal distributions to these parameters, include their logarithms in the prior and label the logarithms with
"log (dE) ' : for example, in make_prior (N) use

prior['log(dE) '] = gv.log(gv.gvar(N = ['0.25(25)"]))

instead of prior['dE’] = gv.gvar (N » [70.25(25)"]1). The fitter then uses the logarithms as the fit
parameters. The original ' dE’ parameters are recovered (automatically) inside the fit function from exponentials of
the ' 1og (dE) ’ fit parameters.

Using log-normal distributions where possible can significantly improve the stability of a fit. This is because otherwise
the fit function typically has many symmetries that lead to large numbers of equivalent but different best fits. For
example, the fit functions Gaa (t, N) and Gab (t, N) above are unchanged by exchanging a[1],b[i] and E[1]
with a[j],b[J] and E[J] for any i and j. We can remove this degeneracy by using a log-normal distribution
for the dE [1]s since this guarantees that all dE [1]s are positive, and therefore that E[0] ,E[1],E[2] ... are
ordered (in decreasing order of importance to the fit at large t).

Another symmetry of Gaa and Gab, which leaves both fit functions unchanged, is replacing a[i],b[i] by
—a[i],-bl[i]. Yet another is to add a new term to the fit functions with a[k],b[k], dE [k] where a[k]=0
and the other two have arbitrary values. Both of these symmetries can be removed by using a log-normal distribution
for the a [1] priors, thereby forcing all a [1] >0.

The log-normal distributions for the a [1] and dE [1] are introduced into the code example above by changing the
corresponding labels in make_prior (N), and taking logarithms of the corresponding prior values:

import gvar as gv
import corrfitter as cf

def make_models () : # same as before
models = [
cf.Corr2(datatag='Gaa', tmin=2, tmax=63, a='a', b='a', dE='dE"'),
cf.Corr2(datatag="Gab', tmin=2, tmax=63, a='a', b='b', dE='dE'),
]

return models

def make_prior(N):
prior = gv.BufferDict ()
prior['log(a)'] = gv.log(gv.gvar(N = ['0.1(5)"']1))
prior['b'] = gv.gvar(N = ['1(5)"'])

8 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 6.0

prior['log(dE) '] = gv.log(gv.gvar(N % ['0.25(25)"']))
return prior

This replaces the original fit parameters, a [1] and dE [i], by new fit parameters, Log (a) [1] and log (dE) [i].
The a priori distributions for the logarithms are Gaussian/normal, with priors of log(0.1£0.5) and
1log (0.25+£0.25) forthe log (a)sand Log (dE) s respectively.

Note that the labels are unchanged here in make_models (). It is unnecessary to change labels in the models;
corrfitter.CorrFitter will automatically connect the modified terms in the prior with the appropriate terms
in the models. This allows one to switch back and forth between log-normal and normal distributions without changing
the models (or any other code) — only the names in the prior need be changed. corrfitter.CorrFitter also
supports “sqrt-normal” distributions, and other distributions, as discussed in the 1sgfit documentation.

Finally note that another option for stabilizings fits involving many sources and sinks is to generate priors for the fit
amplitudes and energies using corrfitter.EigenBasis.

1.5 Faster Fits — Marginalization

Often we care only about parameters in the leading term of the fit function, or just a few of the leading terms. The
non-leading terms are needed for a good fit, but we are uninterested in the values of their parameters. In such cases
the non-leading terms can be absorbed into the fit data, leaving behind only the leading terms to be fit (to the modified
fit data) — non-leading parameters are, in effect, integrated out of the analysis, or marginalized. The errors in the
modified data are adjusted to account for uncertainties in the marginalized terms, as specified by their priors. The
resulting fit function has many fewer parameters, and so the fit can be much faster.

Continuing with the example in Faster Fits, imagine that Nmax=8 terms are needed to get a good fit, but we only care
about parameter values for the first couple of terms. The code from that section can be modified to fit only the leading
N terms where N<Nmax, while incorporating (marginalizing) the remaining, non-leading terms as corrections to the
data:

Nmax = 8

data = make_data('mcfile')

models = make_models ()

fitter = cf.CorrFitter (models=make_models())

prior = make_prior (Nmax) # build priors for Nmax terms
pO = None

for N in [1,2,3]: # fit N terms

fit = fitter.lsqgfit (data=data, prior=prior, pO0=p0, nterm=N)
print_results (fit, prior, data)
p0 = fit.pmean

Here the nterm parameter in fitter.lsqgfit specifies how many terms are used in the fit functions. The prior
specifies Nmax terms in all, but only parameters in nt erm=N terms are varied in the fit. The remaining terms specified
by the prior are automatically incorporated into the fit data by corrfitter.CorrFitter.

Remarkably this method is usually as accurate with N=1 or 2 as a full Nmax-term fit with the original fit data; but
it is much faster. If this is not the case, check for singular priors, where the mean is much smaller than the standard
deviation. These can lead to singularities in the covariance matrix for the corrected fit data. Such priors are easily
fixed: for example, use gvar.gvar (0.1 (1.0) ") rather than gvar.gvar (0 (1)’). In some situations an
SVD cut (see below) can also help.

1.5. Faster Fits — Marginalization 9

corrfitter Documentation, Release 6.0

1.6 Faster Fits — Chained Fits

Large complicated fits, where lots of models and data are fit simultaneously, can take a very long time. This is
especially true if there are strong correlations in the data. Such correlations can also cause problems from numerical
roundoff errors when the inverse of the data’s covariance matrix is computed for the chi = » 2 function, requiring large
SVD cuts which can degrade precision (see below). An alternative approach is to use chained fits. In a chained fit,
each model is fit by itself in sequence, but with the best-fit parameters from each fit serving as priors for fit parameters
in the next fit. All parameters from one fit become fit parameters in the next, including those parameters that are not
explicitly needed by the next fit (since they may be correlated with the input data for the next fit or with its priors).
Statistical correlations between data/priors from different models are preserved throughout (approximately).

The results from a chained fit are identical to a standard simultaneous fit in the limit of large statistics (that is, in the
Gaussian limit), but a chained fit usually involves fitting only a single correlator at a time. Single-correlator fits are
typically much faster than simultaneous multi-correlator fits, and roundoff errors (and therefore SVD cuts) are much
less of a problem.

Converting to chained fits is trivial: simply replace fit = fitter.lsgfit(...) by fit =
fitter.chained_lsqgfit (...). The output from this function comes from the last fit in the chain, whose
fit results represent the cummulative results of the entire chain of fits. Results from the different links in the chain —
that is, from the fits for individual models — are displayed using print (fit.formatall ()).

There are various ways of chaining fits. For example, setting

[models - [ml, m2, (m3a, m3b), m4]

causes models m1, m2 and m4 to be fit separately, but fits models m3a and m3b together in a single simultaneous fit:

‘ml -> m2 -> (simultaneous fit of m3a, m3b) -> m4

Simultaneous fits make sense when there is lots of overlap between the parameters for the different models.

Another option is

‘models = [ml, m2, [m3a,m3b], m4]

in fitter.chained_1lsgfit which causes the following chain of fits:

‘ml -> m2 -> (parallel fit of m3a, m3b) -> m4

Here the output from m1 is used in the prior for fit m2, and the output from m2 is used as the prior for a parallel fit of
m3a and m3Db together — that is, m3a and m3b are not chained, but rather are fit in parallel with each using a prior
from fit m2. The result of the parallel fit of [m3a, m3b] is used as the prior for m4. Parallel fits make sense when
there is little overlap between the parameters used by the different fits.

1.7 Faster Fits — Faster Fitters

When fits take many iterations to converge (or converge to an obviously wrong result), it is worthwhile trying a
different fitter. The 1sgfit module, which is used by corrfitter for fitting, offers a variety of alternative fitting
algorithms that can sometimes be much faster (2 or 3 times faster). These are deployed by adding extra directives for
1sqgfit when constructing the fitter or when doing the fit: for example,

import corrfitter as cf

fitter = cf.CorrFitter(
models=make_models (),
fitter="'gsl multifit', alg='subspace2D', solver='cholesky'
)

10 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 6.0

uses the subspace?2D algorithm for subsequent fits with fitter. It is also possible to reset the default algorithms
for all fits:

import lsqgfit

lsgfit.nonlinear_ fit.set (
fitter="'gsl multifit', alg='subspace2D', solver='cholesky'
)

The documentation for 1sgfit describes many more options.

1.8 Faster Fits — Processed Datasets

When fitting very large data sets, it is usually worthwhile to pare the data down to the smallest subset that is needed
for the fit. Ideally this is done before the Monte Carlo data are averaged, to keep the size of the covariance matrix
down. One way to do this is to process the Monte Carlo data with the models, just before averaging it, by using

import gvar as gv
import corrfitter as cf

def make_pdata(filename, models) :
dset = cf.read_dataset (filename)
return cf.process_dataset (dset, models)

in place of make_data (filename). Here models is the list of models used by the fitter (fitter.models).
Function make_pdata returns processed data which is passed to fitter.1lsgfit using the pdata keyword:

import corrfitter as cf

def main() :
N = 4
models = make_models ()
pdata = make_pdata('mcfile', models)
prior = make_prior (N)
fitter = cf.CorrFitter (models=models)
fit = fitter.lsgfit (pdata=pdata, prior=prior)
print (fit)
print_results (fit, prior, pdata)

if name == ' _ main__ ':
main ()

Processed data can only be used with the models that created it, so parameters in those models should not be changed
after the data is processed.

1.9 Variations

A 2-point correlator is turned into a periodic function of t by specifying the period through parameter tp. Doing so
causes the replacement (for t p>0)

exp (-E[1]*t) -> exp(-E[i]*t) + exp(-E[i]*(tp-t))

1.8. Faster Fits — Processed Datasets 11

corrfitter Documentation, Release 6.0

in the fit function. If tp is negative, the function is replaced by an anti-periodic function with period abs (tp) and
(for tp<0):

’exp(—E[iJ*t) -> exp(-E[i]*t) — exp(-E[i]~* (abs(tp)-t))

Also (or alternatively) oscillating terms can be added to the fit by modifying parameter s and by specifying sources,
sinks and energies for the oscillating pieces. For example, one might want to replace the sum of exponentials with two
sums

‘sum_i afi]l**2 x exp(-E[i]l*t) - sum_i ao[i]l**x2 (-1)+**t » exp(-Eo[i]x*t)

in a (nonperiodic) fit function. Then an appropriate model would be, for example,

Corr2 (
datatag='Gaa', tmin=2, tmax=63,
a=('a','ao'), b=('a','ao"'), dE=('dE', 'dE0"'), s=(1,-1)
)

where ao and dEo refer to additional fit parameters describing the oscillating component. In general parameters
for amplitudes and energies can be tuples with two components: the first describing normal states, and the second
describing oscillating states. To omit one or the other, put None in place of a label. Parameter s [0] is an overall
factor multiplying the non-oscillating terms, and s [1] is the corresponding factor for the oscillating terms.

Highly correlated data can lead to problems from numerical roundoff errors, particularly where the fit code inverts the
covariance matrix when constructing the chi+ 2 function. Such problems show up as unexpectedly large chi«*2
or fits that stall and appear never to converge. Such situations are usually improved by introducing an SVD cut: for
example,

fit = fitter.lsqgfit (data=data, prior=prior, pO=p0, svdcut=le-4)

Introducing an SVD cut increases the effective errors and so is a conservative move. For more information about SVD
cuts see the 1sgfit tutorial and documentation. Parameter svdcut is used to specify an SVD cut.

1.10 Very Fast (But Limited) Fits

At large t, two-point correlators are dominated by the term with the smallest E, and often it is only the parameters in
that leading term that are needed. In such cases there is a very fast analysis that is often almost as accurate as a full fit.
Assuming a non-periodic correlator, for example, we want to calculate energy E [0] and amplitude A [0] where:

G(t) = sum_1i=0,N-1 A[i] * exp(-E[1]*t)

This is done using the following code

from corrfitter import fastfit

Gdata = array containing G(t) for t=0,1,2...

fit = fastfit (Gdata, ampl='0(1)', dE='0.5(5)", tmin=3)
print ('E[0] ="', fit.E) # E[0]
print ('A[0] =', fit.ampl) A[0]

(
(i
print ('chi2/dof =', fit.E.chi2/fit.dof) # good fit if of order 1 or less
print ('Q0 ="', fit.E.Q) # good fit if Q > 0.05-0.1

where G is an array containing a two-point correlator, ampl is a prior for the amplitudes A[1], dE is a prior for
energy differences E[1]-E[i-1], and tmin is the minimum time used in the analysis.

fastfit is fast because it does not attempt to determine any parameters in G (t) other than E[0] and A[0]. It
does this by using the priors for the amplitudes and energy differences to remove (marginalize) all terms from the
correlator other than the E [0] term: so the data Gdata (t) for the correlator are replaced by

12 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 6.0

Gdata(t) - sum_i=1..N-1 A[i] » exp(-E[i]~*t)

where A[i] and E [1] for i>0 are replaced by priors given by ampl and (i+1) »* dE, respectively. The modified
correlator is then fit by a single term, A[0] % exp (-E[0]*t), which means that a fit is not actually necessary
since the functional form is so simple. fastfit averages estimates for E[0] and A[0] from all ts larger than
tmin. It is important to verify that these estimates agree with each other, by checking the chix 2 of the average.
Try increasing tmin if the chi*«2 is too large; or introduce an SVD cut.

The energies from fastfit are closely related to standard effective masses. The key difference is fastrfit’s
marginalization of terms from excited states (1>0 above). This allows fastfit to use information from much
smaller ts than otherwise, increasing precision. It also quantifies the uncertainty caused by the existence of excited
states, and gives a simple criterion for how small tmin can be (the chi«=«2). Results are typically as accurate as
results obtained from a full multi-exponential fit that uses the same priors for A[i] and E[1], and the same tmin.
fastfit can also be used for periodic and anti-periodic correlators, as well as for correlators that contain terms that
oscillate in sign from one t to the next.

fastfit is aspecial case of the more general marginalization strategy discussed in Faster Fits, above.

1.11 3-Point Correlators

Correlators Gavb (t, T) = <b(T) V(t) a (0)> can also be included in fits as functions of t. In the illustration
above, for example, we might consider additional Monte Carlo data describing a form factor with the same intermediate
states before and after V (t) . Assuming the data is tagged by avbT15 and describes T=15, the corresponding entry
in the collection of models might then be:

Corr3 (datatag='avbTl5', T=15, tdata=range(16), tfit=range(l, 16),

Vnn='vnn', # parameters for V
a='a', dEa='dE", # parameters for a->V
b='b', dEb='dE"', # parameters for V->b

)

This models the Monte Carlo data for the 3-point function using the following formula:

sum_1i,J ali] * exp(-Eal[il*t) * Vnn[i,Jj] * b[J] * exp(-Eb[]J]=*t)

where the Vnn [1, j]s are new fit parameters related to a—>V—->b form factors. Obviously multiple values of T can
be studied by including multiple corrfitter.Corr3 models, one for each value of T. Either or both of the initial
and final states can have oscillating components (include sa and/or sb). If there are oscillating states then additional
Vs must be specified: Vno connecting a normal state to an oscillating state, Von connecting oscillating to normal
states, and Voo connecting oscillating to oscillating states.

Keywords tdata and t £it need not be specified when there is data for every t=0, 1. . . T: for example,

Corr3(
datatag='avbT1l5', T=15, tmin=1,
Vvnn='Vnn', a='a', dEa='dE', b='b', dEb='dE',
)

is equivalent to the definition above.

There are two cases that require special treatment. One is when simultaneous fits are made to a->V->b and
b->V->a. Then the Vnn, Vno, efc. for b—>V->a are the (matrix) transposes of the the same matrices for a—>V->b.
In this case the models for the two would look something like:

models = [

Corr3(

1.11. 3-Point Correlators 13

corrfitter Documentation, Release 6.0

datatag='aVbTl5', T=15, tmin=1,
Vnn='Vnn', Vno='Vno', Von='Von', Voo='Voo',
a=('a','ao'"), dEa=('dE', 'dEo'), sa=(1,-1), # a—->V
b=('b','bo'"), dEb=('dE', 'dEo"'), sb=(1,-1) # V->b
)V

Corr3(
datatag='bVvaTl5', T=15, tmin=1, reverse=True,
Vnn='Vnn', Vno='Vno', Von='Von', Voo='Voo',
a=('a','ao'"), dEa=('dE', 'dEo'), sa=(1,-1), # a—->V
b=('b','bo'), dEb=('dE', 'dEo'), sb=(1,-1) # V->b
)V

]

The second Corr3 is identical to the first except for the datatag (bvaT15’), and the keyword reverse=True,
which instructs the model to time-reverse its data, interchanging t=0 with t=T, before fitting. Time-reversing in
effect turns b—>V->a into a—>V->b.

Another way to handle this last situation is to average the data from b->V->a with that from a->V->b for a single
fit. This is done using one Corr3 but with the keyword reverseddata to indicate the data to be time-reversed and
then averaged with the a—>V->Db data:

models = [
Corr3(
datatag='aVbT1l5', T=15, tmin=1, reverseddata='bvaTl5',
vnn='Vnn', Vno='Vno', Von='Von', Voo='Voo',
a=('a','ao'), dEa=('dE','dEo'), sa=(1,-1), # a-—>V
b=('b','bo'), dEb=('dE', 'dEo"'), sb=(1,-1) # V->b
) 14

]

The second special case is for fits to a—>V—->a where the initial and final particles are the same (with the same
momentum). In that case, Vnn and Voo are symmetric matrices, and Von is the transpose of Vno. The model for
such a case would look like, for example:

Corr3(
datatag='avbTl5', T=15, tmin=1,
Vnn='vVnn', Vno='Vno', Voo='Voo', symmetric_V=True,
a=('a','ao'"), dEa=('de', 'dEo'), sa=(1, -1), # a->V
b=('a','ao'), dEb=('dE', 'dEo'), sb=(1, -1) # V->a
)

Here only Vno is specified, since Von is its transpose. Furthermore Vnn and Voo are (square) symmetric matrices
when symmetric_V==True and so only the upper part of each matrix is needed. In this case Vnn and Voo are
treated as one-dimensional arrays with N (N+1) /2 elements corresponding to the upper parts of each matrix, where
N is the number of exponentials (that is, the number of a [1i]s).

1.12 Testing Fits with Simulated Data

Large fits are complicated and often involve nontrivial choices about algorithms (e.g., chained fits versus regular fits),
priors, and SVD cuts — choices that affect the values and errors for the fit parameters. In such situations it is often
a good idea to test the fit protocol that has been selected. This can be done by fitting simulated data. Simulated
data looks almost identical to the original fit data but has means that have been adjusted to correspond to fluctuations
around a correlator with known (before the fit) parameter values: p=pexact. The corrfitter.CorrFitter

14 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 6.0

iterator simulated_pdata_iter creates any number of different simulated data sets of this kind. Fitting any of
these with a particular fit protocol tests the reliability of that protocol since the fit results should agree with pexact
to within the (simulated) fit’s errors. One or two fit simulations of this sort are usually enough to establish the validity
of a protocol. It is also easy to compare the performance of different fit options by applying these in fits of simulated
data, again because we know the correct answers (pexact) ahead of time.

Typically one obtains reasonable values for pexact from a fit to the real data. Assuming these have been dumped
into a file named "pexact_file" (using, for example, fit .dump_pmean ("pexact_file")), atesting script
might look something like:

import gvar as gv
import 1lsgfit
import corrfitter

def main () :

dataset = gv.dataset.Dataset (...) # from original fit code
prior = make_prior(...)

fitter = corrfitter.CorrFitter (models = make_models(...))

n =2 # number of simulations
pexact = lsgfit.nonlinear_fit.load_parameters ("pexact_file")

for spdata in fitter.simulated_pdata_iter (n, dataset, pexact=pexact):
sfit = fit to the simulated data sdata
sfit = fitter.lsqgfit (pdata=spdata, pO=pexact, prior=prior...)
check that sfit.p values agree with pexact to within sfit.psdev

Fit simulations are particularly useful for setting SVD cuts. Given a set of approximate parameter values to use for
pexact, it is easy to run fits with a range of SVD cuts to see how small svdcut can be made before the parameters
of interest deviate too far from pexact.

1.13 Bootstrap Analyses

A bootstrap analysis gives more robust error estimates for fit parameters and functions of fit parameters than the
conventional fit when errors are large, or fluctuations are non-Gaussian. A typical code looks something like:

import gvar as gv
import gvar.dataset as ds
from corrfitter import CorrFitter

fit

dset = ds.Dataset ('mcfile')

data = ds.avg_data (dset) # create fit data

fitter = Corrfitter (models=make_models())

N =4 # number of terms in fit function
prior = make_prior (N)

fit = fitter.lsqgfit (prior=prior, data=data) # do standard fit

print 'Fit results:'

print 'a', fit.pl['a'l] # fit results for 'a' amplitudes
print 'dE', fit.p['dE'] # fit results for 'dE' energies

bootstrap analysis
print 'Bootstrap fit results:'

nbootstrap = 10 # number of bootstrap iterations

bs_datalist = (ds.avg_data(d) for d in ds.bootstrap_iter (dset, nbootstrap))

bs = ds.Dataset () # bootstrap output stored in bs

for bs_fit in fitter.bootstrap_iter (bs_datalist): # bs_fit = 1lsgfit output
p = bs_fit.pmean # best fit values for current bootstrap iteration
bs.append('a', pl'a'l)) # collect bootstrap results for ali]

1.13. Bootstrap Analyses 15

corrfitter Documentation, Release 6.0

=

bs.append('dE', p['dE']) collect results for dE[1]

include other functions of p

bs = ds.avg_data (bs, bstrap=True) # medians + error estimate

print 'a', bs['a'] # bootstrap result for 'a' amplitudes
print 'dE', bs['dE'] # bootstrap result for 'dE' energies

This code first prints out the standard fit results for the a’ amplitudes and ’ dE’ energies. It then makes 10 bootstrap
copies of the original input data, and fits each using the best-fit parameters from the original fit as the starting point
for the bootstrap fit. The variation in the best-fit parameters from fit to fit is an indication of the uncertainty in
those parameters. This example uses a gvar.dataset .Dataset object bs to accumulate the results from each
bootstrap fit, which are computed using the best-fit values of the parameters (ignoring their standard deviations). Other
functions of the fit parameters could be included as well. Attheend avg_data (bs, bstrap=True) finds median
values for each quantity in bs, as well as a robust estimate of the uncertainty (to within 30% since nbootstrap is
only 10).

The list of bootstrap data sets bs_datalist can be omitted in this example in situations where the input data
has high statistics. Then the bootstrap copies are generated internally by fitter.bootstrap_iter () from the
means and covariance matrix of the input data (assuming Gaussian statistics).

1.14 Implementation

Background information on the some of the fitting strategies used by corrfitter.CorrFitter can be found
by doing a web searches for “hep-1at/0110175”, “arXiv:1111.1363”, and ":arXiv:1406.2279” (appendix). These are
papers by G.P. Lepage and collaborators whose published versions are: G.P. Lepage et al, Nucl.Phys.Proc.Suppl. 106
(2002) 12-20; K. Hornbostel et al, Phys.Rev. D85 (2012) 031504; and C. Bouchard et al, Phys.Rev. D90 (2014)
054506.

1.15 Correlator Model Objects

Correlator objects describe theoretical models that are fit to correlator data by varying the models’ parameters.

A model object’s parameters are specified through priors for the fit. A model assigns labels to each of its parameters
(or arrays of related parameters), and these labels are used to identify the corresponding parameters in the prior.
Parameters can be shared by more than one model object.

A model object also specifies the data that it is to model. The data is identified by the data tag that labels it in the input
file or gvar.dataset .Dataset.

class corrfitter.Corr2 (datatag, a, b, dE, s=1.0, tp=None, tmin=None, tmax=None, tdata=None,

tfit=None, reverse=Fualse, reverseddata=[|, otherdata=[])
Two-point correlators Gab (t) = <b(t) a(0)>.

corrfitter.Corr2models the t dependence of a 2-point correlator Gab (t) using

Gab(t) = sn * sum_i an[i] * bn[i] * fn(En[i], t)
+ so * sum_i ao[i] * bo[i] » fo(Eo[i], t)

where sn and so are typically -1, 0, or 1 and

fn(E, t) = exp(-Ext) + exp(-Ex(tp-t)) # tp>0 —-- periodic
or exp (“Ext) — exp(-Ex (-tp-t))# tp<0 -- anti-periodic
or exp (-Ex*t) # if tp is None (nonperiodic)

16 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 6.0

fo(E, t) = (-1)**t x fn(E, t)

The fit parameters for the non-oscillating piece of Gab (first term) are an[i],bn[1i], and dEn [i] where:

dEn[0] = En[0]
dEn[i] = En[i]-En[i-1] > O (for 1>0)
and therefore En[i] = sum_3j=0..1 dEn[j]. The fit parameters for the oscillating piece are defined

analogously: ao[i],bo[i],and dEo[1i].

The fit parameters are specified by the keys corresponding to these parameters in a dictionary of priors supplied
to corrfitter.CorrFitter. The keys are strings and are also used to access fit results. A log-normal
prior can be specified for a parameter by including an entry for Log (c) in the prior, rather than for c itself.
See the 1sgfit documentation for information about other distributions that are available. Values for both
log (c) and c are included in the parameter dictionary. Log-normal distributions are useful for forcing an, bn
and/or dE to be positive.

When tp is not None and positive, the correlator is assumed to be symmetrical about tp/2, with
Gab (t)=Gab (tp-t). Data from t>tp/2 is averaged with the corresponding data from t<tp/2 before
fitting. When tp is negative, the correlator is assumed to be anti-symetrical about —tp/ 2.

Parameters

* datatag (str) — Key used to access correlator data in the input data dictionary (see
corrfitter.CorrFitter): data[self.datatag] isa (1-d) array containing the
correlator values (gvar.GVars).

* a (str or tuple) — Key identifying the fit parameters for the source amplitudes an in the
dictionary of priors provided to corrfitter.CorrFitter; or a two-tuple of keys for
the source amplitudes (an, ao). The corresponding values in the dictionary of priors are
(1-d) arrays of prior values with one term for each an [1] or ao [1]. Replacing either key
by None causes the corresponding term to be dropped from the fit function. These keys are
used to label the corresponding parameter arrays in the fit results as well as in the prior.

e b (str or tuple) — Same as self.a but for the sinks (bn, bo) instead of the sources
(an, ao).

* dE (str) — Key identifying the fit parameters for the energy differences dEn in the dictionary
of priors provided by corrfitter.CorrFitter; or atwo-tuple of keys for the energy
differences (dEn, dEo). The corresponding values in the dictionary of priors are (1-d)
arrays of prior values with one term for each dEn[i] or dEo [i]. Replacing either key
by None causes the corresponding term to be dropped from the fit function. These keys are
used to label the corresponding parameter arrays in the fit results as well as in the prior.

* s (float or tuple) — Overall factor sn for non-oscillating part of fit function, or two-tuple of
overall factors (sn, so) for both pieces.

tdata (list of ints) — The ts corresponding to data entries in the input data. Note that
len(self.tdata) should equal len (data[self.datatag]). If tdata is omit-
ted, tdata=numpy.arange (tp) is assumed, or tdata=numpy.arange (tmax) if
tp is not specified.

* t£it (list of ints) — List of ts to use in the fit. Only data with these ts (all of which should
be in tdata) is used in the fit. If t £it is omitted, it is assumed to be all t values from
tdata that are larger than or equal to tmin (if specified) and smaller than or equal to
tmax (if specified).

* tp (int or None) — If tp is positive, the correlator is assumed to be periodic with
Gab (t)=Gab (tp—-t). If negative, the correlator is assumed to be anti-periodic with

1.15. Correlator Model Objects 17

corrfitter Documentation, Release 6.0

Gab (t)=-Gab (-tp—-t). Setting tp=None implies that the correlator is not periodic,
but rather continues to fall exponentially as t is increased indefinitely.

* tmin (int or None) — If t fit is omitted, it is assumed to be all t values from tdata that
are larger than or equal to tmin and smaller than or equal to tmax (if specified). tmin is
ignored if t £it is specified.

e tmax (int or None) — If t £it is omitted, it is assumed to be all t values from tdata that
are larger than or equal to tmin (if specified) and smaller than or equal to tmax. tmin is
ignored if t fit and tdata are specified.

* ncg (int) — Width of bins used to coarse-grain the correlator before fitting. Each bin of ncg
correlator values is replaced by its average. Default is ncg=1 (ie, no coarse-graining).

* reverse (bool) — If True, the data associated with self.datatag is time-reversed
(data -> [data[0], datal[-1], data[-2]...data[l]]). Ignored other-
wise.

* otherdata (str or list or None) — Data tag or list of data tags for additional data that are
averaged with the self.datatag data before fitting. This is useful including data from
correlators with the source and sink interchanged. Default is None.

* reverseddata (str or list or None) — Data tag or list of data tags for data that is time-
reversed and then averaged with the self.datatag data before fitting. Default is None.

builddata (data)
Assemble fit data from dictionary data.

builddataset (dataset)
Assemble fit data from data set dictionary dataset.

buildprior (prior, nterm=None, mopt=None, extend=None)
Create fit prior by extracting relevant pieces from prior.

This routine selects the entries in dictionary prior corresponding to the model’s fit parameters. If nterm

is not None, it also adjusts the number of terms that are retained.
Parameters
» prior (dictionary) — Dictionary containing priors for fit parameters.

* nterm (None or int or two-tuple) — Setting nterm= (n, no) restricts the number of
terms to n in the non-oscillating part and no in the oscillating part of the fit function.
Replacing either or both by None keeps all terms, as does setting nterm=None. This
optional argument is used to implement marginalization.

fitfen (p, t=None)
Return fit function for parameters p.

class corrfitter.Corr3 (datatag, T, Vnn, a, b, dEa, dEb, sa=1.0, sb=1.0, Vno=None, Von=None,

Voo=None, tdata=None, tfit=None, tmin=None. reverse=False, symmet-

ric_V=False, reverseddata=[], otherdata=[])
Three-point correlators Gavb (t, T) = <b(T) V(t) a(0)>.

corrfitter.Corr3models the t dependence of a 3-point correlator Gavb (t, T) using

Gavb(t, T) =

sum_1i,Jj san * an[i] x fn(Ean[i],t) % Vnn[i,]Jj] % sbn x bn[j] * fn(Ebn[]j],T-t)
+sum_i,J san % an[i] * fn(Ean[i],t) * Vnol[i,Jj] » sbo % bo[j] * fo(Ebo[j],T-t)
+sum_i, j sao * ao[i] % fo(Eao[il],t) =% Von[i,]Jj] % sbn = bn[j] * fn(Ebn[]j],T-t)
+sum_1i,j sao x ao[i] * fo(Eao[i],t) = Voo[i,]j] * sbo % bo[j] * fo(Ebo[j],T-t)

where

18

Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 6.0

fn(E, t) = exp(-Ext)
fo(E, t) (-1)**t *« exp(-Ext)

The fit parameters for the non-oscillating piece of Gavb (first term) are Vnn [1, j],an[i],bn[j],dEan[i]
and dEbn [j] where, for example:

dEan[0] = Ean[0]

dEan[i] = Ean[i] - Ean[i-1] > O (for 1>0)

and therefore Ean[i] = sum_j=0..1i dEan/[j]. The parameters for the other terms are similarly defined.
Parameters

* datatag (str) — Tag used to label correlator in the input data.

* a (stror tuple) — Key identifying the fit parameters for the source amplitudes an, for a—>V,
in the dictionary of priors provided to corrfitter.CorrFitter; or a two-tuple of
keys for the source amplitudes (an, ao). The corresponding values in the dictionary of
priors are (1-d) arrays of prior values with one term for each an[1] or ao[1]. Replacing
either key by None causes the corresponding term to be dropped from the fit function. These
keys are used to label the corresponding parameter arrays in the fit results as well as in the
prior.

b (str or tuple) — Same as self . a but for the V->b sink amplitudes (bn, bo).

* dEa (str or tuple) — Fit-parameter label for a—>V intermediate-state energy differences
dEan, or two-tuple of labels for the differences (dEan, dEao). Each label represents an
array of energy differences. Replacing either label by None causes the corresponding term
in the correlator function to be dropped. These keys are used to label the corresponding
parameter arrays in the fit results as well as in the prior.

* dEDb (str or tuple) — Same as self .dEa but for V->b sink energies (dEbn, dEbo).

* sa (float or tuple) — Overall factor san for the non-oscillating a—>V terms in the corre-
lator, or two-tuple containing the overall factors (san, sao) for the non-oscillating and
oscillating terms. Defaultis (1,-1).

* sb (float or tuple) — Same as self . sa but for V->b sink overall factors (sbn, sbo).

e Vnn (str or None) — Fit-parameter label for the matrix of current matrix elements
vnn[i, j] connecting non-oscillating states. The matrix must be square and symmetric
if symmetric_V=True, and only the elements V[1, j] for j>=1 are specified, using a
1-d array V__sym with the following layout:

(vto,0],vIio,11,vI[0,2]...V[O,N],
v[1,1],vI[1,2]...V[1,N],

vi2,2]...V[2,N],
V[N, N]]
Note that V[i,] = V_symm[i*N + j — i % (i+1) / 2] for j>=i. Set

vnn=None to omit it.

* Vno (str or None) — Fit-parameter label for the matrix of current matrix elements
Vno[i, j] connecting non-oscillating to oscillating states. Only one of Von and Vno
can be specified if symmetric_V=True; the other is defined to be its transform. Set
Vno=None to omit it.

1.15. Correlator Model Objects 19

corrfitter Documentation, Release 6.0

* Von (str or None) — Fit-parameter label for the matrix of current matrix elements
Vno[1i, j] connecting oscillating to non- oscillating states. Only one of Von and Vno
can be specified if symmetric_V=True; the other is defined to be its transform. Set
Von=None to omit it.

* Voo (str or None) — Fit-parameter label for the matrix of current matrix elements
Voo [i, j] connecting oscillating states. The matrix must be square and symmetric if
symmetric_V=True, and only the elements V[i, j] for j>=1i are specified, using a
1-d array V__sym with the following layout:

(vio,01,v(0,11,Vv[0,2]...V[O,N],
v(1i,11,v[1,2]...V[1,N],
viz,2]...v[2,N],

V[N, NJ]

Note that V[i,] = V_symm[i*N + j — i % (i+1) / 2] for j>=i. Set
Voo=None to omit it.

e reverse (bool) — If True, the data associated with self.datatag is time-reversed
before fitting (interchanging t=0 with t=T). This is useful for doing simultaneous fits to
a—->V->b and b—>V—->a, where one is time-reversed relative to the other: e.g.,

models = [

Corr3(
datatag='a->V->b', tmin=3, T=15,
a=('a', 'ao'), dEa=('dEa', 'dEao'),
b=('b', 'bo'), dEb=('dEb', 'dEbo'),
Vnn='Vnn', Vno='Vno', Von='Von', Voo='Voo',
) ’

Corr3(
datatag='b->V->a', tmin=3, T=15,
a=('a', 'ao'), dEa=('dEa', 'dEao'),
b=('b', 'bo'), dEb=('dEb', 'dEbo'),
Vnn='Vnn', Vno='Vno', Von='Von', Voo='Voo',
reverse=True,

)y

]

Another (faster) strategy for such situations is to average data from the second process with
that from the first, before fitting, using keyword reverseddata. Defaultis False.

* symmetric_V (bool) — If True, the fit function for a->V->b is unchanged (sym-
metrical) under the the interchange of a and b. Then Vnn and Voo are square, sym-
metric matrices and their priors are one-dimensional arrays containing only elements
VI[i,] with j>=1i, as discussed above. Only one of Von and Vno can be specified if
symmetric_V=True; the other is defined to be its transform.

* T (int) — Separation between source and sink.

* tdata (list of ints) — The ts corresponding to data entries in the input data. If omitted, is
assumed equal to numpy .arange (T + 1).

* tfit (list of ints) — List of ts to use in the fit. Only data with these ts (all of which should
be in tdata) is used in the fit. If omitted, is assumed equal to numpy .arange (tmin,
T - tmin + 1).

20 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 6.0

* tmin (int or None) — If t fit is omitted, it is set equal to numpy .arange (tmin, T
- tmin + 1).tminisignoredif tfit is specified.

* ncg (int) — Width of bins used to coarse-grain the correlator before fitting. Each bin of ncg
correlator values is replaced by its average. Default is ncg=1 (ie, no coarse-graining).

* reverseddata (str or list or None) — Data tag or list of data tags for additional data that
are time-reversed and then averaged with the self.datatag data before fitting. This is
useful for folding data from b—>V—->a into a fit for a—>V->b: e.g.,

Corr3(
datatag='a->V->b"',
a=('a', 'ao'), dEa=('dEa', 'dEao'),
b=('b', 'bo'), dEb=('dEb', 'dEbo'"),
Vnn='vnn', Vno='Vno', Von='Von', Voo='Voo',
tmin=3, T=15, reverseddata='b->V->a'

),

This is faster than using a separate model with t ranspose_V=True. Default is None.

* otherdata (str or list or None) — Data tag or list of data tags for additional data that are
averaged with the self.datatag data before fitting. Default is None.

1.16 corrfitter.CorrFitter Objects

corrfitter.CorrFitter objects are wrappers for 1sgfit.nonlinear_fit () which is used to fit a col-
lection of models to a collection of Monte Carlo data.

class corrfitter.CorrFitter (models, nterm=None, ratio=False, fast=True, **fitterargs)
Nonlinear least-squares fitter for a collection of correlator models.

Parameters

¢ models — List of models, derived from 1sqfit.MultiFitterModel, to be fit to the
data. Individual models in the list can be replaced by lists of models or tuples of models;
see below.

* nterm (tuple or int or None) — Number of terms fit in the non-oscillating part of fit func-
tions; or a two-tuple of numbers indicating how many terms to fit in each of the non-
oscillating and oscillating parts. Terms omitted from the fit are marginalized (i.e., included
as corrections to the fit data). If set to None, all parameters in the prior are fit, and none are
marginalized.

* ratio (bool) — If True, implement marginalization using ratios: data_marg =
data » fitfen(prior_marg) / fitfcn(prior). If False (default), im-
plement using differences: data_marg = data + (fitfcn(prior_marg) -
fitfcn(prior)).

» fast (bool) — Setting fast=True (default) strips any variable not required by the fit from
the prior. This speeds fits but loses information about correlations between variables in the
fit and those that are not. The information can be restored using 1sqgfit .wavg after the
fit.

* fitterargs — Additional arguments for the 1sgfit.nonlinear_fit,suchastol,
maxit, svdcut, fitter, etc., as needed.

1.16. corrfitter.CorrFitter Objects 21

corrfitter Documentation, Release 6.0

bootstrap_fit_iter (datalist=None, n=None)

Iterator that creates bootstrap copies of a corrfitter.CorrFitter fit using bootstrap data from list
data_list.

A bootstrap analysis is a robust technique for estimating means and standard deviations of arbitrary func-
tions of the fit parameters. This method creates an interator that implements such an analysis of list (or
iterator) datalist, which contains bootstrap copies of the original data set. Each data_list[i] isa
different data input for self.lsqgfit () (thatis, a dictionary containing fit data). The iterator works
its way through the data sets in data_11 st, fitting the next data set on each iteration and returning the re-
sulting 1sgfit.LSQF1it fit object. Typical usage, for an corrfitter.CorrFitter object named
fitter, would be:

for fit in fitter.bootstrap_iter (datalist):
analyze fit parameters in fit.p

Parameters

* data_list (sequence or iterator or None) — Collection of bootstrap dat a sets for fitter.
If None, the data_list is generated internally using the means and standard deviations of
the fit data (assuming gaussian statistics).

* n (integer) — Maximum number of iterations if n is not None; otherwise there is no max-
imum.

Returns Iterator that returns a 1sgfit .LSQFit object containing results from the fit to the
next data setin data_list.

bootstrap_iter (datalist=None, n=None)

Iterator that creates bootstrap copies of a corrfitter.CorrFitter fit using bootstrap data from list
data_list.

A bootstrap analysis is a robust technique for estimating means and standard deviations of arbitrary func-
tions of the fit parameters. This method creates an interator that implements such an analysis of list (or
iterator) datalist, which contains bootstrap copies of the original data set. Each data_list[i] isa
different data input for self.1lsqgfit () (thatis, a dictionary containing fit data). The iterator works
its way through the data sets in data_ 11 st, fitting the next data set on each iteration and returning the re-
sulting 1sgfit.LSQFit fit object. Typical usage, for an corrfitter.CorrFitter object named
fitter, would be:

for fit in fitter.bootstrap_iter (datalist):
analyze fit parameters in fit.p

Parameters

* data_1list (sequence or iterator or None) — Collection of bootstrap dat a sets for fitter.
If None, the data_list is generated internally using the means and standard deviations of
the fit data (assuming gaussian statistics).

* n (integer) — Maximum number of iterations if n is not None; otherwise there is no max-
imum.

Returns Iterator that returns a 1sgfit.LSQFit object containing results from the fit to the
next data setin data_list.

static read_dataset (inputfiles, grep=None, keys=None, h5group="/", binsize=1, tcol=0, Gcol=1)

Read correlator Monte Carlo data from files into a gvar.dataset .Dataset.

Three files formats are supported by read _dataset (), depending upon inputfiles.

22

Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 6.0

If inputfiles isa string ending in / .h5’, it is assumed to be the name of a file in hpf5 format. The
file is opened as h5file and all hpf5 datasets in h5file [h5group] are collected into a dictionary
and returned.

The second file format is the text-file format supported by gvar.dataset .Dataset: each line consists
of a tag or key identifying a correlator followed by data corresponding to a single Monte Carlo measure-
ment of the correlator. This format is assumed if inputfiles is a filename or a list of filenames. It
allows a single file to contain an arbitrary number of measurements for an arbitrary number of different
correlators. The data can also be spread over multiple files. A typical file might look like

this is a comment; it is ignored

aa 1.237 0.912 0.471
bb 3.214 0.535 0.125
aa 1.035 0.851 0.426
bb 2.951 0.625 0.091

which describes two correlators, aa and bb, each having three different t values.

The third file format is assumed when inputfiles is a dictionary. The dictionary’s keys and values
identify the (one-dimensional) correlators and the files containing their Monte Carlo data, respectively. So
the data for correlators aa and bb above are in separate files:

fileinputs = dict(aa='aafile', bb="bbfile")

Each line in these data files consists of an index t value followed by the corresponding value for correlator
G (t). The ts increase from line to line up to their maximum value, at which point they repeat. The
aafile file for correlator aa above would look like:

this is a comment; it is ignored
.237
.912
.471
.035
.851
.426

w NP W DN
O O O O

The columns in these files containing t and G (t) are assumed to be columns 0 and 1, respectively. These
can be changed by setting arguments tcol and Gcol, respectively.

corrfitter.process_dataset supports keywords binsize, grep and keys. If binsize is
greater than one, random samples are binned with bins of size binsize. If grep is not None, only keys
that match or partially match regular expression grep are retained; others are ignored. If keys is not
None, only keys that are in list keys are retained; others are discarded.

simulated_pdata_iter (n, dataset, pexact=None, rescale=1.0)
Create iterator that returns simulated fit pdata from dataset.

Simulated fit data has the same covariance matrix as pdata=self.process_dataset (dataset),
but mean values that fluctuate randomly, from copy to copy, around the value of the fitter’s fit function
evaluated at p=pexact. The fluctuations are generated from bootstrap copies of dataset.

The best-fit results from a fit to such simulated copies of pdat a should agree with the numbers in pexact
to within the errors specified by the fits (to the simulated data) — pexact gives the “correct” values for the
parameters. Knowing the correct value for each fit parameter ahead of a fit allows us to test the reliability
of the fit’s error estimates and to explore the impact of various fit options (e.g., fitter.chained_fit
versus fitter.lsgfit, choice of SVD cuts, omission of select models, etc.)

Typically one need examine only a few simulated fits in order to evaluate fit reliability, since we know the

1.16. corrfitter.CorrFitter Objects 23

corrfitter Documentation, Release 6.0

correct values for the parameters ahead of time. Consequently this method is much faster than traditional
bootstrap analyses.

pexact is usually taken from the last fit done by the fitter (self.fit .pmean) unless overridden in the
function call. Typical usage is as follows:

dataset = gvar.dataset.Dataset (...)
data = gvar.dataset.avg_data (dataset)

fit = fitter.lsqgfit (data=data, ...)

for spdata in fitter.simulated_pdata_iter (n=4, dataset):
redo fit 4 times with different simulated data each time
here pexact=fit.pmean is set implicitly
sfit = fitter.lsqgfit (pdata=spdata, ...)
check that sfit.p (or functions of it) agrees
with pexact=fit.pmean to within sfit.p's errors

Parameters
* n (int) — Maximum number of simulated data sets made by iterator.

* dataset (dictionary) — Dataset containing Monte Carlo copies of the correlators.
dataset [datatag] is a two-dimensional array for the correlator corresponding to
datatag, where the first index labels the Monte Carlo copy and the second index labels
time.

* pexact (dictionary or None) — Correct parameter values for fits to the simulated data —
fit results should agree with pexact to within errors. If None, uses self.fit.pmean
from the last fit.

* rescale (float) — Rescale errors in simulated data by rescale (i.e., multiply covari-
ance matrix by rescale % 2). Default is one, which implies no rescaling.

1.17 corrfitter.EigenBasis Objects

corrfitter.EigenBasis objects are useful for analyzing two-point and three-point correlators with multiplle
sources and sinks. The current interface for EigenBasis is experimental. It may change in the near future, as
experience accumulates from its use.

class corrfitter.EigenBasis (data, srcs, t, keyfmt="{sl}.{s2}’, tdata=None)

Eigen-basis of correlator sources/sinks.

Given N sources/sinks and the NV x N matrix G;;(t) of 2-point correlators created from every combination of
source and sink, we can define a new basis of sources that makes the matrix correlator approximately diagonal.
Each source in the new basis is associated with an eigenvector v(%) defined by the matrix equation

G(t1)o' = N (t1 —)G (to)v),

for some tg,t1. As tg,t; increase, fewer and fewer states couple to G(¢). In the limit where only N states
couple, the correlator

Gup(t) = 0 DTG()0®

becomes diagonal, and each diagonal element couples to only a single state.

In practice, this condition is only approximate: that is, G (¢) is approximately diagonal, with diagonal elements
that overlap strongly with the lowest lying states, but somewhat with other states. These new sources are

24

Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 6.0

nevertheless useful for fits because there is an obvious prior for their amplitudes: prior [a] [b] approximately
equal to one when b==a, approximately zero when b ! =a and b<N, and order one otherwise.

Such a prior can significantly enhance the stability of a multi-source fit, making it easier to extract reliable
results for excited states. It encodes the fact that only a small number of states couple strongly to G(t) by
time ¢y, without being overly prescriptive about what their energies are. We can easilty project our correlator
onto the new eigen-basis (using EigenBasis.apply ()) in order to use this prior, but this is unnecessary.
EigenBasis.make_prior () creates a prior of this type in the eigen-basis and then transforms it back to
the original basis, thereby creating an equivalent prior for the amplitudes corresponding to the original sources.

Typical usage is straightforward. For example,

basis = EigenBasis(
data, # data dictionary
keyfmt="G.{sl}.{s2}", # key format for dictionary entries
srcs=["'local', 'smeared'], # names of sources/sinks
t=(5, 7), # t0, tl used for diagonalization

)

prior = basis.make_prior (nterm=4, keyfmt='m.{sl}")

creates an eigen-prior that is optimized for fitting the 2-by-2 matrix correlator given by

[[data['G.local.local'], data['G.local.smeared']]
[data['G.smeared.local'], data['G.smeared.smeared']]]

where data is a dictionary containing all the correlators. Parameter t specifies the times used for the
diagonalization: ¢y, = b5 and ¢t; = 7. Parameter nterm specifies the number of terms in the fit.
basis.make_prior(...) creates priors prior[’m.local’] and prior[’m.smeared’] for the
amplitudes corresponding to the local and smeared source, and a prior prior[log (m.dE)] for the loga-
rithm of the energy differences between successive levels.

The amplitudes prior[’m.local’] and prior[’m.smeared’] are complicated, with strong correla-
tions between local and smeared entries for the same state. Projecting the prior unto the eigen-basis, however,
reveals its underlying structure:

p_eig = basis.apply (prior)

implies
p_eig['m.0"] = [1.0(3), 0.0(L1), O(1), 0O(1)]
p_eig['m.1"'"] = [0.0(1), 1.0(3), 0(1), 0O(1)]

where the different entries are now uncorrelated. This structure registers our expectation that the “m. 0’ source
in the eigen-basis overlaps strongly with the ground state, but almost not at all with the first excited state; and
vice versa for the “m. 1’ source. Amplitude p_eig is noncommittal about higher states. This structure is built
intoprior[’m.local’] and prior [’ smeared’].

It is easy to check that fit results are consistent with the underlying prior. This can be done by projecting the best-
fit parameters unto the eigen-basis using p_eig = basis.apply (fit.p). Alternatively, a table listing
the amplitudes in the new eigen-basis, together with the energies, is printed by:

print (basis.tabulate (fit.p, keyfmt='m.{sl}', eig_srcs=True))

The prior can be adjusted, if needed, using the dEfac, ampl, and states arguments in
EigenBasis.make prior().

EigenBasis.tabulate () is also useful for printing the amplitudes for the original sources:

print (basis.tabulate (fit.p, keyfmt='m.{sl}"))

1.17. corrfitter.EigenBasis Objects 25

corrfitter Documentation, Release 6.0

corrfitter.EigenBasis requires the scipy library in Python.
The parameters for creating an eigen-basis are:
Parameters

* data — Dictionary containing the matrix correlator using the original basis of sources and
sinks.

* keyfmt — Format string used to generate the keys in dictionary data corresponding
to different components of the matrix of correlators. The key for G;; is assumed to be
keyfmt.format (sl=i, s2=7) where i and j are drawn from the list of sources,
srcs.

* srcs — List of source names used with keyfmt to create the keys for finding correlator
components G;; in the data dictionary.

e t—-t=(t0, t1) specifiesthe t valuesused to diagonalize the correlation function. Larger
t values are better than smaller ones, but only if the statistics are adequate. When fitting
staggered-quark correlators, with oscillating components, choose t values where the oscil-
lating pieces are positive (typically odd t). If only one t is given, t=t0, then t 1=t 0+2 is
used with it. Fits that use corrfitter.EigenBasis typically depend only weakly on
the choice of t.

* tdata — Array containing the times for which there is correlator data. tdata is set equal
to numpy . arange (len (G_17j)) if it is not specified (or equals None).

The interface for EigenBasis is experimental. It may change in the near future, as experience accumulates
from its use.

In addition to keyfmt, srcs, t and tdata above, the main attributes are:

E
Array of approximate energies obtained from the eigenanalysis.
eig_srcs
List of labels for the sources in the eigen-basis: 07, " 1" ...
svdcorrection
The sum of the SVD corrections added to the data by the last call to EigenBasis.svd ().
svdn
The number of degrees of freedom modified by the SVD correction in the last call to
EigenBasis.svd().
v
v [a] is the eigenvector corresponding to source a in the new basis, where a=0, 1. . ..
v_inv

v_inv [i] is the inverse-eigenvector for transforming from the new basis back to the original basis.
The main methods are:

apply (data, keyfmt="{sl}’)
Transform data to the eigen-basis.

The data to be transformed is data[k] where key k equals keyfmt . format (sl=s1) for vector
data, or keyfmt . format (sl=s1, s2=s2) for matrix data with sources s1 and s2 drawn from
self.srcs. A dictionary containing the transformed data is returned using the same keys but with the
sources replaced by 07, 71’ ... (frombasis.eig_srcs).

26

Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 6.0

If key fmt is an array of formats, the transformation is applied for each format and a dictionary containing
all of the results is returned. This is useful when the same sources and sinks are used for different types of
correlators (e.g., in both two-point and three-point correlators).

make_prior (nterm, keyfimt="{sl}’, dEfac="1(1)’, ampl=(‘1.0(3)’, ‘0.03(10)’, ‘0.2(1.0)’), states=None,
eig_srcs=False)
Create prior from eigen-basis.

Parameters

* keyfmt — Format string usded to generate keys for amplitudes and energies in the prior
(a dictionary): keys are obtained from keyfmt.format (sl=a) where a is one of
the original sources, self.srcs, if eig_srcs=False (default), or one of the eigen-
sources, self.eig_srcs,if eig_srcs=True. The key for the energy differences is
generated by ' log ({})’ . format (keyfmt.format (s1l=’'dE’)). The default is
keyfmt={sl}.

e dEfac (string or gvar.GVar) — A string or gvar .GVar from which the priors for
energy differences dE [1i] are constructed. The mean value for dE [0] is set equal to the
lowest energy obtained from the diagonalization. The mean values for the other dE [1]s
are set equal to the difference between the lowest two energies from the diagonalization
(or to the lowest energy if there is only one). These central values are then multiplied by
gvar.gvar (dEfac). The default value, /(1), sets the width equal to the mean value.
The prior is the logarithm of the resulting values.

e ampl — A 3-tuple of strings or gvar . GVars from which priors are contructed for ampli-
tudes corresponding to the eigen-sources. gvar.gvar (ampl [0]) isused for for source
components where the overlap with a particular state is expected to be large; 1.0 (3) is
the default value. gvar.gvar (ampl[1]) is used for states that are expected to have
little overlap with the source; 0.03 (10) is the default value. gvar.gvar (ampl[2])
is used where there is nothing known about the overlap of a state with the source; 0 (1) is
the default value.

* states — A list of the states in the correlator corresponding to successive eigen-sources,
where states[1] is the state corresponding to i-th source. The correspondence be-
tween sources and states is strong for the first sources, but can decay for subsequent
sources, depending upon the quality of the data being used and the t values used in the
diagonalization. In such situations one might specify fewer states than there are sources by
making the length of states smaller than the number of sources. Setting states=[]
assigns broad priors to the every component of every source. Parameter states can also
be used to deal with situations where the order of later sources is not aligned with that of
the actual states: for example, states=[0, 1, 3] connects the eigen-sources with the
first, second and fourth states in the correlator. The default value, states=[0, 1
N-1] where N is the number of sources, assumes that sources and states are aligned.

svd (data, keyfmt=None, svdcut=1e-15)
Apply SVD cut to data in the eigen-basis.

The SVD cut is applied to data[k] where key k equals keyfmt.format (sl=sl) for vector
data, or keyfmt . format (sl=s1, s2=s2) for matrix data with sources s1 and s2 drawn from
self.srcs. The data are transformed to the eigen-basis of sources/sinks before the cut is applied and
then transformed back to the original basis of sources. Results are returned in a dictionary containing the
modified correlators.

If keyfmt is a list of formats, the SVD cut is applied to the collection of data formed from each format.
The defaul value for keyfmt is self.keyfmt.

tabulate (p, keyfmt="{s1}’, nterm=None, nsrcs=None, eig_srcs=False, indent="")
Create table containing energies and amplitudes for nt e rm states.

1.17. corrfitter.EigenBasis Objects 27

corrfitter Documentation, Release 6.0

Given a correlator-fit result £it and a corresponding EigenBasis object basis, a table listing the
energies and amplitudes for the first N states in correlators can be printed using

print basis.tabulate (fit.p)

where N is the number of sources and basis is an EigenBasis object. The amplitudes are tabulated
for the original sources unless parameter eig_srcs=True, in which case the amplitudes are projected
onto the the eigen-basis defined by basis.

Parameters
* p — Dictionary containing parameters values.

e keyfmt - Parameters are p[k] where keys k are obtained from
keyfmt.format (sl=s) where s is one of the original sources (basis.srcs)
or one of the eigen-sources (basis.eig_srcs). The default definitionis ’ {s1}’.

* nterm - The number of states from the fit tabulated. The default sets nterm equal to the
number of sources in the basis.

¢ nsrcs — The number of sources tabulated. The default causes all sources to be tabulated.

* eig_srcs — Amplitudes for the eigen-sources are tabulated if eigen_srcs=True;
otherwise amplitudes for the original basis of sources are tabulated (default).

* indent — A string prepended to each line of the table. Defaultis 4 « 7 7.

unapply (data, keyfmt="{sl}’)
Transform data from the eigen-basis to the original basis.

The data to be transformed is data[k] where key k equals keyfmt . format (sl=s1) for vector
data, or keyfmt . format (s1l=s1, s2=s2) for matrix data with sources s1 and s2 drawn from
self.eig_srcs. A dictionary containing the transformed data is returned using the same keys but with
the original sources (from self.szrcs).

If key fmt is an array of formats, the transformation is applied for each format and a dictionary containing
all of the results is returned. This is useful when the same sources and sinks are used for different types of
correlators (e.g., in both two-point and three-point correlators).

1.18 Fast Fit Objects

class corrfitter.fastfit (G, ampl=‘0(1)’, dE=‘I(1)’, E=None, s=(1, -1), tp=None, tmin=6,

svdcut=1e-06, osc=False, nterm=10)
Fast fit of a two-point correlator.

This function class estimates E=En [0] and ampl=an [0] xbn [0] for a two-point correlator modeled by

Gab(t) = sn * sum_i an[i]+bn[i] * fn(En[i], t)
+ so * sum_i ao[i]*bo[i] * fo(Eo[i], t)

where (sn, so) istypically (1, -1) and

fn(E, t) = exp(-Ext) + exp(-Ex(tp-t)) # tp>0 —- periodic

or exp (-E*xt) - exp(-Ex (-tp-t))# tp<0 -- anti-periodic

or exp (-Ext) # if tp is None (nonperiodic)
fo(E, t) = (-1)*xt » fn(E, t)

28 Chapter 1. corrfitter - Least-Squares Fit to Correlators

corrfitter Documentation, Release 6.0

Prior estimates for the amplitudes and energies of excited states are used to remove (that is, marginalize) their
contributions to give a corrected correlator Gec (t) that includes uncertainties due to the terms removed. Esti-
mates of E are given by:

Eeff (t) = arccosh (0.5 % (Gc(t+l) + Gc(t-1)) / Gc(t)),

The final estimate is the weighted average Eeff_avg of the Eef f (t) s for different ts. Similarly, an estimate
for the amplitude amp1 is obtained from the weighted average of

RAeff(t) = Gc(t) / fn(Eeff_avg, t).

If osc=True, an estimate is returned for Eo[0] rather than En[0], and ao[0] *xbo[0] rather than
an[0]xbn[0]. These estimates are reliable when Eo [0] is smaller than En [0] (and so dominates at large
t), but probably not otherwise.

Examples

The following code examines a periodic correlator (period 64) at large times (t >= tmin), where estimates
for excited states don’t matter much:

>>> import corrfitter as cf

>>> print (G)

[0.305808(29) 0.079613(24) ... 1

>>> fit = cf.fastfit (G, tmin=24, tp=64)

>>> print ('E =', fit.E, ' ampl =', fit.ampl)
E = 0.41618(13) ampl = 0.047686(95)

Smaller tmin values can be used if (somewhat) realistic priors are provided for the amplitudes and energy gaps:

>>> fit = cf.fastfit (G, ampl='0(1)"', dE='0.5(5)", tmin=3, tp=64)
>>> print ('E =', fit.E, ' ampl =', fit.ampl)
E = 0.41624(11) ampl = 0.047704(71)

The result here is roughly the same as from the larger tmin, but this would not be true for a correlator whose
signal to noise ratio falls quickly with increasing time.

corrfitter. fastfit estimates the amplitude and energy at all times larger than tmin and then averages
to get its final results. The chi-squared of the average (e.g., fit .E.chi?2) gives an indication of the consistency
of the estimates from different times. The chi-squared per degree of freedom is printed out for both the energy
and the amplitude using

>>> print (fit)
E: 0.41624(11) ampl: 0.047704(71) chi2/dof [dof]: 0.9 0.8 [57] Q: 0.8 0.9

Large values for chi2/dof indicate an unreliable results. In such cases the priors should be adjusted, and/or
tmin increased, and/or an SVD cut introduced. The averages in the example above have good values for
chiz/dof.

Parameters

* G — An array of gvar.GVars containing the two-point correlator. G[7j] is assumed to
correspond to time t=7, where j=0. . ..

* ampl — A gvar.GVar or its string representation giving an estimate for the amplitudes of
the ground state and the excited states. Use ampl= (ampln, amplo) when the correlator
contains oscillating states; amp1n is the estimate for non-oscillating states, and amplo for
oscillating states; setting one or the other to None causes the corresponding terms to be
dropped. Default valueis " 0 (1) .

1.18. Fast Fit Objects 29

corrfitter Documentation, Release 6.0

* dE — A gvar.GVar or its string representation giving an estimate for the energy sepa-
ration between successive states. This estimate is also used to provide an estimate for the
lowest energy when parameter E is not specified. Use dE=(dEn, dEo) when the cor-
relator contains oscillating states: dEn is the estimate for non-oscillating states, and dEo
for oscillating states; setting one or the other to None causes the corresponding terms to be
dropped. Default valueis "1 (1) .

* E — A gvar.GVar or its string representation giving an estimate for the energy of the
lowest-lying state. Use E= (En, Eo) when the correlator contains oscillating states: En is
the estimate for the lowest non-oscillating state, and Eo for lowest oscillating state. Setting
E=None causes E to be set equal to dE. Default value is None.

* s — A tuple containing overall factors (sn, so) multiplying contributions from the nor-
mal and oscillating states. Defaultis (1, -1).

* tp (int or None) — When not None, the correlator is periodic with period tp when tp>0,
or anti-periodic with period —tp when tp<0. Setting t p=None implies that the correlator
is neither periodic nor anti-periodic. Default is None.

* tmin (inf) —Only G (t) witht >= tmin are used. Default value is 6.

* svdcut (float or None) — SVD cut used in the weighted average of results from different
times. (See the corrfitter.CorrFitter documentation for a discussion of SVD
cuts.) Default is 1e—-6.

* osc (bool) — Set osc=True if the lowest-lying state is an oscillating state. Default is
False.

Note that specifying a single gvar.GVar g (as opposed to a tuple) for any of parameters ampl, dE, or
E is equivalent to specifying the tuple (g, None) when osc=False, or the tuple (None, g) when
osc=True. A similar rule applies to parameter s.

corrfitter. fastfit objects have the following attributes:

E
Energy of the lowest-lying state (gvar .GVar).

ampl
Amplitude of the lowest-lying state (gvar .GVar).

Both E and ampl are obtained by averaging results calculated for each time larger than tmin. These are
averaged to produce a final result. The consistency among results from different times is measured by the
chi-squared of the average. Each of E and amp1 has the following extra attributes:

chi2
chi-squared for the weighted average.

dof
The effective number of degrees of freedom in the weighted average.

The probability that the chi-squared could have been larger, by chance, assuming that the data are all
Gaussain and consistent with each other. Values smaller than 0.05 or 0.1 suggest inconsistency. (Also
called the p-factor.)

An easy way to inspect these attributes is to print the fit object £it using print (£it), which lists the values
of the energy and amplitude, the chi2/dof for each of these, the number of degrees of freedom, and the Q for
each.

30

Chapter 1. corrfitter - Least-Squares Fit to Correlators

CHAPTER
TWO

ANNOTATED EXAMPLE: TWO-POINT CORRELATOR

2.1 Introduction

The simplest use of corrfitter is calculating the amplitude and energy of the ground state in a single two-point
correlator. Here we analyze an 7, propagator where the source and sink are the same.

The one slightly non-obvious aspect of this fit is its use of log-normal priors for the energy differences dE between
successive states in the correlator. As discussed in Faster Fits — Postive Parameters, this choice imposes an order on
the states in relation to the fit parameters by forcing all dE values to be positive. Any such restriction helps stabilize a
fit, improving both efficiency and the final results.

Another design option that helps stabilize the fit is to do a series of fits, with increasing number N of states in the fit
function, where the results from the N-1 fit are used by the fitter as the starting point (p0) for the N fit. The initial fits
are bad, but this procedure helps guide the fit parameters towards sensible values as the number of states increases.
See Faster Fits for more discussion.

The source code (etas.py) and data file (etas—-Ds.data) are included with the corrfitter distribution, in
the examples/ directory. The data are from the HPQCD collaboration.

2.2 Code

Following the template outlined in Basic Fits, the entire code is:

from _ future import print_function # makes this work for python2 and 3

import collections
import gvar as gv
import numpy as np
import corrfitter as cf

def main () :
data = make_data (filename='etas.data')
fitter = cf.CorrFitter (models=make_models())
p0 = None
for N in [2, 3, 4]:
print (30 « '=', 'nterm =', N)
prior = make_prior (N)
fit = fitter.lsqgfit (data=data, prior=prior, pO0=p0)
print (fit)
p0 = fit.pmean
print_results (fit)
fastfit = cf.fastfit (G=datal['etas'], ampl='0(1)', dE="'0.5(5)", tmin=3, tp=64)
print (fastfit)

31

corrfitter Documentation, Release 6.0

def make_data (filename) :
"n"r Read data, compute averages/covariance matrix for G(t). """
return gv.dataset.avg_data(cf.read_dataset (filename))

def make_models () :
mrnm Create corrfitter model for G(t). """
return [cf.Corr2(datatag='etas', tp=64, tmin=5, a='a', b='a', dE='dE")]

def make_prior(N):
"mn Create prior for N-state fit. """

prior = collections.OrderedDict ()
prior['a'l = gv.gvar(N = ['0(1)"'])
prior['log(dE) '] = gv.log(gv.gvar(N = ['0.5(5)"']))

return prior

def print_results (fit):

p = fit.p

E = np.cumsum(p['dE'])

a =pl'a'l

print ('{:2} {:15} {:15}" . format ('E', E[O], E[1]))

)
print ("{:2} {:15} {:15}\n'.format('a', al0], alll))

1 v

if name == main__ ':
main ()

Here the Monte Carlo data are read by make_data (' etas.data’) fromfile etas.data. This file contains 225
lines, each with 64 numbers, of the form:

etas 0.305044 0.0789607 0.0331313
etas 0.306573 0.0802435 0.0340765

Each line is a different Monte Carlo estimate of the 75 correlator for t=0...63. The mean values and covariance matrix
are computed for the 64 elements of the correlator using gvar.dataset.avg_data (), and the result is stored in
data[’etas’], which is an array of Gaussian random variables (objects of type gvar.GVar).

A corrfitter.CorrFitter object, fitter, is created for a single two-point correlator from a list of models
created by make_models (). There is only one model in the list because there is only one correlator. Itis a Corr2
object which specifies that: the key (datatag) for extracting the correlator from the data dictionary is ’ etas’ ; the
propagator is periodic with period 64; each correlator contains data for t values ranging from O to 63; only values
greater than or equal to 5 and less than 64-5 are fit; the source and sink amplitudes are the same and labeled by ” a’
in the prior; and the energy differences between successive states are labeled ’ dE’ in the prior.

Fits are tried with N states in the fit function, where N varies from 2 to 5. Usually N=2 is too small, resulting in a poor
fit. Here we will find that results have converged by N=3.

A prior, containing a priori estimates for the fit parameters, is contructed for each N by make_prior (N). The
amplitude priors, prior[”a’] [1], are assumed to be 0£1, while the differences between successive energies are
taken to be, roughly, 0.5£0.5. These are broad priors, based upon preliminary fits of the data. We want to use log-
normal statistics for the energy differences, to guarantee that they are positive (and the states ordered, in order of
increasing energy), so we use prior [’ logdE’] for the logarithms of the differences — instead of prior [’ dE’]
for the differences themselves — and take the logarithm of the prior.

The fitisdone by fitter.lsgfit () and print_results (f£it) prints results for the first two states after each
fit (that is, for each N). Note how results from the fit to N terms is used as the starting point for the fit with N+1 terms,
via parameter p0. As mentioned above, this speeds up the larger fits and also helps to stabilize them.

32 Chapter 2. Annotated Example: Two-Point Correlator

corrfitter Documentation, Release 6.0

2.3 Results

The output from this fit code is:

nterm = 2
Least Square Fit:
chi2/dof [dof] = 0.98 [28] Q = 0.49 10gGBF =
Parameters:
a0 0.21854 (15) [0.0 (1.0) 1
1 0.2721 (46) [0.0 (1.0) 1
log(dE) O -0.87637 (28) [=0.7 (1.0) 1
1 -0.330 (12) [=0.7 (1.0) 1]
dE 0 0.41629 (11) [0.50 (50) 1
1 0.7191 (83) [0.50 (50) 1]
Settings:
svdcut/n = 1e-12/0 tol = (1le-08%,1e-10,1e-10)
E 0.41629(11) 1.1354(83)
a 0.21854(15) 0.2721 (46)
nterm = 3
Least Square Fit:
chi2/dof [dof] = 0.68 [28] QO = 0.89 10gGBF =
Parameters:
a0 0.21836 (18) [0.0 (1.0) 1
1 0.15 (12) [0.0 (1.0) 1
2 0.308 (51) [0.0 (1.0) 1]
log(dE) O -0.87660 (30) [=0.7 (1.0) 1
1 -0.56 (28) [=0.7 (1.0) 1
2 -0.92 (53) [=0.7 (1.0) 1]
dE 0 0.41620 (12) [0.50 (50) 1
1 0.57 (16) [0.50 (50) 1]
2 0.40 (21) [0.50 (50) 1]
Settings:
svdcut/n = le-12/0 tol = (le-08%,1e-10,1e-10)
E 0.41620(12) 0.99(16)
a 0.21836(18) 0.15(12)
nterm = 4
Least Square Fit:
chi2/dof [dof] = 0.68 [28] Q = 0.89 1ogGBF =
Parameters:
a0 0.21836 (18) [0.0 (1.0) 1
1 0.15 (12) [0.0 (1.0) 1
2 0.308 (51) [0.0 (1.0) 1
3 2e-06 +- 1 [0.0 (1.0) 1]
log(dE) O -0.87660 (30) [=0.7 (1.0) 1
1 -0.56 (28) [=0.7 (1.0) 1
2 -0.92 (53) [=0.7 (1.0) 1]
3 -0.7 (1.0) [=0.7 (1.0) 1

481.95

(itns/time = 21/0.0)
483.08

(itns/time = 18/0.0)
483.08

2.3. Results

33

corrfitter Documentation, Release 6.0

dE O 0.41620 (12) [0.50 (50) 1
1 0.57 (16) [0.50 (50) 1]
2 0.40 (21) [0.50 (50) 1
3 0.50 (50) [0.50 (50) 1
Settings:
svdcut/n = 1e-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 36/0.1)
E 0.41620(12) 0.99(10)
a 0.21836(18) 0.15(12)

E: 0.41624(11) ampl: 0.047704(71) chi2/dof [dof]: 0.9 0.8 [57] Q: 0.8 0.9

These fits are very fast — a small fraction of a second each on a laptop. Fit results converge by N=3 states. The
amplitudes and energy differences for states above the first three are essentially identical to the prior values; the Monte
Carlo data are not sufficiently accurate to add any new information about these levels. The fits for N>=3 are excellent,
with chi-square per degree of freedom (chi2/dof) of 0.68. There are only 28 degrees of freedom here because the
fitter, taking advantage of the periodicity, folded the data about the midpoint in t and averaged, before fitting. The
ground state energy and amplitude are determined to a part in 1,000 or better.

2.4 Correlated Data?

It is worth checking whether the initial Monte Carlo data has correlations from sample to sample, since such corre-
lations lead to underestimated fit errors. One approach is verify that results are unchanged when the input data are
binned. To bin the data we use

def make_data(filename) :
""rm Read data, compute averages/covariance matrix for G(t).
return gv.dataset.avg_data(cf.read_dataset (filename, binsize=2))

mmn

which averages successive samples (bins of 2). Binned data give the following results from the last iteration and
summary:

Least Square Fit:

chi2/dof [dof] = 0.94 [28] Q = 0.55 1logGBF = 477.28
Parameters:
a 0 0.21839 (17) [0.0 (1.0) 1
1 0.175 (80) [0.0 (1.0) 1
2 0.36 (16) [0.0 (1.0)]
3 2e-07 +- 1 [0.0 (1.0)]
log(dE) O -0.87651 (29) [=0.7 (1.0) 1
1 -0.52 (17) [-0.7 (1.0) 1
2 -0.67 (67) [=0.7 (1.0)]
3 -0.7 (1.0) [=0.7 (1.0) 1
de 0 0.41623 (12) [0.50 (50)]
1 0.59 (10) [0.50 (50) 1
2 0.51 (34) [0.50 (50) 1
3 0.50 (50) [0.50 (50)]
Settings:
svdcut/n = 1le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 9/0.0)

34 Chapter 2. Annotated Example: Two-Point Correlator

corrfitter Documentation, Release 6.0

E 0.41623(12) 1.01(10)
a 0.21839(17) 0.175(80)

These agree pretty well with the previous results, suggesting that correlations are not a problem.

Binning should have no significant effect on results if there are no correlations, provided the total number of samples
after binning is sufficiently large (e.g., more than 100—200). Strong correlations cause error estimates to grow with
increased bin size (like the square root of binsize). Binning reduces correlations; data should be binned with
increasing bin sizes until fit error estimates stop growing.

2.5 Fast Fit and Effective Mass

The last two lines in the main () function of the code illustrate the use of corrfitter. fastfit to geta very fast
results for the lowest-energy state. As discussed in Very Fast (But Limited) Fits, corrfitter.fastfit provides
an alternative to the multi-exponential fits discussed above when only the lowest-energy parameters are needed. The
method used is similar to a traditional effective mass analysis except that estimates for contributions from excited states
are generated from priors and removed from the correlator before determining the effective mass. This allows the code
to use much smaller t values than in the traditional approach, thereby obtaining results that rival the multi-exponential
fits.

In this example, corrfitter.fastfit is used to analyze the two-point correlator stored in array
data[’etas’]. The amplitudes for different states are estimated to have size 0+1, while the spacings between
energies (and between the first state and 0) are estimated to be 0.5£0.5. The code averages results form all t values
down to tmin=3. Setting tp=64 indicates that the correlator is periodic with period 64.

The last line of the output summarizes the results of the fast fit. The energy and amplitude are almost identical to what
was obtained from the multi-exponential fits (note that fastfit.ampl is the same as £it.a[0] =*2, which has
value 0.047681(79)). corrfitter. fastfit estimates the energy and amplitude for each t greater than tmin,
and then averages the results. The consistency of results from different ts is measured by the chi-squared of the
averages. The chi-squared per degree of freedom is reported here to be 0.8 for the E average and 0.9 for the ampl
average, indicating that there is good agreement between different ts.

While a fast fit is easier to set up, multi-exponential fits are usually more robust, and provide more detailed infor-
mation about the fit. One use for fast fits is to estimate the sizes of parameters for use in designing the priors for a
multi-exponential fit. There are often situations where a priori knowledge about fit parameters is sketchy, especially
for amplitudes. A fast fit to data at large t can quickly generate estimates for both amplitudes and energies, from
which it is then easy to construct priors. In the code above, for example, we could replace make_prior (N) by
alt_make_prior (N, data[’etas’]) where:

def alt_make_prior (N, G):
fastfit = cf.fastfit (G=G, tmin=24, tp=64)
da = 2 % fastfit.ampl.mean *x 0.5
dE = 2 x fastfit.E.mean

prior = collections.OrderedDict ()
prior['a']l] = gv.gvar([gv.gvar (0, da) for i in range(N)])
prior['log(dE) '] = gv.log(gv.gvar([gv.gvar(dE, dE) for i in range(N)]))

return prior

This code does a fast fit using data from very large t, where priors for the excited states are unimportant. It then
uses the results to create priors for the amplitudes and energy differences for all states, assuming that the ground state
values are either larger, or smaller by no more than roughly a factor of two. This customized prior gives results that
are almost identical to what was obtained using the original prior, above (in part because the original prior is pretty
sensible to begin with).

Designing a prior using corrfitter. fastfit would be even more useful when multiple sources and sinks are
involved, as in a matrix fit.

2.5. Fast Fit and Effective Mass 35

corrfitter Documentation, Release 6.0

36 Chapter 2. Annotated Example: Two-Point Correlator

CHAPTER
THREE

ANNOTATED EXAMPLE: TRANSITION FORM FACTOR AND MIXING

3.1 Introduction

Here we describe a complete Python code that uses corrfitter to calculate the transition matrix element or form
factor from an n; meson to a Ds meson, together with the masses and amplitudes of these mesons. A very similar
code, for (speculative) D,-Dg mixing, is described at the end.

The form factor example combines data from two-point correlators, for the amplitudes and energies, with data from
three-point correlators, for the transition matrix element. We fit all of the correlators together, in a single fit, in order
to capture correlations between the various output parameters. The correlations are built into the output parameters
and consequently are reflected in any arithmetic combination of parameters — no bootstrap is needed to calculate
correlations or their impact on quantities derived from the fit parameters. The best-fit parameters (in £it .p) are
objects of type gvar.GVar.

Staggered quarks are used in this simulation, so the D, has oscillating components as well as normal components in
its correlators.

The source codes (etas—Ds.py, Ds-Ds.py) and data files (etas—-Ds.h5, Ds—-Ds.h5) are included with the
corrfitter distribution, in the examples/ directory. The data are from the HPQCD collaboration.

3.2 Code

The main method for the form-factor code follows the pattern described in Basic Fits:

from _ future import print_function # makes this work for python2 and 3

import collections
import sys

import h5py

import gvar as gv
import numpy as np
import corrfitter as cf

SHOWPLOTS = True

def main() :
data = make_data('etas-Ds.hb5")
fitter = cf.CorrFitter (models=make_models (), svdcut=le-5)
p0 = None
for N in [1, 2, 3, 4]:
print (30 « '=', 'nterm =', N)

prior = make_prior (N)
fit = fitter.lsqgfit (data=data, prior=prior, p0=p0)

37

corrfitter Documentation, Release 6.0

print (fit.format (pstyle=None if N < 4 else 'm'))
pO0 = fit.pmean

print_results (fit, prior, data)

if SHOWPLOTS:
fit.show_plots()

We include an SVD cut (svdcut=1e-5) to ameliorate roundoff errors in the highly correlated data. The Monte
Carlo data are in a file named ' etas-Ds.h5’. We are doing four fits, with 1, 2, 3, and 4 terms in the fit function.
Each fit starts its minimization at point p0, which is set equal to the mean values of the best-fit parameters from the
previous fit (p0 = fit.pmean). This reduces the number of iterations needed for convergence in the N = 4 fit,
for example, from 162 to 45. It also makes multi-term fits more stable.

After the fit, plots of the fit data divided by the fit are displayed by fit .show_plots (), provided matplotlib
is installed. A plot is made for each correlator, and the ratios should equal one to within errors. To move from one plot

[IPRIN [P

to the next press “n”” on the keyboard; to move to a previous plot press “p”’; to quit the plots press “q”.

‘We now look at each other major routine in turn.

3.2.1 a) make_data

Method make_data (’etas-Ds.h5’) reads in the Monte Carlo data, averages it, and formats it for use by
corrfitter.CorrFitter:

def make_data(datafile):
"mrm Read data from datafile and average it. """
dset = cf.read_dataset (datafile)
return gv.dataset.avg_data (dset)

The data file etas—Ds.h5 is in hdf5 format. It contains four datasets:

>>> for v in dset.values():

.. print (v)

<HDF5 dataset "3ptTl1l5": shape (225, 16), type "<£f8">
<HDF5 dataset "3ptTl6": shape (225, 17), type "<£8">
<HDF5 dataset "Ds": shape (225, 64), type "<£f8">
<HDF5 dataset "etas": shape (225, 64), type "<£f8">

Each corresponds to Monte Carlo data for a single correlator, which is packaged as a two-dimensional numpy array
whose first index labels the Monte Carlo sample, and whose second index labels time. For example,

>>> print (dset['etas'][:, :1)

[[0.305044 0.0789607 0.0331313 ..., 0.0l164646 0.0332153 0.0791385]
[0.306573 0.0802435 0.0340765 ..., 0.0170088 0.034013 0.0801528]
[0.306194 0.0800234 0.0338007 ..., 0.0168862 0.0337728 0.0799462]
[0.305955 0.0797565 0.0335741 ..., 0.0167847 0.0336077 0.0796961]
[0.305661 0.0793606 0.0333133 ..., 0.0165365 0.0333934 0.0792943]
[0.305365 0.079379 0.033445 ..., 0.0164506 0.0332284 0.0792884]]

is data for a two-point correlator describing the 1; meson. Each of the 225 lines is a different Monte Carlo sample for
the correlator, and has 64 entries corresponding to t=0, 1. . . 63. Note the periodicity in this data.

Function gv.dataset .avg_data (dset) averages over the Monte Carlo samples for all the correlators to com-
pute their means and covariance matrix. The end result is a dictionary whose keys are the keys used to label the hdf5
datasets: for example,

>>> data = make_data('etas-Ds.hb5")
>>> print (data['etas'])

38 Chapter 3. Annotated Example: Transition Form Factor and Mixing

corrfitter Documentation, Release 6.0

[0.305808(29) 0.079613(24) 0.033539(17) ... 0.079621(24)]

>>> print (data['Ds'])

[0.2307150(73) 0.0446523(32) 0.0089923(15) ... 0.0446527(32)]
>>> print (datal['3ptT1l6'])

[1.4583(21)e-10 3.3639(44)e-10 ... 0.000023155(30)]

Here each entry in data is an array of gvar.GVars representing Monte Carlo averages for the corresponding
correlator at different times. This is the format needed by corrfitter.CorrFitter. Note that the different
correlators are correlated with each other: for example,

>>> print (gv.evalcorr([data['etas'] [0], datal['Ds']1[0]]))
[[r 1. 0.96432174]
[0.96432174 1. 1]

shows a 96% correlation between the t=0 values in the 7, and Dj correlators.

3.2.2 b) make_models

Method make_models () specifies the theoretical models that will be used to fit the data:

def make_models () :
"mn Create models to fit data. """
tmin = 5
tp = 64
models = [
cf.Corr2(
datatag='etas', tp=tp, tmin=tmin,
a='etas:a', b='etas:a', dE='etas:dE"',

)y

cf.Corr2(
datatag='Ds', tp=tp, tmin=tmin,
a=('Ds:a', 'Dso:a'), b=('Ds:a', 'Dso:a'), dE=('Ds:dE', 'Dso:dE'),
)I

cf.Corr3(
datatag="'3ptT1l5"'", T=15, tmin=tmin, a='etas:a', dEa='etas:dE',
b=('Ds:a', 'Dso:a'), dEb=('Ds:dE', 'Dso:dE'"),
Vnn='Vnn', Vno='Vno',

)I

cf.Corr3(
datatag="'3ptTl6"', T=16, tmin=tmin, a='etas:a', dEa='etas:dE',
b=('Ds:a', 'Dso:a'), dEb=('Ds:dE', 'Dso:dE'), tpb=tp,
vVnn='Vnn', Vno='Vno',
)

]

return models

Four models are specified, one for each correlator to be fit. The first two are for the 7, and Dy two-point correla-
tors, corresponding to entries in the data dictionary with keys ' etas’ and ' Ds’, respectively. These are periodic
propagators, with period 64 (tp), and we want to omit the first and last 5 (tmin) time steps in the correlator. The
ts to be fit are listed in t £it, while the ts contained in the data are in tdata. Labels for the fit parameters cor-
responding to the sources (and sinks) are specified for each, ' etas:a’ and 'Ds:a’, as are labels for the energy
differences, ' etas:dE’ and 'Ds:dE’. The Dy propagator also has an oscillating piece because this data comes
from a staggered-quark analysis. Sources/sinks and energy differences are specified for these as well: * Dso:a’ and
"Dso:dE’.

3.2. Code 39

corrfitter Documentation, Release 6.0

Finally three-point models are specified for the data corresponding to data-dictionary keys ’3ptT15’ and
"3ptT16’. These share several parameters with the two-point correlators, but introduce new parameters for the
transition matrix elements: / Vnn’ connecting normal states, and ' Vno’ connecting normal states with oscillating
states.

3.2.3 c) make_prior

Method make_prior (N) creates a priori estimates for each fit parameter, to be used as priors in the fitter:

def make_prior(N):
""n Create priors for fit parameters. """
prior = gv.BufferDict ()

etas

metas = gv.gvar('0.4(2)")

prior['log(etas:a)'] = gv.log(gv.gvar(N = ['0.3(3)"]))
prior['log(etas:dE) '] = gv.log(gv.gvar(N = ['0.5(5)"]))
prior['log(etas:dE) "] [0] = gv.log(metas)

Ds

mDs = gv.gvar('1.2(2)")

prior['log(Ds:a)'] = gv.log(gv.gvar(N = ['0.3(3)"']))
prior['log(Ds:dE) '] = gv.log(gv.gvar(N = ['0.5(5)"]))
prior['log(Ds:dE) "] [0] = gv.log(mDs)

Ds —— oscillating part

prior['log(Dso:a)']l = gv.log(gv.gvar(N = ['0.1(1)"]1))
prior['log(Dso:dE) '] = gv.log(gv.gvar(N = ['0.5(5)"]))
prior['log(Dso:dE) "] [0] = gv.log(mDs + gv.gvar('0.3(3)"))
Vv

prior['Vnn'] gv.gvar(N « [N % ['0(1)']1)
prior['Vno']l = gv.gvar(N = [N = ['0(1)"'11])
return prior

Parameter N specifies how many terms are kept in the fit functions. The priors are stored in a dictionary prior. Each
entry is an array, of length N, with one entry for each term in the fit function. Each entry is a Gaussian random variable,
an object of type gvar . GVar. Here we use the fact that gvar.gvar () can make a list of gvar.GVars from a list
of strings of the form * 0.1 (1) ’ : for example,

>>> print (gv.gvar(['1(2)"', "3(2)'1))
[1.0(2.0) 3.0(2.0)]

In this particular fit, we can assume that all the sinks/sources are positive, and we can require that the energy dif-
ferences be positive. To force positivity, we use log-normal distributions for these parameters by defining priors for
"log(etas:a)’, "log(etas:dE)’ ... rather than 'etas:a’, "etas:dE’ ... (see Fuaster Fits — Postive
Parameters). The a priori values for these fit parameters are the logarithms of the values for the parameters them-
selves: for example, each ' etas:a’ has prior 0. 3 (3), while the actual fit parameters, 1og (etas: a), have priors
log(0.3(3)) = -1.2(1.0).

We override the default priors for the ground-state energies in each case. This is not unusual since dE [0], unlike the
other dEs, is an energy, not an energy difference. For the oscillating D; state, we require that its mass be 0.3 (3)
larger than the D, mass. One could put more precise information into the priors if that made sense given the goals
of the simulation. For example, if the main objective is a value for Vnn, one might include fairly exact information
about the D, and 7, masses in the prior, using results from experiment or from earlier simulations. This would make
no sense, however, if the goal is to verify that simulations gives correct masses.

Note, finally, that a statement like

40 Chapter 3. Annotated Example: Transition Form Factor and Mixing

corrfitter Documentation, Release 6.0

‘prior['Vnn'] = gv.gvar (N * [N+ ['0(1)"']]) # correct

is not the same as

‘prior['Vnn'] =N % [N « [gv.gvar('0(1l)")]] # wrong

The former creates N x+ 2 independent gvar.GVars, with one for each element of Vnn; it is one of the most
succinct ways of creating a large number of gvar.GVars. The latter creates only a single gvar.GVar and uses
it repeatedly for every element Vnn, thereby forcing every element of Vnn to be equal to every other element when
fitting (since the difference between any two of their priors is 0+0); it is almost certainly not what is desired. Usually
one wants to create the array of strings first, and then convert it to gvar .GVars using gvar.gvar ().

3.2.4 d) print_results

Method print_results (fit, prior, data) reports on the best-fit values for the fit parameters from the last
fit:

def print_results(fit, prior, data):
""" Report best-fit results. """
print ('Fit results:')

p = fit.p # best—-fit parameters
etas

E_etas = np.cumsum(p['etas:dE"'])

a_etas = p['etas:a']

print (' Fetas:', E_etas[:3])

print (' aetas:', a_etas[:3])

Ds

E_Ds = np.cumsum(p['Ds:dE"'])

a_Ds pl'Ds:a'l

print ('\n EDs:', E_Ds[:3])
(

print ! aDs:', a_Ds[:3])

Dso —— oscillating piece
E_Dso = np.cumsum(p['Dso:dE"])
a_Dso = p['Dso:a']

print ('\n EDso:', E_Dso[:3])
print (! aDso:', a_Dso[:3])
Vv

Vnn = p['Vnn']

Vno = p['Vno']

print ('\n etas->V->Ds =', Vnn[0, 0])
print (' etas->V->Dso ="', Vno[0, 0])

error budget

outputs = collections.OrderedDict ()

outputs|['metas'] = E_etas[0]

outputs['mDs'] = E_Ds[0]

outputs['mDso-mDs'] = E_Dso[0] - E_Ds[0]

outputs['Vnn'] = vnn[0, 0]

outputs['Vno'] = Vno[0, 0]

inputs = collections.OrderedDict ()

inputs['statistics'] = data # statistical errors 1in data
inputs.update (prior) # all entries in prior

3.2. Code 41

corrfitter Documentation, Release 6.0

inputs['svd'] = fit.svdcorrection # svd cut (if present)

print ('\n' + gv.fmt_values (outputs))
print (gv.fmt_errorbudget (outputs, inputs))
print ('\n")

Th

e best-fit parameter values are stored in dictionary p=£fit . p, as are the exponentials of the log-normal parameters.

We also turn energy differences into energies using numpy ‘s cummulative sum function numpy . cumsum (). The

fin

al output is:

Fi

t results:
Eetas: [0.41620(12) 1.011(87) 1.44(35)]
aetas: [0.21835(16) 0.174(72) 0.30(13)]1

EDs: [1.20163(1l6) 1.692(17) 2.1
aDs: [0.21461(19) 0.261(21) 0.42(16)]

EDso: [1.440(18) 1.64(14) 2.18(43)]
aDso: [0.063(12) 0.079(25) 0.13(10)]

etas—->V->Ds = 0.76736(79)
etas—->V->Dso -0.767(68)

Finally we create an error budget for the 7, and D, masses, for the mass difference between the D, and its opposite-
parity partner, and for the ground-state transition amplitudes Vnn and Vno. The quantities of interest are specified

in

dictionary outputs. For the error budget, we need another dictionary, inputs, specifying various inputs to the

calculation: the Monte Carlo data, the priors, and the results from any svd cuts (none here). Each of these inputs
contributes to the errors in the final results, as detailed in the error budget:

Values:
metas: 0.41620(12)
mDs: 1.20163(16)
mDso-mDs: 0.239(18)
Vnn: 0.76736(79)
Vno: —-0.767(68)
Partial % Errors:
metas mDs mDso-mDs Vnn Vno
statistics: 0.03 0.01 5.21 0.09 6.69
log(etas:a) 0.00 0.00 0.13 0.01 0.36
log(etas:dE) 0.00 0.00 0.11 0.01 0.34
log(Ds:a): 0.00 0.00 0.41 0.01 1.03
log (Ds:dE) : 0.00 0.00 0.48 0.02 1.07
log (Dso:a) 0.00 0.00 1.63 0.00 3.18
log (Dso:dE) 0.00 0.00 2.75 0.00 3.00
vnn: 0.00 0.00 0.97 0.03 0.79
Vno: 0.00 0.00 4.26 0.02 3.48
svd 0.00 0.00 0.40 0.01 0.48
total 0.03 0.01 7.55 0.10 8.91
The error budget shows, for example, that the largest sources of uncertainty in every quantity are the statistical errors

in the input data.

42

Chapter 3. Annotated Example: Transition Form Factor and Mixing

corrfitter Documentation, Release 6.0

3.3 Resulis

The output from running the code is as follows:

Least Square Fit:

chi2/dof

Settings:
svdcut/n

[dof] = 1.

= 1le-05/7

Least Square Fit:

chi2/dof

Settings:
svdcut/n

[dof] = 8.

= le-05/7

Least Square Fit:

chi2/dof

Settings:
svdcut/n

[dof] = 0.

= 1le-05/7

Least Square Fit:

chi2/dof

Parameters:
log(etas:

log (etas:dE)

log(Ds:

log (Ds:dE)

log (Dso:

log (Dso:dE)

[dof] = 0.

a)

a)

a)

nterm = 1
4e+04 [71] Q=20 1ogGBF = -4.9122e+05
tol = (1le-08%,1e-10,1e-10) (itns/time
nterm = 2
6 [71] Q = 3.6e-87 10gGBF = 1365.7
tol = (le-08%,1e-10,1e-10) (itns/time
nterm = 3
68 [71] 0 = 0.98 10gGBF = 1636.9
tol = (1le-08%,1e-10,1e-10) (itns/time
== nterm = 4
68 [71] Q = 0.98 1ogGBF = 1637.6
-1.52164 (73) [=1.2 (1.0) 1
-1.75 (42) [=1.2 (1.0) 1
-1.21 (44) [=1.2 (1.0) 1
-1.30 (95) [=1.2 (1.0) 1
-0.87659 (28) [=0.92 (50) 1
-0.52 (15) [=0.7 (1.0) 1
-0.83 (64) [=0.7 (1.0) 1
-0.63 (97) [=0.7 (1.0) 1
-1.53891 (90) [=1.2 (1.0) 1]
-1.343 (81) [=1.2 (1.0) 1
-0.86 (38) [=1.2 (1.0) 1
-1.03 (96) [=1.2 (1.0) 1]
0.18368 (13) [0.18 (17) 1
-0.712 (35) [=0.7 (1.0) 1
-0.74 (33) [=0.7 (1.0) 1
-0.80 (98) [=0.7 (1.0) 1
-2.77 (19) [=2.3 (1.0) 1
-2.54 (31) [=2.3 (1.0)]
-2.02 (76) [=2.3 (1.0) 1
0.365 (13) [0.41 (24)]
-1.62 (66) [=0.7 (1.0) 1]
-0.61 (65) [=0.7 (1.0) 1
0.76736 (79) [0.0 (1.0) 1
-0.478 (32) [0.0 (1.0) 1
0.22 (27) [0.0 (1.0) 1
-0.12 (95) [0.0 (1.0) 1
0.048 (39) [0.0 (1.0) 1
0.50 (69) [0.0 (1.0) 1

30/0.2)

14/0.1)

77/0.9)

3.3. Results

43

corrfitter Documentation, Release 6.0

(1.0000

0.0004

N MO A N MO

NN

L NN
A N NNNMDMOHOO OO

1
+- 1

6e-05 +-
le-06

N ™M

1

—_—— — — — —

-0.15
(
-9e-05 +-
-0.0001 (1.0000)
-0.03 (1.00)
-0.003 (1.000)
2e-05 +- 1

O N MO A NMmO AN MO —H N
L N N N NN

N N
OO O 41 1 N NNNOMOMmM

(o]
(=]
=

le-07 +- 1

™
~
o™

—_— — — — — — — — e — e e e e e e e e e — o —

0.21835

etas:a 0

0.41620

etas:dE 0

0.21461

Ds:a O

1.20163

Ds:dE O

Dso:a 0

Dso:dE 0

Settings:

40/0.8)

(itns/time

tol = (1le-08%,1e-10,1e-10)

= 1le-05/7

svdcut/n

Fit results:

1.44(35)]
0.30(13)]

[0.41620(12) 1.011(87)
0.174(72)

[0.21835(16)

Eetas:

aetas:

Chapter 3. Annotated Example: Transition Form Factor and Mixing

44

corrfitter Documentation, Release 6.0

EDs: [1.20163(16) 1.692(17) 2.17(17)]
aDs: [0.21461(19) 0.261(21) 0.42(16)]

EDso: [1.440(18) 1.64(14) 2.18(43)]
aDso: [0.063(12) 0.079(25) 0.13(10)]

etas->V->Ds = 0.76736(79)
etas—->V->Dso = —-0.767(68)
Values:
metas: 0.41620(12)
mDs: 1.20163(16)
mDso-mDs: 0.239(18)
Vnn: 0.76736(79)

Vno: —-0.767(68)

o)

Partial % Errors:

metas mDs mDso-mDs vnn vno
statistics: 0.03 0.01 5.21 0.09 6.69
log(etas:a) 0.00 0.00 0.13 0.01 0.36
log(etas:dE) 0.00 0.00 0.11 0.01 0.34
log(Ds:a): 0.00 0.00 0.41 0.01 1.03
log(Ds:dE) : 0.00 0.00 0.48 0.02 1.07
log(Dso:a) 0.00 0.00 1.63 0.00 3.18
log (Dso:dE) 0.00 0.00 2.75 0.00 3.00
Vnn: 0.00 0.00 0.97 0.03 0.79
Vno: 0.00 0.00 4.26 0.02 3.48
svd 0.00 0.00 0.40 0.01 0.48
total 0.03 0.01 7.55 0.10 8.91

Note:

* This is a relatively simple fit, taking only a couple of seconds on a laptop.

* Fits with only one or two terms in the fit function are poor, with chi2/dofs that are significantly larger than
one.

« Fits with three terms work well, and adding futher terms has almost no impact. The chi-squared does not improve
and parameters for the added terms differ little from their prior values (since the data are not sufficiently accurate
to add new information).

» The quality of the fit is confirmed by the fit plots displayed at the end (press the ‘n’ and ‘p’ keys to cycle through
the various plots, and the ‘q’ key to quit the plot). The plot for the Dy correlator, for example, shows correlator
data divided by fit result as a function of t:

3.3. Results 45

corrfitter Documentation, Release 6.0

+1 1) Ds (press'n','p', 'q' or a digit)

0.004 4

-

st

E _""'--—-._1 |11 e
:‘, T - ®
8 _0.002 - B SR ? ¢
~0.004 -
~0.006 -
T T T T T T
0 5 10 15 20 25

The points with error bars are the correlator data points; the fit result is 1.0 in this plot, of course, and the dashed
lines show the uncertainty in the fit function evaluated with the best-fit parameters. Fit and data agree to within
errors. Note how the fit-function errors (the dashed lines) track the data errors. In general the fit function is at
least as accurate as the data. It can be much more accurate, for example, when the data errors grow rapidly with
t.

In many applications precision can be improved by factors of 2—3 or more by using multiple sources and sinks
for the correlators. The code here is easily generalized to handle such a situation: each corrfitter.Corr2
and corrfitter.Corr3inmake_models () is replicated with various different combinations of sources
and sinks (one entry for each combination).

3.4 Variation: Marginalization

Marginalization (see Faster Fits — Marginalization) can speed up fits like this one. To use an 8-term fit function,
while tuning parameters for only N terms, we change only four lines in the main program:

def main () :

data = make_data('etas-Ds.hb5")
models = make_models ()
prior = make_prior (8)

fitter CorrFitter (models=make_models (), svdcut=le-5)

p0 = None

for N in [1, 2]: # 1
print (30 '=', 'nterm =', N)
prior = make_prior (8) # 2
fit = fitter.lsqgfit (data=data, prior=prior, pO=p0, nterm=(N, N)) # 3
print (fit) # 4
rO0 fit.pmean

print_results (fit, prior, data)
if DISPLAYPLOTS:
fitter.display_plots()

The first modification (4#1) limits the fits to N=1, 2, because that is all that will be needed to get good values for the
leading term. The second modification (#2) sets the prior to eight terms, no matter what value N has. The third (#3)

46

Chapter 3. Annotated Example: Transition Form Factor and Mixing

corrfitter Documentation, Release 6.0

tells fitter.lsqgfit to fit parameters from only the first N terms in the fit function; parts of the prior that are not
being fit are incorporated (marginalized) into the fit data. The last modification (#4) changes what is printed out. The
output shows that results for the leading term have converged by N=2 (and even N=1 is pretty good):

nterm = 1
Least Square Fit:
chi2/dof [dof] = 0.59 [71] Q=1 1ogGBF = 1586.7
Parameters:
log(etas:a) O -1.52164 (85) [=1.2 (1.0)]
log(etas:dE) 0 -0.87662 (30) [=0.92 (50) 1
log(Ds:a) O -1.5386 (13) [=1.2 (1.0) 1]
log(Ds:dE) 0 0.18370 (16) [0.18 (17) 1
log(Dso:a) 0 -2.622 (94) [=2.3 (1.0) 1
log (Dso:dE) 0 0.3753 (98) [0.41 (24)]
Vnn 0,0 0.7674 (35) [0.0 (1.0) 1
Vno 0,0 -0.708 (30) [0.0 (1.0) 1
etas:a 0 0.21835 (18) [0.30 (30) 1
etas:dE O 0.41619 (12) [0.40 (20) 1
Ds:a 0 0.21469 (28) [0.30 (30) 1]
Ds:dE O 1.20165 (19) [1.20 (20) 1
Dso:a 0 0.0726 (68) [0.10 (10) 1
Dso:dE 0 1.455 (14) [1.50 (36) 1]
Settings:
svdcut/n = 1le-05/27 tol = (le-08%,1e-10,1e-10) (itns/time = 8/0.1)
= == == nterm = 2
Least Square Fit:
chi2/dof [dof] = 0.66 [71] Q0 = 0.99 1ogGBF = 1633.3
Parameters:
log(etas:a) O -1.52170 (74) [=1.2 (1.0)]
1 -1.74 (53) [=1.2 (1.0) 1]
log(etas:dE) O -0.87662 (28) [=0.92 (50)]
1 -0.53 (17) [=0.7 (1.0) 1
log(Ds:a) O -1.53905 (94) [=1.2 (1.0) 1]
1 -1.367 (84) [=1.2 (1.0) 1]
log(Ds:dE) 0 0.18367 (13) [0.18 (17) 1
1 -0.724 (40) [=0.7 (1.0) 1]
log(Dso:a) O -2.714 (73) [=2.3 (1.0) 1]
1 -2.43 (12) [=2.3 (1.0) 1
log (Dso:dE) O 0.3688 (63) [0.41 (24)]
1 -1.40 (23) [=0.7 (1.0) 1]
Vnn 0,0 0.76716 (82) [0.0 (1.0) 1
0,1 -0.461 (30) [0.0 (1.0) 1]
1,0 0.072 (55) [0.0 (1.0) 1]
1,1 0.17 (85) [0.0 (1.0) 1
Vno 0,0 -0.776 (41) [0.0 (1.0) 1]
0,1 0.31 (16) [0.0 (1.0) 1]
1,0 0.27 (41) [0.0 (1.0) 1
1,1 0.20 (97) [0.0 (1.0) 1]
etas:a 0 0.21834 (1e6) [0.30 (30) 1
1 0.175 (92) [0.30 (30) 1]
etas:dE O 0.41619 (12) [0.40 (20)]
1 0.59 (10) [0.50 (50) 1]
Ds:a O 0.21458 (20) [0.30 (30) 1]

3.4. Variation: Marginalization 47

corrfitter Documentation, Release 6.0

1 0.255 (21) [0.30 (30) 1
Ds:dE O 1.20161 (16) [1.20 (20) 1
1 0.485 (19) [0.50 (50) 1
Dso:a 0 0.0663 (48) [0.10 (10)]
1 0.088 (10) [0.10 (10) 1
Dso:dE 0 1.4459 (91) [1.50 (36)]
1 0.248 (57) [0.50 (50) 1
Settings:
svdcut/n = 1le-05/12 tol = (le-08%,1e-10,1e-10) (itns/time = 25/0.2)
Fit results:
Eetas: [0.41619(12) 1.01(10)]
aetas: [0.21834(16) 0.175(92)]
EDs: [1.20161(16) 1.687(19)]
aDs: [0.21458(20) 0.255(21)1
EDso: [1.4459(91) 1.693(60)]
aDso: [0.0663(48) 0.088(10)]
etas—->V->Ds = 0.76716(82)
etas->V->Dso = —-0.776(41)
Values:
metas: 0.41619(12)
mDs: 1.20161(16)
mDso-mDs: 0.2443(91)
Vnn: 0.76716(82)
Vno: —-0.776(41)
Partial % Errors:
metas mDs mDso-mDs Vnn Vno
statistics: 0.03 0.01 2.66 0.09 4.57
log(etas:a) 0.00 0.00 0.04 0.01 0.43
log (etas:dE) 0.00 0.00 0.02 0.01 0.16
log(Ds:a): 0.00 0.00 0.07 0.02 0.23
log(Ds:dE) : 0.00 0.00 0.10 0.03 0.16
log(Dso:a) 0.00 0.00 0.36 0.00 1.19
log (Dso:dE) 0.00 0.00 0.47 0.00 1.69
vnn: 0.00 0.00 0.53 0.05 0.52
Vno: 0.00 0.00 2.44 0.01 0.81
svd: 0.00 0.00 0.44 0.02 1.39
total 0.03 0.01 3.72 0.11 5.32
3.5 Variation: Chained Fit
Chained fits (see Faster Fits — Chained Fits) are used if fitter.lsgfit(...) is replaced by
fitter.chained_lsqgfit (...) inmain (). The results are about the same: for example,

Fit results:
Eetas: [0.41619(11) 1.012(29) 1.439(58)]
aetas: [0.21835(15) 0.174(17) 0.295(99)]

48 Chapter 3. Annotated Example: Transition Form Factor and Mixing

corrfitter Documentation, Release 6.0

EDs: [1.20162(17) 1.688(15) 2.205(71)]
aDs: [0.21460(22) 0.258(14) 0.481(99)]

EDso: [1.4531(39) 1.728(50) 2.02(15)]
aDso: [0.0717(14) 0.070(17) 0.090(77)]

etas->V->Ds = 0.76772(98)
etas—->V->Dso = —-0.759(26)
Values:
metas: 0.41619(11)
mDs: 1.20162(17)
mDso-mDs: 0.2515(39)
Vnn: 0.76772(98)

Vno: —-0.759(26)

o)

Partial % Errors:

metas mDs mDso-mDs vnn Vno

statistics: 0.03 0.01 1.40 0.11 2.95
log(etas:a) 0.00 0.00 0.06 0.02 0.25
log (etas:dE) 0.00 0.00 0.03 0.01 0.21
log(Ds:a): 0.00 0.00 0.11 0.01 0.23
log(Ds:dE) : 0.00 0.00 0.07 0.02 0.37
log(Dso:a) 0.00 0.00 0.32 0.00 0.83
log (Dso:dE) 0.00 0.00 0.24 0.00 0.49
Vnn: 0.00 0.00 0.25 0.05 0.87

Vno: 0.00 0.00 0.42 0.01 0.78

svd 0.00 0.00 0.14 0.00 0.11

total 0.03 0.01 1.55 0.13 3.36

Chained fits are particularly useful for very large data sets (much larger than this one).

3.6 Test the Analysis

We can test our analysis by adding test_fit (fitter, ’'etas-Ds.h5’) tothe main program, where:

def test_fit (fitter, datafile):
"mrn Test the fit with simulated data """
gv.ranseed (98)
print ('\nRandom seed:', gv.ranseed.seed)
dataset = hbpy.File(datafile)

pexact = fitter.fit.pmean

prior = fitter.fit.prior

for spdata in fitter.simulated_pdata_iter (n=2, dataset=dataset, pexact=pexact):
print (' \n============================== gimulation')

sfit = fitter.lsqgfit (pdata=spdata, prior=prior, pO=pexact)
print (sfit.format (pstyle=None))

check chix+2 for key parameters

diff = {}

for k in ['etas:a', 'etas:dE', 'Ds:a', 'Ds:dE', 'Vnn']:

p_k sfit.p[k].flat[0]
pex_k = pexactl[k].flat[0]
print (
'{:>10}: fit = {} exact = {:<9.5} diff = {}'

3.6. Test the Analysis 49

corrfitter Documentation, Release 6.0

.format (k, p_k, pex_k, p_k - pex_k)

diff[k] = p_k - pex_k
print ('\nAccuracy of key parameters: ' + gv.fmt_chi2(gv.chi2(diff)))

This code does n=2 simulations of the full fit, using the means of fit results from the last fit done by fitter as
pexact. The code compares fit results woth pexact in each case, and computes the chi-squared of the difference
between the leading parameters and pexact. The output is:

Random seed: 98

= == simulation
Least Square Fit:
chi2/dof [dof] = 0.8 [71] Q = 0.89 1logGBF = 1633.6
Settings:
svdcut/n = 1le-05/7 tol = (le-08%,1e-10,1e-10) (itns/time = 61/1.2)
etas:a: fit = 0.21816(16) exact = 0.21835 diff = -0.00019(16)
etas:dE: fit = 0.41610(11) exact = 0.4162 diff = -0.00010¢(11)
Ds:a: fit = 0.21449(19) exact = 0.21461 diff = -0.00013(19)
Ds:dE: fit = 1.20153(16) exact = 1.2016 diff = -0.00010(16)
Vnn: fit = 0.76585(98) exact = 0.76736 diff = -0.00151(98)
Accuracy of key parameters: chi2/dof = 0.86 [5] Q = 0.51
simulation
Least Square Fit:
chi2/dof [dof] = 0.49 [71] Q=1 1ogGBF = 1647.9
Settings:
svdcut/n = 1le-05/7 tol = (1e-08%,1e-10,1e-10) (itns/time = 81/1.7)
etas:a: fit = 0.21835(15) exact = 0.21835 diff = 5(1497)e-07
etas:dE: fit = 0.41620(11) exact = 0.4162 diff = -6(1110)e-07
Ds:a: fit = 0.21460(19) exact = 0.21461 diff = -0.00001(19)
Ds:dE: fit = 1.20161(16) exact = 1.2016 diff = -0.00003(16)
Vnn: fit = 0.76633(78) exact = 0.76736 diff = -0.00102(78)
Accuracy of key parameters: chi2/dof = 0.35 [5] Q = 0.88

This shows that the fit is working well.

Other options are easily checked. For example, only one line need be changed in test_fit in order to test a
marginalized fit:

sfit = fitter.lsqgfit (pdata=spdata, prior=prior, pO=pexact, nterm=(2,2))

Running this code gives:

Random seed: 98

simulation
Least Square Fit:
chi2/dof [dof] = 0.84 [71] Q = 0.82 1ogGBF = 1647.2
Settings:
svdcut/n = 1le-05/7 tol = (1le-08%,1e-10,1e-10) (itns/time = 11/0.1)

50 Chapter 3. Annotated Example: Transition Form Factor and Mixing

corrfitter Documentation, Release 6.0

etas:a: fit = 0.21821(14) exact = 0.21834 diff = -0.00013(14)
etas:dE: fit = 0.41611(11) exact = 0.41619 diff = -0.00007(11)
Ds:a: fit = 0.21447(13) exact = 0.21458 diff = -0.00011(13)
Ds:dE: fit = 1.20150(13) exact = 1.2016 diff = -0.00011(13)
Vnn: fit = 0.76639(42) exact = 0.76716 diff = -0.00077(42)
Accuracy of key parameters: chi2/dof = 0.86 [5] Q = 0.51
simulation
Least Square Fit:
chi2/dof [dof] = 0.58 [71] Q=1 10gGBF = 1656.7
Settings:
svdcut/n = 1le-05/7 tol = (1le-08%,1e-10,1e-10) (itns/time = 14/0.1)
etas:a: fit = 0.21830(14) exact = 0.21834 diff = -0.00004 (14)
etas:dE: fit = 0.41617(11) exact = 0.41619 diff = -0.00002(11)
Ds:a: fit = 0.21458(13) exact = 0.21458 diff = 7(1319)e-07
Ds:dE: fit = 1.20161(13) exact = 1.2016 diff = -9(131)e-06
Vnn: fit = 0.76668(42) exact = 0.76716 diff = -0.00048(42)
Accuracy of key parameters: chi2/dof = 0.3 [5] Q =0.91

This is also fine and confirms that nterm= (2, 2) marginalized fits are a useful, faster substitute for full fits in this
case.

3.7 Mixing

Code to analyze D,-D, mixing is very similar to the code above for a transition form factor. The main () and
make_data () functions are identical, except that here data is read from file * Ds—-Ds .h5’ . We need models for the
two-point D, correlator, and for two three-point correlators describing the D, to D, transition:

def make_models () :
"rr Create models to fit data. """
tmin = 3
tp = 64
models = [
cf.Corr2(
datatag='Ds', tp=tp, tmin=tmin,
a=('a', 'ao'), b=('a', 'ao'), dE=('dE', 'dEo'), s=(1., -1.),
)I
cf.Corr3(
datatag='DsDsT18', T=18, tmin=tmin,
a=('a', 'ao'), dEa=('dE', 'dEo'"), tpa=tp, sa=(1l., -1),
b=('a', 'ao'"), dEb=('dE', 'dEo'), tpb=tp, sb=(1., -1.),
Vnn='vVnn', Voo='Voo', Vno='Vno', symmetric_V=True,
)
cf.Corr3(
datatag='DsDsT15', T=15, tmin=tmin,
a=('a', 'ao'), dEa=('deE', 'dEo'"), tpa=tp, sa=(1l., -1),
b=('a', 'ao'"), dEb=('dE', 'dEo'), tpb=tp, sb=(1., -1.),
Vnn='vVnn', Voo='Voo', Vno='Vno', symmetric_V=True,
)
]

return models

3.7. Mixing 51

corrfitter Documentation, Release 6.0

The initial and final states in the three-point correlators are the same here so we set parameter symmetricvV=True
in corrfitter.Corr3

The prior is also similar to the previous case:

def make_prior (N):
"m"n Create priors for fit parameters. """
prior = gv.BufferDict ()

Ds

mDs gv.gvar('1.2(2)")

prior['log(a)' = gv.log(gv.gvar(N = ['0.3(3)"]))
prior['log(dE) '] = gv.log(gv.gvar(N = ['0.5(5)"]))
prior['log(dE) "] [0] = gv.log(mDs)

Ds —— oscillating part

prior['log(ao)'] = gv.log(gv.gvar(N = ['0.1(1)"']))
prior['log(dEo) '] = gv.log(gv.gvar(N ['0.5(5)"]))
prior['log(dEo) '] [0] = gv.log(mDs + gv.gvar('0.3(3)"))
Vv

nv = int ((N = (N + 1)) / 2)

prior['Vnn'] = gv.gvar(nV = [') ')

prior['Voo']
prior['Vno']
return prior

[
gv.gvar (nV * [
gv.gvar (N = [N

0.0(5
'0.0(5) ")
* ['0.0(5)"11])

We use log-normal distributions for the energy differences, and amplitudes. We store only the upper triangular parts
of the Vnn and Voo matrices since they are symmetrical (because symmetricV=True is set).

A minimal print_results () function is:

def print_results(fit, prior, data):
"mnm print results of fit. """

outputs = collections.OrderedDict ()

outputs|['mDs'] = fit.p['dE'][0]

outputs['Vnn'] = fit.p['Vnn'][0]

inputs = collections.OrderedDict ()

inputs['statistics'] = data # statistical errors in data
inputs['Ds priors'] = {

k:prior[k] for k in ['log(a)', 'log(dE)', 'log(ao)', 'log(dEo) ']
}

inputs['V priors'] = {
k:prior[k] for k in ['Vnn', 'Vno', 'Voo']
}
inputs['svd'] = fit.svdcorrection # errors from svd cut (if present)

print('\n’ + gv.fmt_values (outputs))
print (gv. fmt_errorbudget (outputs, inputs))

Running the mixing code gives the following output:

nterm = 1
Least Square Fit:
chi2/dof [dof] = 1.6e+04 [55] Q=20 10gGBF = -4.447e+05
Settings:
svdcut/n = le-12/0 tol = (1le-08%,1e-10,1e-10) (itns/time = 36/0.2)
nterm = 2

52 Chapter 3. Annotated Example: Transition Form Factor and Mixing

corrfitter Documentation, Release 6.0

Least Square Fit:
chi2/dof [dof]

Settings:

svdcut/n = le-12/0

.7 [55] Q

tol = (1le-08%,1e-10,1e-10)

Least Square Fit:
chi2/dof [dof]

Settings:

svdcut/n = 1le-12/0

.72 [55] Q

tol = (1le-08%,1e-10,1e-10)

======= nterm

Least Square Fit:
chi2/dof [dof]

Parameters:
log(a)

log (dE)

log (ao)

log (dEo)

Vnn

D N Y

~

~ N~ 0~ 0~

~

H O WNEFEFOWNREFOWNRE O WOWJou b WNEOWNREFEOWNDMEOWNEOWDNDREO

W w NN PR PR OO OO
~

~

-0.0005 (4991

0.00006 (50000

.72 [55] Q

-1.5553
-1.67
-0.73
-1.50

0.27132
-0.95
-0.86
-0.81
-2.76
-2.15
-2.60
-2.46
0.341
-1.27
-0.76
-0.58

0.1065
-0.002
-0.014
-0.05
0.004 (50

N NP O ONRE ODdFRRFE ORFRDNDOOWOWERE WL
O O W EHFOHOJWE OU O WNWWNO P WW WO

0.0008 (4998

-le-06 +- 0.5
2e-08 +- 0.5
-0.2117

0.0001 (50
0.02 (
0.002 (50
-9e-07 +- 0.5
3e-07 +- 0.5
-0.05 (39)

-0.0006 (5000)

nterm

W wwwIJdarFErDNDDNDDNDND

O O O O O OO OO OO0 OO0 oOo oo oo

[oe]

~
=

.7

L7

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

10gGBF

1ogGBF

1ogGBF

(1.
(1.
(1.
(1.

=

s O O O O OO0 O JOo oo o

(1.
(1.
(1.
(1.
(1.
(1.
(1.

(2
(1.0
(1.0
(1.0

[C2BNC NG, NG, N, BN, INC, I B BN BN IC INC, INC, BN G, BN G, NN) B G B G BN C)]

[S2BNE,
o

O O O O O OO OO OO0 OO0 OO0 oOo oo oo

1469.7

(itns/time = 51/0.4)

1618

(itns/time = 118/0.9)

1616.5

3.7. Mixing

53

	corrfitter - Least-Squares Fit to Correlators
	Introduction
	Basic Fits
	Faster Fits
	Faster Fits — Postive Parameters
	Faster Fits — Marginalization
	Faster Fits — Chained Fits
	Faster Fits — Faster Fitters
	Faster Fits — Processed Datasets
	Variations
	Very Fast (But Limited) Fits
	3-Point Correlators
	Testing Fits with Simulated Data
	Bootstrap Analyses
	Implementation
	Correlator Model Objects
	corrfitter.CorrFitter Objects
	corrfitter.EigenBasis Objects
	Fast Fit Objects

	Annotated Example: Two-Point Correlator
	Introduction
	Code
	Results
	Correlated Data?
	Fast Fit and Effective Mass

	Annotated Example: Transition Form Factor and Mixing
	Introduction
	Code
	Results
	Variation: Marginalization
	Variation: Chained Fit
	Test the Analysis
	Mixing

	Annotated Example: Matrix Correlator
	Introduction
	Code
	Results
	Fit Stability
	Alternative Organization

	Indices and tables
	Python Module Index
	Index

