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Abstract—This paper discusses a brain controlled robotic gait
trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients.
Patients suffering from Spinal Cord Injuries (SCI) become unable to
execute motion control of their lower proximities due to degeneration
of spinal cord neurons. The presented approach can help SCI patients
in neuro-rehabilitation training by directly translating patient motor
imagery into walkers motion commands and thus bypassing spinal
cord neurons completely. A non-invasive EEG based brain-computer
interface is used for capturing patient neural activity. For signal
processing and classification, an open source software (OpenVibe)
is used. Classifiers categorize the patient motor imagery (MI) into
a specific set of commands that are further translated into walker
motion commands. The robotic walker also employs fall detection
for ensuring safety of patient during gait training and can act as a
support for SCI patients. The gait trainer is tested with subjects, and
satisfactory results were achieved.

Keywords—Brain Computer Interface (BCI), gait trainer, Spinal
Cord Injury (SCI), neurorehabilitation.

I. INTRODUCTION

SPINAL Cord Injury (SCI) is an injury to spinal cord due

to disease, stroke or degeneration of cells. SCI devastates

both the physical and psychological well-being of patients.

There are around 40 to 80 SCI cases per one million of

population and majority of the cases are among young men

having an age bracket of 20 to 35 years [1]. SCI injuries

are growing every year, almost 25,000 to 500,000 people are

suffering from SCI. Nearly 90% of the cases of SCI are linked

to traumatic causes [2]. Roughly 12,500 new SCI cases occur

each year in the US alone with a total of 27,6000 patients

living with SCI [3]. Traffic crashes (driving being the number

one cause), sports, falls and violent attacks are the root causes

of traumatic related SCI.

Major focus on recovery of SCI patients so far has been

to provide them aids, such as a wheelchair or walking stick

[4]. This would give patients some measure of independence

so that they can perform their basic everyday tasks by

themselves. Even the medicine prescribed to these patients

aims at stopping further damage rather than curing. Thus most

of the tools available to these patients focus on managing

the disease, improving the orthotics and increasing patient

comfort [5]. Mechanical wheelchairs have been transformed

into electronic ones, automated speech recognition software
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has been developed, and muscle therapy techniques have been

established. All these approaches are designed to help the

patient with their daily life tasks but fall short when it comes

to their rehabilitation. In the long run, they do nothing to cure

the patient and instead give way to other diseases such as

respiratory illness, pressure based illnesses, osteoporosis, and

heart disease [6].

There is no remedy currently present, for patients suffering

from spinal cord injuries to recover completely. Treatments

that are still in the phase of experimentation like tissue

regeneration and stem cell implantations try to repair damaged

spinal cord. Nonetheless, the lives of people with Spinal Cord

Injuries (SCI) can be significantly improved or in some cases

restored to some extent via a Brain Machine Interface (BMI).

Using BMI, SCI patients can use brain signals to reflect or

translate the state of brain activity using an external orthotic

device [7].

Motor Imagery can be defined as a dynamic state in

which subjects mentally simulate a specific motor action in

working memory without any motor output [8]. MI training

helps in enhancing motor performance in SCI patients despite

a lack of voluntary control [9]. The main complication in

SCI patients is that the signals generating from the brain

relating to the movement of lower proximities are not properly

transferred due to damage of spinal cord neurons. However,

the thought patterns can be captured by a BCI device and

further translated to an external orthotic device for lower

limbs (a robotic walker) which forces the body to move. This

procedure is defined as Spinal Cord Regeneration. Performing

this procedure for a certain period can help the body grow new

pathways for neural data transfer. The research was done by

Christine et al. 2015 [6] explains the successful testing of the

for-mentioned concept. The results are promising, the subject

was able to achieve information at a transfer rate greater than

3 bits/s and correlation greater than 0.9. The study further

explained that there were no adverse events worth mentioning.

Rehabilitation requires a multidisciplinary approach to

avoid having further complications for patients. The focus

of this paper is to design a robotic gait trainer controlled

by a non-invasive brain-computer interface to maximize the

rehabilitation by maximizing the movement of lower limbs.

The robotic gait trainer is designed to provide physiotherapy

as well as aid in rehabilitation for patients with SCI. The

combination of brain-computer interface with an orthotic

device provides an advanced and innovative approach to

rehabilitation. The system offers mechanisms and methods

focusing primarily on rehabilitation of motor function after

injury or stroke.
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Fig. 1 Hardware Architecture

Fig. 2 System Block Diagram

II. METHODOLOGY

Brain-Computer Interface is used to detect motor imagery

of patient and decode it into an accomplished action by

a peripheral device, such as a robotic arm or a limb

orthosis. A commercially available walker is partially modified

and transformed into a robotic walker. Worm gear motors

are attached on the front legs of the walker while ball

casters are attached on the rear legs. An indigenously

developed electronics module that houses the electronic

circuitry, microcontroller, and embedded system hardware is

also incorporated in the walker modification. The hardware

architecture diagram is shown in Fig. 1. Motion control

of walker can be manipulated using both a non-invasive

brain-computer interface and a principal control device such

as a tri-axial joystick. EEG signals captured by a BCI headset

at the frontal lobe of the brain are transmitted to main system

software. The software then classifies the signals into one of

two classes (right hand MI and left hand MI). After that,

it transfers the command to the microcontroller for motion

control hence successfully translating thoughts into motion

commands. Right hand MI signal is used for implementing

walker forward motion and left hand MI signal for stop

motion. This allows bypassing spinal cord neurons completely

and directly translating thoughts to walkers motion commands.

A block diagram representation of the system is shown in Fig.

2.

Intel Compute Stick is used for processing EEG signals

and running the VRPN client application. Specification

[10] of computer stick meet the requirement of running

OpenVibe software and Emotiv SDK. The computer stick also

communicates with Arduino microcontroller through serial

communication.

A. Brain-Computer Interface

Brain-Computer Interface can be defined as a system that

only uses signals from the central nervous system (CNS)

[11]. These systems can be employed to substitute for the

loss of neuromuscular function by using patients brain signals

to interact with the environment. These systems can also be

used to restore the impaired motor function. People with

impotent motors can use their brain signals for control and

communication without using their crippled and incapacitated

neuromuscular system. Severely disabled patients have been

empowered and enabled to interact with the environment with

the help of brain-machine interface that senses brain activity

to actuate external peripherals.

BCI is classified into two types: (1) Invasive and

(2) non-invasive. Invasive BCI involves the surgical

implementation of electrodes into the brain while non-invasive

BCIs require no such implementation and enable recording

of brain activity using external electrode on the surface of

the scalp. A variety of invasive and noninvasive methods

for controlling brain-computer interfaces (BCIs) have been

probed, from which EEG is the most notable. EEG is the most

common methodology for sensing electrical brain activity

non-invasively to record neural signals, using specially

designed electrodes. Brain activity from a range of frequency

bands such as mu (8 - 12 Hz), beta (12 - 30 Hz) and gamma

(30 - 100 Hz) can be recorded. Features from these frequency

bands can correlate with different imagined motor intents

[12]. The strategy of using BCI for a neuro-rehabilitation

purpose is showing in Fig. 2. The patient performs motor

imagery, and BCI detects and classifies the intention to a

motion command for the robotic walker.

Datasets were recorded from a total of 04 subjects (mean

age = 21.4 years, SD=1.10, 3 Males, 1 Female). These subjects

were healthy and had no nervous system abnormalities in the

past. They also had no prior experience of using BCI system.

Subjects were asked to comfortably sit in front of computer

screen in relaxing position and were specially instructed to

feel calm and were asked to not to think of any other thought

except for motion during data recording. Two datasets were

recorded from each subject. The datasets were collected over

a time span of two weeks.

During data recording, subjects were shown a set of arrow

and were instructed to mentally stimulate motion in the

respective direction. Data recording started with the display

of fixation cross on a computer screen. After 3 seconds, a cue

appeared in the form of a left or right arrow. The subject is

then required to mentally stimulate motion in that direction

for 5 seconds. The fixation cross then disappeared, and there

is a break of 2 sec. After the break, the next cycle starts.

The cue direction was random to ensure best data collection.

Duration of one trial was 11 seconds and to avoid over-fitting

the data, we randomized the time between two trials in a range

of 0.5-1.5 seconds.
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Fig. 3 Strategy of implementing BCI for neuro-rehabilitation

Fig. 4 Timing scheme of paradigm

Fig. 5 Motion cues shown to subjects

In the brain, chemical and electric signals are transmitted

through neurons. Translation of electric signals to chemical

signals at the synapse between two neurons produce a voltage

spike roughly less than 100 microvolts and 100Hz [13].

With the help of specially designed non-invasive electrodes,

these small voltage differences can be measured. Emotiv

EPOC, which is a 14-channel headset. Reference [14], is used

for signal acquisition. Electrodes were placed on the scalp

according to the International 10-20 system [15], standardized

by the American Electroencephalographic Society. To place

more sensors near the motor cortex, the headset is used in

an inverted configuration. To decrease impedance between

Fig. 6 Placement of electrodes on the scalp

electrode and scalp contact point, a conductive paste is

used. Furthermore, EEG signals were acquired at a sampling

frequency of 128 Hz.

OpenVibe Software [16] is used for signal processing and

classification. Signal acquisition server of OpenVibe acquires

raw values of electrodes using Research Edition SDK of

Emotive EPOC. This data is then forwarded to OpenVibe

Designer through TCP communication protocol for further

processing. After the acquisition of raw data from the headset,

classifiers are trained to categories the data into two classes:

right hand MI and left hand MI. Training the classifier is

important to step, and once it is done, the classifier then

trains the unseen data into two classes. A flowchart of the

BCI process is shown in Fig. 5.

As most of the information related to motor imagery lies in

the beta band, the acquired raw data is first needed to filter

between 8 and 30 Hz [17] using a Butterworth filter. The filter

has a flat frequency response (unity passband ripple) which

means zero change in amplitude in the passband [18].

Noise can be embedded in data due to blinking, jaw

movement, facial muscle movement. This noise has to be

removed from the data before training the classifier. For this

purpose, a spatial filter called surface Laplacian is used.

The spatial filter creates the best possible combination of

electrodes to acquire data with the least noise and a maximum

contribution of each channel to the filtered data.

Spatial filter generates a number of output channels where
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Fig. 7 Flowchart of BCI process

Fig. 8 EEG data without Butterworth filter

each output channel is a lean combination of the input

channels. If Ij is the jth input channel, Ok is the kth output

channel, and Tjk is the coefficient for the jth input channel

and kth output channel in the Spatial filter matrix. Then the

output channels are computed this way:

Ok =

n∑

j=1

(Tjk ∗ Ij) (1)

Fig. 9 EEG data with Butterworth filter

where n is the total number of input channels, k is the

number of output channels.

According to 10-20 system, signals are most discriminative

in C3 and C4 region for MI of the upper limb. In case of any

noise, the noise is also observed in the region surrounding

C3 and C4 electrodes such as CZ, F3, P3, T3, P4, T4.

In surface Laplacian, the recorded data from each of these

channels is assigned a specific weight and then subtract from

the discriminative weighted sensor. Here the highest weighted

sensor is most discriminative. This way, almost all the common

noise is subtracted which is helpful in signal classification.

The Common Spatial Filter is employed to increase signals

variance and thus improving the discrimination of signals (e.g.,

left hand MI versus right hand MI). The CSP filter is trained,

and afterward,, the trained CSP is used to train the classifier

and to classify online data. The information presented in EEG

signals is very much concentrated and thus not suitable for

pattern recognition. The signal was expanded in the time axis,

each 1/16s of the incoming signal to 1-sec window called

Epoc. A total of 16 epochs were obtained for a signal of 1

sec. After epoching, logarithmic band power is applied using

simple DSP [19] to all 16 epochs for feature extraction.

u(x) = log(1 + x2) (2)

Using feature aggregator plugin in OpenVibe, the 16

epochs after feature extraction using log band power are

then concentrated into a single vector for the classifier. The

classifier classifies input data into one of two classes thus

categorizing the thought pattern (right hand MI or left hand

MI) of the patient. Three classifiers namely LDA, C-SVM,

and nu-SVM were tested with the dataset.

After classification of the signal into one of two classes,

the signals are sent to Microcontroller for implementing

motion control of walker. For sending data from OpenVibe

to Arduino microcontroller for walker motion, VRPN server

[20] in OpenVibe is used to send data to VRPN client.

VRPN client application, developed in C++, acquires data

from OpenVibe VRPN server. After necessary processing, the

application further forwards the motion commands to Arduino

microcontroller. If the signal belongs to Class 1 (right-hand

movement), the walker forward motion is executed otherwise

if the signal belongs in class 2(left-hand movement), the

walker stop motion is executed.

B. Joystick Control

The use of the principal control device such as Joystick

to control orthosis device is the most commonly available

solution to the patients. For the patient comfort, a 3-axis

Joystick is also incorporated in the robotic walker and joystick

can act as a primary control interface between a patient and

the walker. The y-axis of the joystick is used to give forward

or reverse motion to the walker. For clockwise rotation, the

differential value of the joystick controller causes a difference

between the speed of both right and left motor. Joystick push

button is used for mode switching between BCI and Joystick

control.
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TABLE I
PERCENTAGE ACCURACY OF CLASSIFIERS

Data Sets C-SVM(%) LDA(%) NU-SVM(%)
1 53.06 51.48 50.00
2 60.46 60.05 60.46
3 55.92 54.90 46.93
4 64.18 62.91 63.10
5 59.54 58.01 59.49
6 59.28 58.11 59.39
7 60.41 60.00 60.61

Fig. 10 Four class validation result

C. Unbalance Detection

A fall can be a risky event for people with SCI, , and it

can result in serious injury. In the case of unbalance gait of

the patient during training, the walker has to act differently to

prevent the patient from unbalancing and falling. A tri-axial

accelerometer is employed to measure acceleration in the

y-axis continuously. If the value of Ay is greater than a

threshold value, Walker front leg motors run in a reverse

direction with full speed to avoid toppling of the walker. This

help to balance the walker and similarly preventing the patient

from falling.

D. Mechanical Design

Fig. 1 shows the mechanical architecture of the Robotic

Gait Trainer. A commercial walker is modified into a robotic

walker by keeping in mind the ease of usage, task specificity

and safety for the patient. The platform is equipped with two

worm gear motors that are used to drive the walker. Two ball

casters are attached on rear legs to ensure smooth movement

of the walker. While modifying the walker, following criteria

was kept in mind to enhance patient safety during gait training;

(1) the robotic walker should not topple during training (2) the

walker must not freewheel because of the patient weight, and

(3) the walker should be able to support patient weight and

should also act as a support for patient to stand.

III. RESULTS AND DISCUSSION

The percentage accuracy of the classifiers is shown in Table

I. To test our algorithm, we downloaded 4 class dataset from

online BCI competition. The accuracy obtained is displayed

in the Fig. 10. The gait trainer was tested with 05 subjects,

and they gave satisfactory feedback with Walker control, fall

detection and ease of usage.
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