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Abstract 

Phytoplankton plays a crucial role in the world carbon cycle and marine food web. However, 

impact of global warming on phytoplankton species composition and abundance remains 

uncertain. This is particularly true in the Arctic Ocean and its marginal seas where global 

warming tends to be the most pronounced. Ocean color satellite images therefore represent 

an essential tool for providing a synoptic view of marine environments at spatial and temporal 

resolutions that traditional sampling methods are unable to acquire. However, over icy waters 

the quality of satellite images is largely affected by sea ice contamination. Today, the impact 

of sub-pixel and adjacent sea ice floes on the satellite measured signal are ignored in standard 

ocean color processing chains resulting in erroneous satellite derived bio-geochemical 

products. Here we explain how sea-ice affects the quality of satellite ocean color data by 

comparing in situ water reflectance measurements taken near ice-edges and/or ice-floes with 

spatial and temporal coincident satellite retrieved water reflectance data. In addition, high 

and medium spatial resolution satellite data are compared to evaluate the potential to correct 

ocean color data from sea-ice contamination by taking advantage of the synergy between 

high and medium spatial resolution images.  
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1. Introduction 

Phytoplankton are responsible for approximately half of the planetary primary production 

and play a key role in the world carbon cycle and marine food web. An in-depth 

understanding of their dynamics and abundance is therfeore essential, particularly in the 

context of ongoing global warming. Indeed, it remains unknown if subsequent ice melt will 

increase or decrease primary production by phytoplankton. Studies disagree about the 

consequences of sea ice melt on phytoplankton distribution and growth (e.g., Antoine et al., 

2005; Boyce et al., 2010). Terrigenous organic carbon is also expected to be affected in the 

near future due to important river discharge, permafrost thawing and decreasing summer ice 

cover. This is particularly true in the Arctic region where global warming tends to be the 

most pronounced (Perovich et al., 2012). The limited understanding of future Arctic 

phytoplankton and organic matter dynamics largely results from a lack of accurate data. Thus, 

ocean color sensors onboard satellites represent a valuable tool for providing a synoptic view 

of the ocean system. Satellite images allow estimation of the spectral water leaving 

reflectance (often referred to as the ocean color and denoted by ρw(λ) where λ stands for light 

wavelength), which in turn provides information about phytoplankton biomass (e.g., through 

the use of proxies such as Chlorophyll a, Chla) and terrigenous material. To acquire accurate 

satellite ρw(λ) estimates, the atmospheric contribution needs to be extracted from the sensor-

measured signal, ρTOA(λ). The atmospheric contribution may be defined as the solar radiation 

reflected by air molecules, ρr(λ), and atmospheric aerosols, ρa(λ), and by the interaction 

between both, ρar(λ), often significant in the sensor bands of interest for ocean color 

applications (Fig. 1).  

Fig. 1. Schematic overview of the atmospheric (ρa(λ), ρr(λ), ρar(λ)) and sea-surface (ρwc(λ), ρglint(λ)) contribution to 

the top of atmosphere sensor measured signal. 

Light originating from sun glint at the air-sea interface, ρglint(λ), and white-caps from breaking 

waves, ρwc(λ), also need to be removed from the sensor-measured signal. During 

preprocessing, the sensor-measured signal is corrected for gas absorption, Rayleigh 



scattering, white-caps and sun glint. Accordingly, if the optical properties and the 

concentration of the aerosols are known, ρa(λ) and ρar(λ) can be estimated and subsequently, 

ρw(λ). In the near infra-red (NIR) spectral region ρw(λ) is generally null or can be 

approximated by making assumptions (e.g., Ruddick et al., 2000). Hence, standard satellite 

data processing chains tend to estimate ρw(NIR) to derive the aerosol model from ρa(NIR) 

and ρar(NIR). Next, knowing the aerosol model, ρa(λ) and ρar(λ) can be interpolated towards 

the shorter wavelengths and ρw(λ) can be estimated for the entire visible range. The process 

of estimating ρw(λ) from ρTAO(λ) is called atmospheric correction (AC).   

In icy waters, the presence of sea-ice makes AC even more challenging because the quality 

of the data is seriously compromised due to, among others, contamination of the signal by 

sea ice. This is particularly true along the receding ice-edge in marginal ice zones where 

spring and summer phytoplankton blooms are observed. Hence, to ensure accurate ρw(λ) 

retrievals in icy waters, the light reflected by sub-pixel and adjacent ice-floes in the direction 

of the satellite sensor (ρsub(λ) and ρadj.(λ), respectively) needs to be taken into account in the 

AC process. Current standard AC methods ignore both ρsub(λ) and ρadj.(λ) resulting in 

potentially important biases in the interpretation of ocean color data. Previous studies have 

shown that standard AC processes in presence of sub-pixel contamination tend to 

overestimate the contribution of aerosol and, subsequently, underestimate ρw(λ) in the visible 

spectral bands (particularly in the blue spectral region) (Bélanger et al., 2007; Wang and Shi, 

2009). In contrast, ρw(λ) is expected to be overestimated near ice-floes due to adjacency effect 

(Bélanger et al., 2007). Since light scattering from air molecules is stronger at shorter 

wavelengths (λ-4), adjacency effect from sea-ice will mostly increase the spectral reflectance 

of the pixel at the shorter wavelengths. To avoid this misinterpretation, methods have been 

suggested to mask sea-ice contaminated pixels (e.g., Bélanger et al., 2007; Wang and Shi, 

2009). However, the extent of the ice-contamination remains to be quantified and since most 

of the phytoplankton biomass develops along the receding ice-edges, masking ice 

contaminated pixels results in a significant loss of data and may lead to erroneous conclusions 

about Arctic phytoplankton and organic carbon related processes (IOCCG, 2015). There is 

therefore a need to develop a reliable approach to correct the ice-related contamination of 

remotely-sensed ocean color signals. The present study evaluates how contamination, largely 

from sea ice, affects the accuracy of ocean color images based on a set of time and space 

coincident in situ and satellite data (section 3.1.) as well as a visual inspection of medium 

and high spatial resolution images, taken simultaneously (section 3.2). 

2. Data and methods 

2.1. In situ data 

To evaluate the error made by the satellite sensor in presence of sea-ice, in situ data from the 

ArcticNet 2011 sea-campaign are used. 822 above-water spectra measured with a HyperSAS 

instrument were processed following Mobley (1999) and Ruddick et al. (2006) in order to 

obtain ρw(λ) values comparable to the satellite measured ρw(λ). For most in situ data, 



additional information about the surroundings of the measurement location is provided, 

allowing us to classify the in situ data into 5 groups: (1) green-dark waters, (2) ice-floes 

nearby, (3) more sea-ice around, (4) no-ice, and (5) potentially affected by sub-pixel 

contamination. 

2.2. Satellite data 

Medium spatial resolution (~ 1 km) ocean color images from the MODIS sensor onboard 

NASA's Aqua satellite were used. MODIS Aqua provides images in the visible, NIR and 

shortwave infra-red. The spectral resolution of MODIS Aqua allows us to distinguish large 

ranges of Chla and organic matter concentrations with a revisiting time of 1 a 2 hours during 

the day over the Arctic. MODIS Aqua's 1 km spatial resolution however limits the 

identification of adjacent ice-edges and ice-floes.  

MODIS Aqua satellite images coincident in time and space with the in situ data are processed 

with the standard AC algorithm (Bailey et al., 2010). Next, for each match-up, median ρw(λ) 

and standard deviation are calculated over a 3 by 3 pixel window around the in situ data 

location. To ensure valid match-up pairs a set of selection criteria suggested by Goyens et al. 

(2013, and references herein) were applied. Any match-up for which the time difference 

between satellite overpass and in situ measurement exceeds 3 hours is excluded and at least 

6 pixels over the 3 by 3 pixel window need to be valid (i.e., not affected by clouds, sensor 

saturation and/or stray-light). If redundant data remain (e.g., when several measurements 

were taken over a surface smaller than the pixel size), the match-up with the smallest time 

difference is retained. 

To evaluate the potential of the high spatial resolution sensor to correct medium spatial 

resolution images from sub-pixel and adjacent ice contamination, we used images from the 

recently launched Landsat 8 OLI (Operational Land Imager) sensor with 30 m spatial 

resolution. The revisiting time of this sensor is significantly larger relative to MODIS Aqua. 

Over the Arctic, Landsat-8 provides images only once a week reducing the number of 

available data over the region of interest. The OLI images are corrected for atmospheric 

effects, glint and white-caps using the AC method suggested by Vanhellemont and Ruddick 

(2014).  

3. Results 

3.1. Sea-ice contamination observed with in situ – satellite match-ups 

A set of 68 match-ups were found with the MODIS Aqua images out of the 822 in situ data 

points. The 68 match-ups passed the selection criteria described in the previous section. A 

large amount of match-ups were excluded from data analysis because the 3 by 3 pixel window 

did not present at least 6 valid pixels. Figure 2 shows the satellite ρw(λ) versus the in situ 

ρw(λ) at 4 different wavelengths for the 68 match-ups and the 5 different classes mentioned 

in section 2.1. In green-dark waters, satellite retrieved ρw(λ) are overestimated at 412 nm 



compared to the in situ data. Such water masses are often encountered in the Arctic where 

important river discharges, rich in humic substances, release high concentrations of colored 

dissolved organic matter (CDOM) and nutrients that increase primary production and 

subsequently, Chla concentration. According to Fig. 2, the standard AC method tends to 

overestimate the signal for these water masses. This was also observed by Zibordi et al. 

(2009) and Goyens et al. (2013) who estimated a positive bias in the blue spectral region with 

the satellite estimated ρw(λ) in water masses optically influenced by high CDOM and Chla 

concentrations.  

Fig. 2. In situ versus satellite ρw(λ) for the MODIS AQUA visible bands centred at 412, 443, 547 and 667 nm and 

classified according to the presence of surrounding sea-ice observed during the measurement.  

Nearby ice-floes were observed while taking the measurement for one match-up (blue 

colored point in Fig. 2). As mentioned earlier, adjacent sea-ice is expected to underestimate 

the water signal at 412 nm. However, these in situ data also indicate dark-green waters. 

Hence, both AC and adjacent sea-ice may result in an underestimation of ρw(λ) at 412 nm. 

The contribution of adjacent ice-floes on the satellite retrieved ρw(λ) is thus not as obvious 

with this data set. As shown in Fig. 2, in contrast to the adjacent sea-ice, sub-pixel 

contamination contributes to an underestimation of the signal, particularly in the blue spectral 

region. This is also in agreement with the conclusions of Bélanger et al., (2007) and Wang 

and Shi (2009) who showed that the larger the sea-ice fraction within the satellite pixel, the 

more the NIR aerosol contribution will be overestimated by the AC process and, 

subsequently, the more ρw(λ) will be underestimated at shorter wavelengths.  

To further evaluate the impact of ice contamination on the satellite retrieved ρw(λ), statistics 

have been computed for the match-ups corresponding to “green-dark waters” and “stations 

with some surrounding sea-ice”. Figure 3 also shows the standard deviation within the 3 by 

3 pixel window per class. At 412 nm relative errors range from 21 to 53% with the largest 

errors observed for the green-dark waters. As seen in Fig. 3, this class also shows larger 

standard deviations relative to the ice-contaminated match-ups. At 412 nm the green-dark 

waters showed a positive percentage bias of 39% while the stations with surrounding sea-ice 



showed a negative percentage bias of -9%. At all other wavelengths (from 443 to 667 nm) 

the largest relative errors correspond to the stations with some nearby sea-ice ranging from 

26% to 44%. The percentage bias remained negative for all data classes ranging from -44% 

to -13%. The lowest negative bias was encountered in the red spectral domain and the largest 

in the blue. 

  

Fig. 3. Standard deviations of MODIS Aqua ρw(λ) within the 3 by 3 pixel window at 412, 443, 547 and 667 nm. 

3.1. Sea-ice contamination observed with coincident high and medium spatial resolution 

images 

Two coincident high and medium spatial resolution image pairs were selected over the 

Eastern Canadian Arctic in Resolute Bay on August 11 and 13, 2014. The time differences 

between the acquisition of the MODIS Aqua and Landsat-8 OLI images ranged from 15 

minutes to 2 hours for both pairs. The MODIS Aqua images are resampled to the resolution 

of the LANDSAT-8 OLI image (30 m). The first image pair shows a clear ice-edge with a 

few ice-floes at some distance from the coast. The second image pair covers an area affected 

by a set of surface variable ice-floes and a fuzzy ice-edge. Figures 4 (a-b) and (d-e) show the 

estimated ρw(λ) at 443 nm (i.e., common visible band between MODIS Aqua and Landsat-8) 

for medium and high spatial resolution images, respectively. Figures 4 (c-f) show the false 

color images of the corresponding area where dark and bright pixels correspond to open water 

and sea-ice, respectively.  

Overall medium spatial resolution images seem to underestimate ρw(λ) compared to the high 

spatial resolution images (Fig. 5). This may be explained by the sub-pixel contamination 

resulting in an underestimation of ρw(λ) in the visible spectral region. Indeed, brighter ice-

covered pixels on the false color images correspond to high ρw(λ) values on the high spatial 

resolution images but to relatively lower ρw(λ) on the medium spatial resolution images. 

When the ice-edge is rather fuzzy (Fig. 4 (a-c)), underestimation is more obvious along the 

ice-edge. Note also the multiple density peaks in the medium resolution image for the fuzzy 



ice-edge (Fig. 5 (a)). Further effort should be done to evaluate if these peaks correspond to, 

for instance, differences in ice-fraction within the pixels or differences in ice-type. Along the 

clear ice-edge (Figs. 4 (d-f)), an overestimation of the water reflectance in the blue spectral 

region  was expected due to adjacent ice-floes. However, this is not as apparent with the 

medium spatial resolution images (Fig. 4 (d-f)). 

 

 

 

Fig. 4. MODIS Aqua resampled at 30 m spatial resolution (a, d) and Landsat-8 OLI (b, e) ρw(λ) at 443 nm and 

Landsat-8 based false color images (c, f) for two distinctive ice-edges (fuzzy and clear ice edges, first and second 

column, respectively) 

 

Fig. 5. Density plot of ρw(λ) at 443 nm for the MODIS Aqua and Landsat images for two distinctive ice-edges; (a) 

fuzzy and (b) clear ice edges. 

4. Conclusion and perspectives 

The present study shows preliminary results in the effort to improve AC methods in icy 

waters. Based on a set of in-situ-satellite match-ups and a visual inspection of temporal and 

spatial coincident high and medium spatial resolution images, we attempted to evaluate sea-



ice contamination in medium spatial resolution images. Both exercises showed an obvious 

underestimation of ρw(λ) in the blue spectral region due to sub-pixel contamination. In 

contrast, the adjacency effect was not as obvious. The comparison of matching high and 

medium spatial resolution images showed that medium resolution spatial images are 

significantly affected by sub-pixel sea-ice contamination. Hence, this confirms the potential 

to provide more accurate ice-edge ocean color data by taking advantage of the synergy 

between high and medium spatial resolution images. Results of the present study should be 

complemented by a better quantification of sea-ice contamination through, amongst other 

methods, the use of radiative transfer models to estimate sea-ice contamination at the top of 

the atmosphere (e.g., Cornet et al., 2009). This will be part of a future work together with a 

validation of high spatial resolution Landsat-8 OLI images with in situ data.   
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