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Abstract

The Neutrinos from Stored Muons, nuSTORM, facility has been designed to
deliver a definitive neutrino-nucleus scattering programme using beams of lf/é
and ‘;;A from the decay of muons confined within a storage ring. The facil-
ity is unique, it will be capable of storing ;= beams with a central momen-
tum of between 1 GeV/c and 6 GeV/c and a momentum spread of 16%. This
specification will allow neutrino-scattering measurements to be made over the
kinematic range of interest to the DUNE and Hyper-K collaborations. At nuS-
TORM, the flavour composition of the beam and the neutrino-energy spectrum
are both precisely known. The storage-ring instrumentation will allow the neu-
trino flux to be determined to a precision of 1% or better. By exploiting so-
phisticated neutrino-detector techniques such as those being developed for the
near detectors of DUNE and Hyper-K, the nuSTORM facility will:

— Serve the future long- and short-baseline neutrino-oscillation pro-
grammes by providing definitive measurements of (;,)A and (I;)),A scat-
tering cross-sections with percent-level precision;

— Provide a probe that is 100% polarised and sensitive to isospin to allow
incisive studies of nuclear dynamics and collective effects in nuclei;

— Deliver the capability to extend the search for light sterile neutrinos be-
yond the sensitivities that will be provided by the FNAL Short Baseline
Neutrino (SBN) programme; and

— Create an essential test facility for the development of muon accelerators
to serve as the basis of a multi-TeV lepton-antilepton collider.

To maximise its impact, nuSTORM should be implemented such that data-
taking begins by ~ 2027/28 when the DUNE and Hyper-K collaborations will
each be accumulating data sets capable of determining oscillation probabilities
with percent-level precision.

‘With its existing proton-beam infrastructure, CERN is uniquely well-placed to
implement nuSTORM. The feasibility of implementing nuSTORM at CERN
has been studied by a CERN Physics Beyond Colliders study group. The muon
storage ring has been optimised for the neutrino-scattering programme to store
muon beams with momenta in the range 1 GeV to 6 GeV. The implementation
of nuSTORM exploits the existing fast-extraction from the SPS that delivers
beam to the LHC and to HiRadMat. A summary of the proposed implemen-
tation of nuSTORM at CERN is presented below. An indicative cost estimate
and a preliminary discussion of a possible time-line for the implementation of
nuSTORM are presented the addendum.
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Neutrinos from stored muons

Detector

* Scientific objectives: + Precise neutrino flux:
1. %-level (v .N)cross sections ~ Normallsation: < 1%
— Energy (and flavour) precise

* Double differential
* 7 ®p injection pass:

2. Sterile neutrino search _ “Elash” of muon neutrinos
* Beyond Fermilab SBN



To understand the nucleon and the nucleus

* Neutrino unique probe: weak and chiral:
— Sensitive to flavour/isospin and 100% polarised

 How could neutrino scattering help?

— Development of understanding of
nucleus/nucleon (e.g.):
e Multi-nucleon correlations

* Precise determination of:
— Model parameters or, better,
— Theoretical (ab initio) description
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* Precise VN scattering measurements to:

— Constrain models of nucleus/nucleon:
* Exploiting isospin dependence, chirality, ...

* Benefit of NuUSTORM:
— Precise flux and energy distribution

Parton Distribution Functions Form Factors



Search for CPiV in Ibl oscillations
* Seek to measure asymmetry:
- P(vM > V,)— P(VM >V,)
* Event rates convolution of:

—Flux, cross sections, detector mass, efficiency, E-scale
 Measurements at %-level required

—Theoretical description:
* Initial state momentum, nuclear excitations, final-state effects

* Lack of knowledge of cross-sections leads to:
— Systematic uncertainties; and
— Biases; pernicious if v and v differ



Systematic uncertainty and/or bias

statistics only
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NUuSTORM for vN scattering @ CERN — parameters

® N ew SpQCificatio N ! Table 1: Key parameters of the SPS beam required to serve nuSTORM.
— Design update: “Momentum 100 GeV/c
Beam Intensity per cycle 4¢ 103
© 1< Eu <6 GeV Cycle length 36s
. Nominal proton beam power 156 kw
_ |
Challenge for accelerator design! Maximum proton beam power 220 KW
e, Protons on target (PoT)/year 40 107
— Benefit: Total PoT in 5 year's data taking 20 102
. . . Nominal / short cycle time 6/3.6 s
* Calibration via energy spectrum Max. normalised horizontal emittance (1) 8 mm.mrad
e Statistical ‘mono_energetic beam’ Max. normalised vertical emittance (1 %) 5 mm.mrad
Number of extractions per cycle 2
Interval between extractions 50 ms
Duration per extraction 10.5 us
. Number of bunches per extraction 2100
* SPS requirements table Bunch length (4 1) > s

Bunch spacing 5ns
Momentum spread (dp/p) 20 1074




Overview

“ CERN
i MEYRIN|

{ | | | [ CERN
! ! 41 -
} | P | R o

* Extraction from SPS through existing tunnel
 Siting of storage ring:
— Allows measurements to be made ‘on or off axis’
— Preserves sterile-neutrino search option



Extraction and p-beam transport to target

 Fast extraction at 100 GeV:

— CNGS-like scheme adopted;
* Apertures defined by horizontal and vertical septa reasonable
* Pulse structure (2 x 10.5 ms pulses) requires kicker upgrade

* Beam transport to target:

— Extraction into TT60:

 Branch from HiRadMat
beam line at 230 m (TT61)

— Require to match elevation
and slope

— New tunnel at junction
cavern after 290 m

— 585 m transport to target

10



Target and capture
FNAL scheme adopted: —
— Low-Z target in magnetic horn =
— Pair of quadrupoles collect particles horn focused =

— Target and initial focusing contained in inert
helium atmosphere

Graphite target, based on CNGS experience:

— Radiation-cooled graphite target embedded in
water-cooled vessel

Containment and transport of pion beam with a
10% momentum spread:

— Base on scheme used successfully for AD in PS
complex

Target complex design:
— Exploit extensive work done for CENF

11



Storage ring

* New design for decay ring:
— Central momentum between 1 GeV/c and 6 GeV/c;
— Momentum acceptance of up to +16%

90 105 120 135




nuSTORM feasibility
 Goal of PBC nuSTORM study:

— “A credible proposal for siting at CERN ...”
achieved.

“ ... the SPS can provide the beam and offers a credible fast extraction location allowing the beam to be
directed towards a green field site at a suitable distance from existing infrastructure. Initial civil engineering
sketches have established a potential footprint and the geology is amenable to an installation at an
appropriate depth.”

* Challenges:
— Muon decay ring:
* FFA concept though feasible
* Require magnet development to allow production at a reasonable cost
— Detailed evaluation of:
* Proton-beam extraction, target and target complex
 Civil engineering studies and radiological implications

13



Unique advantages of muon accelerators

Il at very high energy

* No brem-/beam-strahlung

— Rate c m*
[5 x 10710 cf e]

* Efficient acceleration
— Favourable rigidity
* Enhanced Higgs coupling

— Production rate oc m?
[5 x 10% cf e*e’]

Neutrino beams

* VoV,

* Precisely known energy spectrum
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Neutrino factory and muon collider
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The principle of ionization cooling

Liquid hydrogen
absorber

. £.(0014 GeV)’
23°Em X,
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MICE
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In conclusion

* nuSTORM unique facility:
— %-level electron and muon neutrino cross-sections
— Exquisitely sensitive sterile neutrino searches

* Feasibility of executing nuSTORM at CERN:
— Established through Physics Beyond Colliders study

* nuSTORM: a step towards the muon collider:

— News: ionization cooling demonstrated by MICE collaboration
* Required in p-driven neutrino factory and muon collider

— nuSTORM:

* Proof-of-principle and test bed for stored muons for particle physics

20
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Storage ring

New design for decay ring:
— Central momentum between 1 GeV/c and 6 GeV/c;
— Momentum acceptance of up to +16%

Hybrid FODO/FFA concept developed:
— Maintain large momentum and transverse dynamic acceptance simultaneously
— FODO optics used in the production straight
— Zero-chromaticity FFA cells used in arcs and return straight

Hybrid ring properties:
— Zero dispersion in the quadrupole injection/production straight; and

— Zero chromaticity in the arcs and return straight
* Limits overall chromaticity of ring.

Magnets:
— Superconducting combined-function magnets (B up to 2.6 T) in arcs
— Warm combined-function magnets used in return straight
— Large-aperture warm quadrupoles used in production straight

— Mean betatron functions in production and return straights large:
* Minimise betatron oscillations to minimise spread of the neutrino beam 22



Civil engineering

Radiation protection

 Major CE elements:
— 40m long junction cavern
— 545m long extraction tunnel
— Target complex
— 625m circumference decay ring
— Near detector facility

— Support buildings and
infrastructure

— Option: far detector on CERN land

e Ground well understood
— Tunnelling within molasse
— ~35m vertical clearance to LHC

* CE works believed to be
‘relatively straight forward’

 ~200 kW proton beam required:

— Radiation protection places strong
constraints on facility design

— Use radiological/environmental
assessments carried out for CENF

* Preliminary evaluation:
— General feasibility of project
established in terms of:
* Exposure of persons
* Environmental impact

— Detailed studies according to the
ALARA principle required later

* |nitial conclusion:

— “At the present state of
technological development,
engineering solutions by which
the radiological impact can be
minimised are available.”

23



Timeline

Cost

Table 1: Outline of a possible nuSTORM time-line.

Objective

Detailed designs and specifications

Finalise ring optics and layout

Preliminary infrastructure integration & CE designs
Preliminary cost estimates and schedule

Delivery of Conceptual Design Report

Continued design studies and prototyping of key technology

Approval to go ahead with TDR

5 -6 | Engineering design studies towards TDR
Specification towards production
CE pre-construction activities

TDR delivery
_ Seek approval
Tender, component production, CE contracts

e Implicit:
— Excellent detector required to
exploit exquisite beam

— So, require parallel development of
detector concept

* ‘First cut’ cost estimate:
— Based on well-developed FNAL
proposal
— Primary beam line and CE work
packages:

* [temised evaluation based on best
practice CERN experience

— CENF used as basis for target, target
hall, proton absorber and near
detector hall estimate

— Muon decay ring estimate scaled
from FNAL study

* Overall material cost estimate (not
including far detector):
~150 — 200 MCHF

— Civil engineering (48 MCHF) and
primary beam line (21 MCHF)
included
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Morfln {nuSTORM w/s Systematic uncertainties

 MINERVA example:

— Flux, detector and ‘theory’
contributions comparable

{ — Total Uncertainty
Statistical

Mull Flux
Datactor Hesponsse
GEMIE
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— In some regions detector
uncertainties dominate

* So, to exploit nuSTORM
require excellent detector sa., (degree)
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Hallsio, thests Preliminary CCQE analysis

o

- - -
P Ao - -
e

* TASD followed by BabyMIND

* Simulation with nuSTORM spectrum:

— GENIE for event generation; and
— GEANTA4 for detector simultion

T
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Hallsjo, thesis

CCQE performance

Cross section estimate with a 10 ton detector for 10°' POT
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 CCQE cross section unfolded; 10 ton, 1021 POT
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CCQE measurement at nuSTORM

10.1103/PhysRevD.89.071301; arXiv:1305.1419

Momentum resolution of contained tracks

Angular resolution

ge for track finding
1% & 10% flux
uncertainty

.38 2
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* CCQE at nuSTORM:

— Six-fold improvement in systematic uncertainty |EEEEREEEEEEEY. R R RRY
compared with (present) “state of the art”
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* Require to demonstrate:
— ~<1% precision on flux

115 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 45 5§

E, (GeV) E, (GeV)
Cf/syne rgy With E nu B ET Individual v, measurements from T2K and MINERvVA

[10.1103/PhysRevLett.113.241803, 10.1103/PhysRevLett.116.081802 ] 28




