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Abstract:

Let G be a connected graph. Let W ={W,,W,,...,W,} be a subset of V with an order imposed on it. For any
veV, the vector r(v|W)=(d(v,w,),d(V,W,),...,d(V,W,)) is called the metric representation of V with respect to W .
If distinct vertices in V' have distinct metric representation, then W' is called a resolving set of G . The minimum cardinality of
a resolving set of G s called the metric dimension of G and it is denoted by dim(G). A resolving set W is called a non-

isolated resolving set if the induced sub graph <W> has no isolated vertices. The minimum cardinality of a non-isolated resolving

set of G s called the non-isolated resolving number of G and is denoted by nr(G). In this paper, we determine the non-

isolated resolving number for some standard graphs like double broom, the join of complete graphs and paths, etc. Further more,
we discuss about the relationship of NI with other parameters.
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1. Introduction:

Throughout this paper, we consider only finite, simple and undirected graphs. The vertex set and edge set of a graph G
are denoted by V (G) and E(G) respectively. The cardinality of the vertex set of a graph G is commonly denoted by n(G). For

basic notations and terminology we refer [4]. The distance d(U,V) between two vertices U and V is the length of a shortest
path between them. For the graphs, G, = (V,,E,) and G, = (V,, E,) their join denoted by G, + G, is the graph whose vertex
set is V; UV, and the edge set E=E, UE, U{uv:ueV,,veV,}. For a subset S of V, let <S> denote the induced

subgraph of G induced by S. Aclique C is a subset of vertices such that (C) is complete. The clique number of a graph G

denoted by @(G), is the number of vertices in a maximum clique of G . An edge UV € E(G) is subdivided if the edge UV is
deleted and a new vertex X (called a subdivision vertex) is added together with the new edges UX and VX. A subdivision graph
S,(G) of a graph G is obtained from G by subdividing all edges of G exactly once. A coloring of a graph G is an
assignment of colors to the vertices of G , one color to each vertex so that adjacent vertices are assigned different colors. A graph
G is k -colorable, if there exists a coloring of G from a set of K colors. In other words, G is k-coloring of G . The minimum
coloring positive integer k for which G is K -colorable is the chromatic number of G and is denoted by ;((G) The double

broom B(n,m, p) is a graph obtained by identifying the center vertex of a star K, atone pendant vertex of P, and the center

vertex of a star K,  at the other pendant vertex of P, . If N =2, then B(2,m, p) is the bistar. Motivated by the problem of
uniquely determining the locations of an intruder in a network, the concept of metric dimension of a graph was introduced by
Slater in ([14] and [15]) and studied independently by Harary and Melter in [8]. Let W :{Wl,WZ,...,Wk} be an ordered set of
vertices of G and let V be a vertex of G. The representation r(V|W) of v with respect to W is the K-tuple
d(v,w,),d(v,W,),...,d (v, W, )) . If distinct vertices of G have distinct representations with respect to W, then W is called
a resolving set for G . A resolving set of minimum cardinality is called a basis for G and this cardinality is the metric dimension
of G and it is denoted by dim(G). For example, in the graph G shown in Figure 1.1, W ={v,,V.} is a basis for G .
Therefore, dim(G) = 2.
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Figure 1.1
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Applications of resolving set arise in various areas including coin weighing problem [12], drug discovery [7] , robot
navigation [10], network discovery and verification [2], connected joins in graphs [12] and strategies for master mind game [5].
For survey of results in metric dimension we refer to Chartrand and Zhang [5]. Several models of resolving set have been
investigated by imposing conditions on the subgraph induced by a resolving set. Some of the well studied parameters of this type

include connected resolving set [11] and independent resolving set [13]. A resolving set W of G s said to be an independent
resolving set if no two vertices in W are adjacent. A resolving set W of G s said to be a connected resolving set, if the
induced subgraph induced by W is a non-trivial connected subgraph of G . The minimum cardinality of a connected resolving
set is the connected resolving number of G . It is denoted by cr(G). In a similar line, a non-isolated resolving set was
introduced in [9]. A resolving set W of G with at least two vertices is said to be a non-isolated resolving set, if the induced
subgraph <W> induced by W' has no isolated vertices. The minimum cardinality of a non-isolated resolving set in a graph G is

the non-isolated resolving number of G and it is denoted by Nr(G). A non-isolated resolving set of cardinality nNr(G) is called
an Nnr-setof G .

vy ()

Figure 1.2
For example, consider the graph G given in Figure 1.2, W ={Vv,,V,} is a basis for G and W' ={v,,V,,V,} is an
nr-set. Hence, dim(G)=2 and nr(G)=3. Since, every non-trivial connected graph has no isolated vertices,
nr(G) <cr(G). Also, it has been proved in [9] that, for any graph G, nr(G) <2dim(G). In [9], Nr-values of some
families of graphs, cartesian product of some graphs and corona product of a graph G with K_2 have been obtained. Further

more, for any two positive integers K and n with 2<Kk <n—1,agraph G of order n with Nr(G) =k has been constructed.

For more results on non-isolated resolving number one can refer [1]. In this paper, we determine the non-isolated resolving
number for some standard graphs such as double broom, bistar and for the join of complete graphs and paths, etc. Further more,

we discuss about the relationship of Nr with the parameters ¥(G) and A(G).

2. Nr -Value of Some Graphs:
In this section, we find the NI -value for some graphs.

Theorem 2.1: Let G be the double broom B(n,m, p) . Then nr(G) =m+p.
Proof: Let V(G) ={W,, W,,..., W, ; V3, Vo yeer, Vo sUg Uy, U} and E(G) ={w vy, vy,
1<k < p} where G is the double broom B(n,m,p). Take W ={w,,w,,...

vu :1<j<m,1<i<n-1,

i+17?

1o Vi Up,Upye U b Then

ml’

IWlEm+p. Now, r(w, [W)=(22,..21nn+L,n+1..n+1) where 1 appears at the m" place,

r(v. W) =(,i,..,i,i—-L,n—i,n—i+1,n—i+1..,n—i+1) where i—1 appears at the m™ place, 2<i<n-1 and
r(up IW)=(n+1,n+1,...,n+1,n122,..2) where N appears at the m™" place. Therefore, W is a non-isolated
resolving set for G . Hence, Nr(G) <m+ p. Let W, be a non-isolated resolving set for G . For i # j and 1<i, j<m, if
Wi, w; g¢W,, then r(w; |W,) =r(w; |W), a contradiction. Therefore, there can be at least M—1 values of i, such that
W, €W, . This forces that v, €W, , since W, is a non-isolated resolving set for G . Similarly we can prove that, there can be at
least p—1 value of K such that U, €W,, 1<k < p. This again implies that V, €W,. Hence |W, [>m+ p. That is,
nr(G)>m+ p. Thus Nr(G) =m+ p. Next, we evaluate the non-isolated resolving number of join of path and complete

graph as follows. When m=1 or 2, nr(P, +K,) =nr(K
theorem gives the NI -value.
Theorem 2.2: For positive integers M > 3,n>1,

(P + K, )= [2?”‘% n—1,if M=0,2,4(Mod5) and nr(p. + K. )= WJ+ n_1,if m=13(mods5).

)=m+n-1. For the remaining values of M, the next

m+n
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Proof Let G=P,. +K_ and V(P,) ={v,V,,...,v.} and V(K ) ={u,,u,,...,u.}.
If m=0,234(mod 5), take W ={u,,u,,..,u, ,,Vv,v :3<i<m-1 and i=0,3(mod 5)}. Then for

1 ¥n-10 Vit Tm

m=0,2,4(mod 5), ‘W‘:[z?m}rn_land for m=3(mod 5), N"ZHJ”‘L Now, r(u, |W)=(11,..1),

r(v, |W)=(1,1,...,12,2,...,2) where 1 appears at the first N—1 places, r(v, |W) =(1,1,...,1,2,2,...,2) where 1 appears
at the first n places. If K=5r+1, r>1, then r(v, |[W)=(1,1,...,1,2,2,...,2,1,2,2,...,2) where 1 appears at the first

N—1 places and at the (n+2LkJ_1Jmplace. If K=5r+2, r>1, then r(v, |[W)=(11,...,1,2,2,..,2,1,2,2,...,2) where
5

th
1 appears at the first N—1 places and at the (n+2LkD place. If K=5r+4, r=>1 then

riv, IW)=(,.1,.,122,..,21,1,22,...,2) where 1 appears at the first N—1 places and at the (,HZL"D“W and
5

th

[n+2[kJ+1j places respectively. Therefore, W is a non-isolated resolving set for G . Hence, nr(G)S(m—‘+n_1if
5 5
m=0,2,4(mod 5) and nr(G)Srme_l if m=3(mod 5) .

5

If m=1(mod 5), take W ={u,U,,...,u. ,,V, :3<i1<m and i=0,3(mod 5)}, then r(u, |W)=(1,1,...,1),
r(v, |[W)=(11,...,1,2,2,...,2) where 1 appears at the first N—1 places, r(v, |W) =(1,1,...,1,2,2,...,2) where 1 appears
at the first n places. If K=5r+1, r>1, then r(v, |[W)=(11,..,1,2,2,...,2,1,2,2,...,2) where 1 appears at the first

N—1 places and at the (mzm_ljmplace. If K=5r+2, r>1,then r(v, |[W)=(1,1,.,1,22,..,2,1,22,...,2) where 1
5
appears at the first N—-1 places and at the (Hszmplace. If k=5r+4, r>1 then
5
riv, IW)=(1,1,..,122,..,21,122,..,2) where 1 appears at the first N—1 places and at the [n+2{kDm and
5

th
(n + zlkJ +1J places respectively. Therefore, W is a non-isolated resolving set for G . Hence, nr(G)< tsz +n—1-
5 5

Let W, be a non-isolated resolving set for G . For i# j, 1<I,j<m, if both U; and u; are not in W,. Then
r(u, [W,) =r(u; [W,) = (1,1,...,1), a contradiction. Therefore, there can be at least M—1 values of i, such that U, €W,.
Let M=5s+t, 0<t<4. wefirst consider the vertices V;,V,,V;,V, and Vs. If V,,V, and V, are notin W, , then v, and V,
have the same representation. Hence Vv, or V, or V5 must belong to W, . If v, eW,, then v, must belong to W, , otherwise
r(vs |W) =r(v, |W,). If v, eW,, then v, must belong to W,, otherwise r(v; |W,)=r(v,|W,). If v; eW,, then V,
must belong to W, , otherwise r(v, |W,) = r(v, |W,). Therefore, without loss of generality, we can assume that V; and Vg are
in W, . Similarly, for every 5 vertices from Vs, ; to Vg, We choose Vg, 5 and Vg, 1S T <S—1. Hence Vg, is the last
chosen vertex. If t=2 or 3, then Vi, €W,. If t=4 then {Voe,i », Vet i JSW, or {Vegir 0, Vee, ySW, or
{Veeir 1 Ve, F W, . Therefore, any non-isolated resolving set must contain {Zg‘}r n—1 Vvertices for m=0,2,4(mod 5) and

tsz.;_ n—1 vertices for m=1,3(mod 5). Hence W,| Z{Zm—‘Jrn_l for m=0,2,4(mod 5) and W,| ZrmJJrn_l for
5 1 5 1 5

m=1,3(mod 5). Thus we conclude that nr(G):Fm]+n—1 for m=0,2,4(mod 5) and nr(G):[szJrn_l for
5 5

m=1,3(mod 5).
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3. Relation with Other Parameters:
In this section, we compare the Nr value of graphs with the chromatic number y(G) and the maximum degree A(G)

We note that the parameters Nr(G) and y(G) are independent. For example, consider the graphs G,, G, and G, given in
Figure 3.1. Here, ¥(G,) <nr(G,), x(G,) =nr(G,) and ¥(G;) >nr(G,).

(&}

Gy

Figure 3.1

Now we classify the graphs into three families. A graph G issaid tobea y -graphif y(G) <nr(G), y. -graph if
x(G)=nr(G) and g, -graphif y(G)>nr(G).
Theorem 3.1: For given two positive integers M and N, M >N 23, there exists a .. -graph G with ¥(G) =n = w(G)
and Nr(G) =m.
Proof: Consider G = K_p+ K, ,, where p=m+3-n, V(K_p) ={V,V,,een Vo 3 and V(K ) ={U;, Uy, U, o} Take
W ={V,,V,,.e0, Vg, Uy, Uy, Ug o3 Then (v [W) =(2,2,...,2,1,1,...,1) where 2 appears at the first (p—1) places and
r(u, ,|W)=(1,1,..,1). Therefore, W is a non-isolated resolving set for G . Hence, nr(G) < p+n-3.

Let W, be a non-isolated resolving set for G. If v;,v; gW,, for any i# j such that 1<i, j<p, then
r(v; IW,) =r(v; |W,), which is a contradiction. Therefore, there can be at least p—1 values of i, such that v; € W, . Similar
argument shows that N—2 vertices of U, 1<i<n—1 must belong to W,. Hence, nr(G)>p+n—3. Thus
nr(G) = p+n—3=m. Also, in G, the maximum induced complete subgraph is K, , which implies that @(G) = n. And it
is easy to verify that ¥(G) =n.

Note that K, , N2 3 are y,.-graphs. In addition, the path P, and the even cycles C,, prove the existence of the

n
Z:r -graphs.
Theorem 3.2: For a given positive integer N, there exists y,. graphswith ¥(G) =n and nr(G) =n-1.
Proof: The complete graph Kn is the required ;(;r-graph.

Next we discuss the relationship between Nr(G) and A(G). We note that the parameters Nr(G) and A(G) are
independent. For example, consider the graphs H,, H, and H3 given in Figure 3.2. Here, A(H,) <nr(H,),
A(H,)=nr(H,) and A(H,;)>nr(H,).

Hy

H3
Figure 3.2
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Now we classify the graphs into three families. A graph G issaid to be a A, -graph if A(G) <nr(G), A’ -graph if
A(G) =nr(G) and A, -graph if A(G)>nr(G).
Theorem 3.3: For given positive integers M>1, N> 2, there exists a A, -graph G with order m+2n.
nno Where V(K ) ={u;,U,,..,u, } and V(K ) ={V;, Y,V VL Ve, V)
Therefore N(G)=m+2n. Let W ={u,,U,,....U. 1;V;,Vo e Vy 13V1, Voo, Ve o} Then r(u, [W)=(1,1,...,1),
riv,|wW)=(.1,..,12,2,...,21,1,...,1) where 1 appears at the first M—1 places and the last N—1 places and
r(v, |W)=(1,1,...,1,2,2,...,2) where 1 appears at the first M+N—2 places. Therefore, W is a non-isolated resolving set
for G . Hence Nr(G) <m+2n-3. Let W, be a non-isolated resolving set for G . For p=(, 1< p,q<m, ifboth U and

Proof: Consider the graph G =K +K

u, arenotin W,, then r(u, [W,) = r(u, [W,) = (1,1,...,1), a contradiction. Therefore, there can be at least M—1 values of
P, such that u, €W, . By similar argument, there can be at least N—1 values of i, such that v, €W, , 1<i<n and V[ eW,.
Hence |W, [>m+2n—3. Thus, Nr(G) = m+2n-3. Now, A(G) =m-1+2n=nr(G)+2.

In the above theorem, when N =1, the constructed graph is isomorphic to the complete graph Km+2 for which
nr(G) = A(G). Even more, one can easily note that in this family of graphs, the two parameters A(G) and nr(G) are of
opposite parity to M. That is, the above theorem can be restated as: For any given 2K | there exists a graph G with two
consecutive numbers 2K —1 and 2K —3 to be A(G) and nr(G) respectively.

Note that the paths, cycles, complete graphs and star graphs prove the existence of A*m -graphs and the double broom

B(n,m,p) and the subdivision of K prove the existence of A -graphs.
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