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Abstract: 

 Let G  be a connected graph. Let },...,,{= 21 kwwwW  be a subset of V  with an order imposed on it. For any 

Vv , the vector )),(),...,,(),,((=)|( 21 kwvdwvdwvdWvr  is called the metric representation of v  with respect to W . 

If distinct vertices in V  have distinct metric representation, then W  is called a resolving set of G . The minimum cardinality of 

a resolving set of G  is called the metric dimension of G  and it is denoted by )(Gdim . A resolving set W  is called a non-

isolated resolving set if the induced sub graph W  has no isolated vertices. The minimum cardinality of a non-isolated resolving 

set of G  is called the non-isolated resolving number of G  and is denoted by )(Gnr . In this paper, we determine the non-

isolated resolving number for some standard graphs like double broom, the join of complete graphs and paths, etc. Further more, 

we discuss about the relationship of nr  with other parameters. 

Key Words : Resolving Set, Metric Dimension, Non-Isolated Resolving Set & Non-Isolated Resolving Number 

1. Introduction: 

 Throughout this paper, we consider only finite, simple and undirected graphs. The vertex set and edge set of a graph G  

are denoted by )(GV  and )(GE  respectively. The cardinality of the vertex set of a graph G is commonly denoted by n(G). For 

basic notations and terminology we refer [4].  The distance ),( vud  between two vertices u  and v  is the length of a shortest 

path between them. For the graphs, ),(= 111 EVG  and ),(= 222 EVG  their join denoted by 
21 GG   is the graph whose vertex 

set is 
21 VV   and the edge set },:{= 2121 VvVuuvEEE  . For a subset S  of V , let S  denote the induced 

subgraph of G  induced by S .  A clique C  is a subset of vertices such that C  is complete. The clique number of a graph G  

denoted by )(G , is the number of vertices in a maximum clique of G . An edge )(GEuv  is subdivided if the edge uv  is 

deleted and a new vertex x  (called a subdivision vertex) is added together with the new edges ux  and vx . A subdivision graph 

)(1 GS  of a graph G  is obtained from G  by subdividing all edges of G  exactly once.  A coloring of a graph G  is an 

assignment of colors to the vertices of G , one color to each vertex so that adjacent vertices are assigned different colors. A graph 

G  is k -colorable, if there exists a coloring of G  from a set of k  colors. In other words, G  is k -coloring of G . The minimum 

coloring positive integer k  for which G  is k -colorable is the chromatic number of G  and is denoted by )(G . The double 

broom ),,( pmnB  is a graph obtained by identifying the center vertex of a star mK1,  at one pendant vertex of nP  and the center 

vertex of a star pK1,  at the other pendant vertex of nP . If 2=n , then ),(2, pmB  is the bistar.  Motivated by the problem of 

uniquely determining the locations of an intruder in a network, the concept of metric dimension of a graph was introduced by 

Slater in ([14] and [15]) and studied independently by Harary and Melter in [8].  Let },...,,{= 21 kwwwW  be an ordered set of 

vertices of G  and let v  be a vertex of G . The representation )|( Wvr  of v  with respect to W  is the k -tuple 

)),(),...,,(),,(( 21 kwvdwvdwvd . If distinct vertices of G  have distinct representations with respect to W , then W  is called 

a resolving set for G . A resolving set of minimum cardinality is called a basis for G  and this cardinality is the metric dimension 

of G  and it is denoted by )(Gdim . For example, in the graph G  shown in Figure 1.1, },{= 51 vvW  is a basis for G . 

Therefore, 2=)(Gdim . 
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Applications of resolving set arise in various areas including coin weighing problem [12], drug discovery [7] , robot 

navigation [10], network discovery and verification [2], connected joins in graphs [12] and strategies for master mind game [5]. 

For survey of results in metric dimension we refer to Chartrand and Zhang [5].  Several models of resolving set have been 

investigated by imposing conditions on the subgraph induced by a resolving set. Some of the well studied parameters of this type 

include connected resolving set [11] and independent resolving set [13]. A resolving set W  of G  is said to be an independent 

resolving set if no two vertices in W  are adjacent. A resolving set W  of G  is said to be a connected resolving set, if the 

induced subgraph induced by W  is a non-trivial connected subgraph of G . The minimum cardinality of a connected resolving 

set is the connected resolving number of G . It is denoted by )(Gcr .  In a similar line, a non-isolated resolving set was 

introduced in [9]. A resolving set W  of G  with at least two vertices is said to be a non-isolated resolving set, if the induced 

subgraph W  induced by W  has no isolated vertices. The minimum cardinality of a non-isolated resolving set in a graph G  is 

the non-isolated resolving number of G  and it is denoted by )(Gnr . A non-isolated resolving set of cardinality )(Gnr  is called 

an nr -set of G . 

 

For example, consider the graph G  given in Figure 1.2, },{= 21 vvW  is a basis for G  and },,{= 321 vvvW   is an 

nr -set. Hence, 2=)(Gdim  and 3=)(Gnr . Since, every non-trivial connected graph has no isolated vertices, 

)()( GcrGnr  . Also, it has been proved in [9] that, for any graph G , )(2)( GdimGnr  .  In [9], nr -values of some 

families of graphs, cartesian product of some graphs and corona product of a graph G  with 2K  have been obtained. Further 

more, for any two positive integers k  and n  with 12  nk , a graph G  of order n  with kGnr =)(  has been constructed. 

For more results on non-isolated resolving number one can refer [1].  In this paper, we determine the non-isolated resolving 

number for some standard graphs such as double broom, bistar and for the join of complete graphs and paths, etc. Further more, 

we discuss about the relationship of nr  with the parameters )(G  and )(G . 

2. nr -Value of Some Graphs: 

In this section, we find the nr -value for some graphs. 

Theorem 2.1: Let G  be the double broom ),,( pmnB . Then pmGnr =)( .  

Proof: Let },...,,;,...,,;,...,,{=)( 212121 pnm uuuvvvwwwGV  and mjuvvvvwGE kniij  1:,,{=)( 11 , 11  ni , 

}1 pk   where G  is the double broom ),,( pmnB . Take },...,,;,;,...,,{= 1211121  pnm uuuvvwwwW . Then 

pmW |=| . Now, 1)1,...,1,,,1,(2,2,...,2=)|(  nnnnWwr m  where 1  appears at the 
thm  place, 

1)1,...,1,,1,,,...,,(=)|(  ininininiiiiWvr i  where 1i  appears at the 
thm  place, 12  ni  and 

,2),1,2,2,...1,1,...,1,(=)|( nnnnWur p   where n  appears at the 
thm  place. Therefore, W  is a non-isolated 

resolving set for G . Hence, pmGnr )( . Let 1W  be a non-isolated resolving set for G . For ji   and mji  ,1 , if 

1, Www ji  , then )|(=)|( 1 WwrWwr ji , a contradiction. Therefore, there can be at least 1m  values of i , such that 

1Wwi  . This forces that 11 Wv  , since 1W  is a non-isolated resolving set for G . Similarly we can prove that, there can be at 

least 1p  value of k  such that 1Wuk  , pk 1 . This again implies that 1Wvn  . Hence pmW || 1 . That is, 

pmGnr )( . Thus pmGnr =)( . Next, we evaluate the non-isolated resolving number of join of path and complete 

graph as follows. When 1=m  or 2 , 1=)(=)(   nmKnrKPnr nmnm . For the remaining values of m , the next 

theorem gives the nr -value. 

Theorem 2.2: For positive integers 3m , 1n , 

  1
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Proof  Let nm KPG =  and },...,,{=)( 21 mm vvvPV  and },...,,{=)( 21 nn uuuKV . 

If modm 0,2,3,4( 5) , take 13:,,,...,,{= 121  mivvuuuW min  and modi 0,3( 5)} . Then for 

modm 0,2,4( 5) , 1
5

2
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
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
 n

m and for modm 3( 5) , 1
5
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
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



 n

m
W . Now, )(1,1,...,1=)|( Wur n , 

),2,2,...,2(1,1,...,1=)|( 1 Wvr  where 1  appears at the first 1n  places, ),2,2,...,2(1,1,...,1=)|( 2 Wvr  where 1  appears 

at the first n  places. If 15= rk , 1r , then ,2),1,2,2,...,2,2,...,2(1,1,...,1=)|( Wvr k  where 1  appears at the first 

1n  places and at the 
th

k
n 
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If modm 1( 5) , take mivuuuW in  3:,,...,,{= 121  and modi 0,3( 5)} , then )(1,1,...,1=)|( Wur n , 

),2,2,...,2(1,1,...,1=)|( 1 Wvr  where 1  appears at the first 1n  places, ),2,2,...,2(1,1,...,1=)|( 2 Wvr  where 1  appears 
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Let 
1W  be a non-isolated resolving set for G . For ji  , mji  ,1 , if both iu  and ju  are not in 

1W . Then 

)(1,1,...,1=)|(=)|( 11 WurWur ji , a contradiction. Therefore, there can be at least 1m  values of i , such that 1Wui  . 

Let tsm 5= , 40  t . We first consider the vertices 4321 ,,, vvvv  and 5v . If 21,vv  and 3v  are not in 1W , then 1v  and 2v  

have the same representation. Hence 1v  or 2v  or 3v  must belong to 1W . If 11 Wv  , then 4v  must belong to 1W , otherwise 

)|(=)|( 1413 WvrWvr . If 12 Wv  , then 4v  must belong to 1W , otherwise )|(=)|( 1311 WvrWvr . If 13 Wv  , then 5v  

must belong to 1W , otherwise )|(=)|( 1412 WvrWvr . Therefore, without loss of generality, we can assume that 3v  and 5v  are 

in 1W . Similarly, for every 5  vertices from 15 rv  to 1)5( rv , we choose 35 rv  and 1)5( rv , 11  sr . Hence sv5  is the last 

chosen vertex. If 2=t  or 3 , then 15 Wv ts  . If 4=t , then 11525 },{ Wvv tsts   or 1525 },{ Wvv tsts   or 

1515 },{ Wvv tsts  . Therefore, any non-isolated resolving set must contain 1
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3. Relation with Other Parameters: 

 In this section, we compare the nr  value of graphs with the chromatic number )(G  and the maximum degree )(G

.We note that the parameters )(Gnr  and )(G  are independent. For example, consider the graphs 
1G , 

2G  and 3G  given in 

Figure 3.1. Here, )(<)( 11 GnrG , )(=)( 22 GnrG  and )(>)( 33 GnrG . 

 

 Now we classify the graphs into three families. A graph G  is said to be a 


nr -graph if )(<)( GnrG , 
*

nr -graph if 

)(=)( GnrG  and 


nr -graph if )(>)( GnrG . 

Theorem 3.1: For given two positive integers m  and n , 3> nm , there exists a 


nr -graph G  with )(==)( GnG   

and mGnr =)( .  

Proof: Consider 
1=  np KKG , where nmp 3= , },...,,{=)( 21 pp vvvKV  and },...,,{=)( 1211  nn uuuKV . Take 

},...,,,,...,,{= 221121  np uuuvvvW . Then ),1,1,...,1(2,2,...,2=)|( Wvr p  where 2  appears at the first 1)( p  places and 

)(1,1,...,1=)|( 1 Wur n . Therefore, W  is a non-isolated resolving set for G . Hence, 3)(  npGnr . 

Let 
1W  be a non-isolated resolving set for G . If 1, Wvv ji  , for any ji   such that pji  ,1 , then 

)|(=)|( 11 WvrWvr ji , which is a contradiction. Therefore, there can be at least 1p  values of i , such that 1Wvi  . Similar 

argument shows that 2n  vertices of iu , 11  ni  must belong to 
1W . Hence, 3)(  npGnr . Thus 

mnpGnr =3=)(  . Also, in G , the maximum induced complete subgraph is nK , which implies that nG =)( . And it 

is easy to verify that nG =)( .                                                                       

 Note that nK1, , 3n  are 


nr -graphs. In addition, the path nP  and the even cycles nC2  prove the existence of the 

*

nr -graphs. 

Theorem 3.2: For a given positive integer n , there exists 


nr  graphs with nG =)(  and 1=)( nGnr .  

Proof:  The complete graph nK  is the required 


nr -graph.                                    

Next we discuss the relationship between )(Gnr  and )(G . We note that the parameters )(Gnr  and )(G  are 

independent. For example, consider the graphs 1H , 2H  and 3H  given in Figure 3.2 . Here, )(<)( 11 HnrH , 

)(=)( 22 HnrH  and )(>)( 33 HnrH . 

 



ISSN: 2456 – 3080 

International Journal of Applied and Advanced Scientific Research 
Impact Factor 5.255, Special Issue, February - 2017 

International Conference on Advances in Theoretical and Applied Mathematics – ICATAM 2017 
On 14th February 2017 Organized By 

Madurai Sivakasi Nadars Pioneer Meenakshi Women’s College, Poovanthi, Tamilnadu 

53 
 

 Now we classify the graphs into three families. A graph G  is said to be a 
nr -graph if )(<)( GnrG , 

*

nr -graph if 

)(=)( GnrG  and 
nr -graph if )(>)( GnrG . 

Theorem 3.3: For given positive integers 1m , 2n , there exists a 
nr -graph G  with order nm 2 .  

Proof:  Consider the graph nnm KKG ,=  , where },...,,{=)( 21 mm uuuKV  and },...,,,,...,,{=)( 2121, nnnn vvvvvvKV  . 

Therefore nmGn 2=)(  . Let },...,,;,...,,;,...,,{= 121121121 

nnm vvvvvvuuuW . Then )(1,1,...,1=)|( Wur m , 

),1,1,...,1,2,2,...,2(1,1,...,1=)|( Wvr n  where 1  appears at the first 1m  places and the last 1n  places and 

),2,2,...,2(1,1,...,1=)|( Wvr n
  where 1  appears at the first 2 nm  places. Therefore, W  is a non-isolated resolving set 

for G . Hence 32)(  nmGnr . Let 
1W  be a non-isolated resolving set for G . For qp  , mqp  ,1 , if both pu  and 

qu  are not in 
1W , then )(1,1,...,1=)|(=)|( 11 WurWur qp , a contradiction. Therefore, there can be at least 1m  values of 

p , such that 1Wup  . By similar argument, there can be at least 1n  values of i , such that 1Wvi  , ni 1  and 1Wvi  . 

Hence 32|| 1  nmW . Thus, 32=)(  nmGnr . Now, 2)(=21=)(  GnrnmG .                                 

 In the above theorem, when 1=n , the constructed graph is isomorphic to the complete graph 2mK  for which 

)(=)( GGnr  .  Even more, one can easily note that in this family of graphs, the two parameters )(G  and )(Gnr  are of 

opposite parity to m . That is, the above theorem can be restated as: For any given k2 , there exists a graph G  with two 

consecutive numbers 12 k  and 32 k  to be )(G  and )(Gnr  respectively. 

 Note that the paths, cycles, complete graphs and star graphs prove the existence of 
*

nr -graphs and the double broom 

B(n,m,p) and the subdivision of nmK ,  prove the existence of 
nr -graphs. 
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