
JaConTeBe: A Benchmark Suite of Real-World Java
Concurrency Bugs

Ziyi Lin∗, Darko Marinov†, Hao Zhong‡, Yuting Chen‡, and Jianjun Zhao‡
∗School Of Software, Shanghai Jiao Tong University, China

†Department of Computer Science, University of Illinois at Urbana-Champaign, USA
‡Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

{linziyi, zhonghao, chenyt, zhao-jj}@sjtu.edu.cn, marinov@illinois.edu

Abstract—Researchers have proposed various approaches to
detect concurrency bugs and improve multi-threaded programs,
but performing evaluations of these approaches still remains a
substantial challenge. We survey the existing evaluations and
find out that they often use code or bugs not representative
of real world. To improve representativeness, we have prepared
JaConTeBe, a benchmark suite of 47 confirmed concurrency bugs
from 8 popular open-source projects, supplemented with test
cases for reproducing buggy behaviors. Running three approaches
on JaConTeBe shows that our benchmark suite confirms some
limitations of the three approaches. We submitted JaConTeBe
to the SIR repository (a software-artifact repository for rigorous
controlled experiments), and it was included as a part of SIR.

Keywords—Java concurrency bugs, evaluations, benchmark
suite, SIR, JaConTeBe

I. INTRODUCTION

Concurrent code is gaining much attention with the growth
of multi-core computing. However, developing concurrent code
remains challenging and error-prone because threads are non-
deterministically scheduled and can inappropriately interact.
Concurrency bugs are prevalent, e.g., as reported by Lu et
al. [54]. Because concurrency bugs decrease the quality of
software, researchers have proposed various approaches to
detect such bugs. (Section VI presents an overview of these
approaches.) Although these approaches can successfully de-
tect some concurrency bugs, their effectiveness in practice is
largely unknown. In typical evaluations done by the researchers
proposing an approach, the code or bugs used may be selected
with a bias and not representative of the real-world code or
bugs. In addition, it is difficult to compare these approaches,
because their effectiveness may highly depend on the selection
of concurrency bugs.

To address the evaluation problem, researchers have used
various benchmark suites. (Section II surveys four suites in
detail.) Typically, a benchmark suite consists of concurrency
bugs and corresponding test cases. Researchers can run differ-
ent approaches on the benchmarks to evaluate the effectiveness.
While several benchmarks have been used, a key concern is
whether these benchmarks fully reflect the characteristics of
concurrency bugs in the real world. Following Sim et al. [76],
Lu et al. [53] proposed five guidelines for preparing benchmark
suites: representative, diverse, portable, accessible, and fair. In
particular, representative means both code and bugs should be
real ones. The existing benchmark suites do not fully satisfy
these guidelines, especially the representative guideline, as
discussed in Section IV-C. Trying to directly use real software

systems, with no extra artifacts, to evaluate the effectiveness
is hard. One main reason is that the complexity of real-world
software systems makes it difficult to establish whether the
reported issues are true positives, especially for concurrency
bugs; much extra effort is required to tell true bugs from
various false positives.

In this paper, we first survey the existing benchmark
suites for Java concurrency bugs and then introduce a new
benchmark suite, called JaConTeBe (from “JAva CONcurrency
TEsting BEnchmark”). JaConTeBe currently contains 47 Java
concurrency bugs taken from real-world code. JaConTeBe can
help evaluate approaches for detecting concurrency bugs. First,
JaConTeBe allows to evaluate whether an approach is capable
of finding the bugs; researchers can run novel approaches on
JaConTeBe to evaluate their effectiveness. Second, it allows
to evaluate whether an approach is practical for real bugs;
although an approach may work well on seeded bugs, it may
be insufficient to deal with real bugs, because real bugs may
have different characteristics. Third, it allows to compare the
strengths and weaknesses among similar approaches; it is
important to properly compare and evaluate different tools on
real software bugs.

The paper makes the following contributions:

• We present a survey of the existing Java concurrency
benchmark suites and investigate the evaluations of
approaches for detecting Java concurrency bugs. We
have observed that the existing benchmark suites
do not contain many real-world bugs, although re-
searchers have the desire to evaluate their work with
real bugs. The gap between real bugs and evaluations
is not fulfilled yet.

• We build up JaConTeBe, a new benchmark suite for
Java concurrency bugs. The initial version of JaCon-
TeBe contains 47 confirmed, real-world concurrency
bugs from 8 open-source projects. We submitted Ja-
ConTeBe to the SIR repository of software artifacts for
rigorous controlled experiments, and it was included
at http:// sir.unl.edu/portal/bios/JaConTeBe.php. We
view JaConTeBe as ongoing work and plan to collect
more bugs in the future. These bugs can be classified
into three types, and in particular the subtype of Java
communication deadlock is less studied in the litera-
ture. For each bug, we provide detailed documentation
that describes the root cause and buggy interleaving of
the bug, and we also implement a test case and a test

2015 30th IEEE/ACM International Conference on Automated Software Engineering

978-1-5090-0025-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ASE.2015.87

178

script so that other researchers can easily reproduce
the buggy behavior.

• We run JaConTeBe test cases on three approaches for
detecting Java concurrency bugs: the Java PathFinder
(JPF) research tool [79], the RV-Predict commercial
tool [39], and our implementation of the CheckMate
approach [45]. The results show that JaConTeBe can
uncover the capability of the existing approaches and
can help confirm some of their known limitations in
tackling real applications.

The rest of this paper is organized as follows. Section II
surveys the existing benchmark suites and evaluations of
approaches to detecting Java concurrency bugs. Section III
presents our new JaConTeBe benchmark suite. Section IV
evaluates JaConTeBe. Section V discusses some results and
potential future work. Section VI describes related work, and
Section VII concludes.

II. SURVEY OF BENCHMARK USAGE

In this section, we survey first the existing Java concurrency
benchmark suites and then how these suites and other programs
are used in papers on detecting Java concurrency bugs. Our
survey identifies some limitations in the existing evaluations
and lists the characteristics of a desirable benchmark suite.

A. Existing Benchmarks

Many evaluations use some of the programs from the
following four Java concurrency benchmark suites.

Java Parallel Grande (JPG) [77] is the parallel version of
the Java Grande [11] benchmark suite, designed for evaluating
parallel Java applications for high-performance computing.
JPG contains 20 applications. Although not initially designed
for bug detection, it became popular, and many approaches for
detecting concurrency bugs used some applications from JPG.

DaCapo [8] is a benchmark suite of real-world Java
applications that require non-trivial memory loads. There are
two releases of the benchmark suite: version 2006 with 11
applications and version 2009 with 14 applications. As for
JPG, DaCapo was not originally designed for bug detection
and does not explicitly list any concurrency bugs.

The IBM benchmark suite [22] contains 41 buggy Java
concurrent programs and covers 12 types of concurrency bug
patterns [25]. However, 24 of the buggy programs in the IBM
benchmark suite are from undergraduate students assignments
and rather small [23]. 16 are open source, but only 4 of
them are real applications, and the others are small programs
simulating concurrency behaviors. 1 program is a commercial
product, Joscar, from AOL messenger.

The Software-artifact Infrastructure Repository (SIR) [18]
is a repository of software-related artifacts that supports rig-
orous controlled experimentation with program analysis and
software testing techniques. Before we contributed JaConTeBe
to SIR, SIR contained 36 Java concurrency bugs collected from
different sources, including 10 from the IBM benchmark suite
and 11 bugs from real applications.

1 1 1

4
3

6 6
7 7

8

0
1
2
3
4
5
6
7
8
9

2002 2006 2007 2008 2009 2010 2011 2012 2013 2014
Fig. 1. Surveyed papers distributed by publication year.

TABLE I. RESEARCH TOPICS OF THE SURVEYED PAPERS.

Research Topic Description #Papers

atomicity detect atomicity violations 9

atomic-set-serializability
detect atomicity violations and
races

3

concurrency debugging debug concurrency bugs 3

concurrency testing
techniques and frameworks for
testing concurrency bugs

8

deadlock detect deadlock bugs 7

nullpointer dereference
detect nullpointer bugs in concur-
rent code

1

race detect data races 13

After we investigated the existing benchmarks, we came to
the following observation:

Observation 1: The existing benchmarks typically contain
only several real-world concurrency bugs.

B. Programs Used in Evaluations

We perform a survey to find out what programs are
used in empirical evaluations of published papers. We
focus on five most relevant conferences: ASE, FSE, ICSE,
ISSTA, and PLDI. We search DBLP1 with the query
“deadlock|race|datarace|concurren|atom
|multithreaded|thread|preemption|parallel
venue:[conference name]” to find all candidate
papers published in each conference between 2002 and 2014.
We start from 2002 because the oldest well-known benchmark
suite, JPG, was published in 2001.

We get 256 candidate papers in total. After filtering out
papers that are not related to Java or concurrency bug detection,
we are left with 59 papers. To reduce our effort for inspecting
these papers, we randomly sample only 10 papers published
before 2010, but we select all 34 papers published since 2010.
We inspect in detail 44 papers, 3 from ASE [30], [31], [72],
8 from FSE [21], [26], [42], [45], [52], [61], [70], [78], 8
from ICSE [14], [34], [48], [57], [59], [60], [63], [82], 9 from
ISSTA [5], [35], [40], [43], [62], [67], [74], [81], [84], and
16 from PLDI [7], [9], [12], [12], [15], [17], [27]–[29], [33],
[39], [46], [55], [58], [68], [73]. Fig. 1 shows the distribution
of the papers by publication year. These papers are divided
into seven different research topics related to concurrency bug
detection, as shown in Table I.

We investigate what programs are used in evaluations in
these 44 papers. To simplify the analysis, we ignore different

1http://dblp.uni-trier.de/db/

179

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Count by paper usage Count by research topic

102 104

~ ~

Fig. 2. Usage of programs in surveyed papers. The X-axis represents (1) the
number of papers in which a program was used (blue bars) and (2) the number
of topics that the papers belong to (yellow bars). The Y-axis represents the
number of programs.

25

15

23 25

7
4

7 5

0

5

10

15

20

25

30

JPG DaCapo IBM SIR
Count by paper usage Count by research topic

Fig. 3. Usage of benchmark suites in surveyed papers.

versions and bugs from the same program/project2 in the
survey, and count only the number of different programs/pro-
jects used in each paper. For example, if a paper uses some
code from Apache Pool 1.X for one bug and some code
from Apache Pool 2.X for another bug, we count that as one
Apache Pool project; if another paper also uses some code
from Apache Pool 1.X for two different bugs, we count that
as two papers using Apache Pool once each.

These papers altogether use 159 programs in their evalua-
tions. Fig. 2 shows that about two thirds (102 out of 159) of
the programs are used in only one paper and on one research
topic (104 out of 159), meaning most programs are not shared
among evaluations done by different researchers. JDK and
RayTracer are shared the most by, respectively, 20 and 19
papers that cover all seven research topics.

Observation 2: Researchers often follow an ad-hoc process
to choose programs for evaluation.

Many programs used in the evaluations belong to some
of the four benchmark suites: JPG, DaCapo, IBM benchmark,
and SIR benchmark. As Fig. 3 shows, JPG is the most widely
used, and its programs appear in 25 out of 44 (56.8%) papers
that cover all seven research topics. (Note that a paper may
use programs from multiple benchmark suites.)

Of the 159 programs used, 9 are from JPG, 12 are from
DaCapo (both versions 2006 and 2009), 20 are from the IBM
suite, and 11 are from SIR; several of these programs are in
multiple suites: 2 programs are in both JPG and IBM, while 5
programs are in both IBM and SIR. The other 114 programs
do not belong to any well-known benchmark suite.

2We use the terms “program” and “project” interchangeably, but intuitively
one should distinguish small programs from real projects.

Observation 3: JPG has been the most popular benchmark
suite, although it was not designed for concurrency bug
detection and is rather outdated.

We have found out that 104 out of 159 benchmark pro-
grams are from real-world projects. Object-relation mapping
tools and web-server containers are most represented. This
fact suggests that researchers have the desire to use real-
world programs in their evaluations. However, many of the
real-world programs are not shared among evaluations and
researchers: only 30 programs appear in two or more papers,
and 28 in two or more research topics. One main reason is
that, when evaluating an approach proposed to find only some
bugs, researchers prefer to select the benchmark programs that
are related to their target bugs. When the target bugs differ,
researchers tend to select quite different programs in their
evaluations. Although this allows researchers to focus on their
target bugs, the results can become narrowly applicable and
hard to compare. To fully evaluate the effectiveness, there is a
strong need for a more comprehensive benchmark suite.

Observation 4: Real-world programs are preferably used
by researchers but are often selected with bias.

III. THE JACONTEBE BENCHMARK SUITE

In this section, we present JaConTeBe, a benchmark suite
we collected to allow more comprehensive evaluations of
approaches for detecting concurrency bugs. The buggy pro-
grams in JaConTeBe are from popular open-source systems
and confirmed by developers.

A. Overview

We prepare JaConTeBe following Lu et al.’s five guide-
lines [53]. In particular, (1) for representativeness and accessi-
bility, we collect reported and confirmed bugs from real open-
source projects; (2) for diversity, we collect bugs that cover
various bug types and different importance; (3) for fairness,
we choose bugs from projects that are shared among different
papers and research topics so they are more general; and
(4) for portability, we choose bugs that are portable to different
platforms, except two bugs triggered only on Windows.

We use the following process to collect concurrency bugs.
First, we select from the open-source projects that have
been used in prior evaluations, as described in Section III-B.
Then, for each project, we search its online bug database
for bug reports related to concurrency bugs, as described in
Section III-C. Finally, for each (non-duplicate) bug report that
we can reproduce, we create a test case that allows triggering
buggy behavior (usually deterministically on every run), as
described in Section III-D.

In total, the initial version of JaConTeBe contains 47
concurrency bugs from 8 open-source projects. It covers three
types of concurrency bugs: races (e.g., low-level data races and
high-level atomicity violations), deadlocks (e.g., resource dead-
locks caused by cyclic locks and communication deadlocks
caused by missed synchronization signals), and Java memory-
model-related bugs (caused by inappropriate assumptions, e.g.,

180

Bug 1
Test Case

Test Script

Bug Description

Libraries

…

Derby

Pool

Testing
Framework

DBCP

Bug 2

Bug N

…

Fig. 4. Overview of the JaConTeBe benchmark suite.

about synchronization activities and reordering of statement
executions among threads).

Fig. 4 shows the organization of JaConTeBe. It contains
one common directory (with a testing framework and jar
libraries shared across the entire benchmark suite) and one
directory for each project with concurrency bugs (currently
8 such directories). Each project directory has several jar
libraries shared by its bugs and a subdirectory for each bug.
Each subdirectory contains the following:

1) A Java test case to reproduce the buggy behavior
2) A shell script to set test parameters and run the test
3) A description of the bug and its root cause

B. Selecting Projects

It is challenging to sample representative open-source
projects from their large population. For example, GitHub3

hosts more than 100K Java projects, and Apache4 hosts over
200 Java projects. Furthermore, many projects are added each
year with the rapid growth of open-source communities.

However, as we have observed from our survey, some
projects5 have been used more often for evaluations. We simply
select from those projects that have been already used instead
of creating new rules to find out new projects. We use two
requirements for selecting candidate projects:

1) A candidate must have been used in evaluations on
two or more research topics. This filters rarely used
projects and reduces the bias towards certain ap-
proaches on specific research topics. Of 159 programs
from our survey, this requirement filters out about two
thirds, leaving 55.

2) A candidate must be an open-source, well-maintained
project with real bugs. This ensures that the selected
projects have real bugs instead of injected or artificial
ones, and equally importantly, it allows us to access
the bug database to retrieve sufficient information
to document and reproduce the concurrency bug.
This requirement filters out (1) RayTracer, one of
the programs most widely used in evaluations, but
which is an artificial program written by researchers
for benchmarking and not actual code written by
developers, and (2) cache4j, the popular real-world
benchmark that has stopped updating since 2006 and
has no bug database. This requirement further filters
out about three quarters of candidates, leaving 13.

3https://github.com/
4https://projects.apache.org/projects.html?language
5While we also called them “programs” before as some are rather small,

we will call them “projects” in the remainder as we select larger, real projects.

TABLE II. PROJECTS IN JACONTEBE.

Project #Papers/topics
in survey

#Bugs
in

JaCon-
TeBe

Description

Apache DBCP 4 / 2 4 Database connection pool

Apache Derby 6 / 4 5 Relational database

Apache Groovy 3 / 2 6
Dynamic language for
JVM

OpenJDK 20 / 7 20 Java Development Kit

Apache Log4j 3 / 3 5 Logging library

Apache Lucene 7 / 4 2 Search library

Apache Pool 8 / 5 5 Object-pooling API

We select 7 out of 13—Apache DBCP, Apache Derby,
Apache Groovy, OpenJDK, Apache Log4j, Apache Lucene,
and Apache Pool—for the initial version of JaConTeBe. As
mentioned previously, we omit version differences of the same
project, but in JaConTeBe, we keep OpenJDK6 and OpenJDK7
separated, because their bugs can be reproduced only with
different versions of the Java environment. Table II shows
some details of these projects, with OpenJDK6 and OpenJDK7
merged together in this table, because some papers do not
clearly mention which version of OpenJDK is used in the
evaluation. For each project, we tabulate the number of papers
that used the project in evaluation (and the number of research
topics that those papers cover), the number of bugs prepared
in JaConTeBe (note that this is completely independent of the
number of papers and topics but by chance the numbers end up
similar), and a brief description. OpenJDK is the most widely
used real-world project in our survey and is also the biggest
contributor of bugs (42.6%, 20 out of 47) for JaConTeBe.

C. Searching for Concurrency Bugs

While we selected all the projects for JaConTeBe from the
surveyed papers, we could not identify all the bugs because the
papers often did not give the bug IDs or URLs. Therefore, we
decided to search for concurrency bugs in the bug databases of
all the projects. More specifically, we search each bug database
with the keywords “concurren”, “atom”, “deadlock”,
“thread”, “race”, and “synch”. This simple search re-
turns many false positives, e.g., “thread” also matches
“threaded” or “threading”, two words that are often
used in the discussions of bug reports even when not for
concurrency bugs. Of 1065 issues returned by our queries, we
manually confirm 206 as related to concurrency bugs.

We select bugs for JaConTeBe using these requirements:

1) The bug should not be a duplicate. We ignore bug
reports which are marked “Duplicate” or “clone
of” in the bug database.

2) The bug should be reproducible, i.e., (1) the bug
report provides sufficient information to reproduce
the bug, e.g., stacktraces and thread dumps when
the program crashes, or even better, a test case
for triggering the buggy behavior; (2) the necessary
resources to reproduce the bug are available, e.g.,
GROOVY-1890 is a deadlock bug from version 1.1-
beta-1, but neither source code nor binary release
of that version is available for download any more,
therefore it is not easily reproducible.

181

3) The bug should be relevant. Every real bug represents
some problem triggered under certain conditions, but
some bugs have little impact on the system or are
only triggered under very specific conditions that are
not common and may not be worth fixing. To identify
these bugs that may not be representative, we check
for: (1) the report labeled “won’t fix” or having
a similar description in the discussion, and/or (2) the
priority being marked as the lowest level.

Finally, we collect 47 bugs for our benchmark suite. These
bugs were reported between 1999 and 2013. Most (70.2%,
33 out of 47) are important (marked as “blocker”, “critical”,
“major”, or some equivalent priority value in the bug report),
and the others (14 out of 47) are less important (marked as
“minor” or some equivalent value in the bug report). 5 bugs (2
major and 3 minor) have not been fixed until now. The average
fix time for all fixed bugs is 22.9 months, and the average fix
time for all fixed important bugs is 12.3 months. These long
times indicate that these bugs can be highly non-trivial.

As Table III shows, we classify the 47 bugs into three
types: races, deadlocks, and memory-model related bugs. We
then analyze the root causes of communication deadlock, a
subtype less studied in the literature.

1) Races and Atomicity Violations: JaConTeBe contains 19
data races and atomicity violations, which are two well-studied
types of concurrency bugs [36], [49]. Both represent the cases
of concurrently modifying shared variables such that the output
can depend on the execution sequence, so in JaConTeBe, we
group races and atomicity violations together.

For example, Fig. 5 shows a bug in OpenJDK6. Thread 1
checks two conditions at line 4, while thread 2 can assign
a null pointer to filter at line 14. If the assignment
happens between the checks of condition 1 and condition 2,
the checking of condition 1 is invalid.

2) Deadlocks: JaConTeBe contains 25 deadlocks, of which
16 are resource deadlocks and 9 are communication deadlocks.
A resource deadlock occurs when a thread holds resources
and prevents the other threads to proceed [4], [13]. A commu-
nication deadlock occurs when synchronization signals (i.e.,
wait, notify, and notifyAll in Java) among threads are
improperly used. It was pointed out even in 2008 [23] that
researchers focus on races and atomicity violations more than
on deadlocks; 7 years later, although more researchers have
focused on resource deadlocks, communication deadlocks are
still less studied.

Table IV provides some more details for the 9 commu-
nication deadlocks in JaConTeBe. They have three symp-
toms. The bug POOL-149 corresponds to a symptom called
“notify-before-wait”, where notify is executed before wait,
and thus waiting threads will not be notified. The bug
LUCENE-1544 corresponds to a symptom called “always-
wait”, where the condition for a waiting loop always holds,
blocking the program. The others correspond to “notify-not-
executed”, where a waiting thread cannot get notified, because
the corresponding notify does not get executed. A previous
study [25] reported similar concurrency bug patterns—“losing
a notify bug pattern” and “a ‘Blocking’ critical section bug
pattern”—but these patterns are too general, and the study did

TABLE III. CONCURRENCY BUGS IN BENCHMARK PROGRAMS.

Bug Types #Bug Description

Races and atomicity violations 19
Low-level data races and high-level
atomicity violations

Deadlock
Resource
deadlock

16
Threads compete for the critical re-
sources (locks), and each thread holds
a resource (lock) required by others

Communication
deadlock

9
The wait-notify communication between
threads is broken

Memory-
model
related
issue

Inconsistent
synchroniza-
tion

2

The accesses to the shared variable
among threads are not properly synchro-
nized, so a change from one thread is
not visible to other threads

SC violation 1
The statement execution order among
different threads is reordered by JMM,
making SC violation

not show corresponding real bugs. We thus further investigate
the communication deadlocks in JaConTeBe and summarize
their root causes as follows:

• Redundant locks: This is a mixed use of holding extra
locks while invoking wait or notify methods. In
Java, when wait is called on an object, the lock on
the object is released. However, if the waiting thread
holds an extra lock, and the notify thread waits for it
to wake up the waiting thread, the program blocks.

• Misuse of notify and notifyAll: If notify
is incorrectly used at the place where notifyAll
should be used, then the JVM picks only one of the
waiting threads (seemingly at random), while all the
remaining threads keep waiting.

• Scheduling problem: The threads may not be appro-
priately orchestrated, making a notify in one thread
execute before the intended wait in another thread.
The scheduling problem can also lead to the notify
condition being unsatisfied, e.g., in POOL-162, the
interference among thread executions can change one
notify condition to an unexpected state.

• Unhandled exceptions: The waiting threads cannot get
notified when an exception is not caught or handled
appropriately. Due to exceptions, a working thread
may not invoke notify or notifyAll, or it fails
to set the conditions to notify.

• Logical incorrectness: Logical incorrectness is re-
lated to the thread scheduling problems, e.g.,
JDK-6648001 is caused by a conflict of waiting
and notify conditions, and once a thread waits, it is
infeasible to notify the thread due to logical problems.

• Inappropriate usage of data structures and algorithms:
When data structures and algorithms that do not
support concurrency accesses are used in a concurrent
setting, deadlocks can happen, e.g., POOL-146.

3) Memory Model Related Bugs: JaConTeBe contains three
bugs related to the Java memory model (JMM) [56], i.e.,
two inconsistent synchronization bugs [37] and a sequential-
consistency (SC) violation bug [66].

An inconsistent synchronization is similar to a race con-
dition; both occur when two or more accesses to a shared
variable are not synchronized properly, and at least one access
is a write. However, an inconsistent synchronization bug is
usually caused by an “invisible” change, which means a shared
variable is modified in one thread but the modification is not

182

TABLE IV. ROOT CAUSE FOR COMMUNICATION DEADLOCKS IN JACONTEBE.

Bug Symptom Root Cause Bug Description

POOL-149 Notify-before-wait Schedule issue
A notify statement may be executed ahead of the corresponding wait statement. See https://issues.apache.
org/jira/browse/POOL-149.

POOL-146

Notify-not-executed

Inappropriate usage of
data structures and algo-
rithms

Pool uses a LinkedList object. One thread A attempts to get the first element from the list and, if
the first element is not retrievable, waits. Another thread B retrieves other elements in the list and then
notifies thread A to continue. However, B can be blocked, and A then cannot be waken up, because a
list must be accessed from its head. See https://issues.apache.org/jira/browse/POOL-146.

POOL-162 Unhandled exception
An exception makes a borrowed object to not be returned, while other threads wait for that object. See
https://issues.apache.org/jira/browse/POOL-162.

LOG4J-50463 Unhandled exception
An exception is thrown in a notify thread, while other threads waits to be notified. See https://issues.
apache.org/bugzilla/show bug.cgi?id=50463.

LOG4J-38137
Misuse of notify and
notifyAll

The program has one dispatcher and two appenders. After one element is removed from the buffer,
the dispatcher notifies only one appender, making the other appender wait. See https://issues.apache.org/
bugzilla/show bug.cgi?id=38137.

JDK-8012019 Redundant locks
Some redundant synchronization is enforced on threads, causing a deadlock of the waiting and the notify
threads. See https://bugs.openjdk.java.net/browse/JDK-8012019.

LUCENE-2783 Redundant locks The bug is the same as JDK-8012019. See https://issues.apache.org/jira/browse/LUCENE-2783.

JDK-6648001 Logical issue
There are conditions for both wait and notify, but they are contradictory. When the waiting
condition is satisfied, it is infeasible to reach the notify statement. See https://bugs.openjdk.java.net/
browse/JDK-6648001.

LUCENE-1544 Always wait Logical issue
The condition in a wait thread (...while(condition){wait(timeout)}...) is always true.
See https://issues.apache.org/jira/browse/LUCENE-1544.

propagated to another thread. For example, POOL-46 is an
inconsistent synchronization bug in JaConTeBe; one thread
is synchronized to reset a loop flag (a shared variable), but
another thread is not synchronized to read the flag, resulting
in an infinite loop. The inconsistent synchronization can be
fixed either by marking accesses from all threads to one
shared variable as “synchronized” or declaring the shared
variable as “volatile”.

A SC violation bug happens when the execution sequence
of two or more statements in one thread is reordered. It can
be introduced at different optimization phases (e.g., compiling
optimizations, runtime optimizations, or instruction execution
optimizations) [56], [66]. Although reordering is allowed by
the Java memory model when it does not perturb the single-
thread execution, it may break data or control dependencies
among threads. Section IV-B shows the SC violation bug from
the Groovy project.

D. Implementing Test Cases

It is non-trivial to supplement a concurrency bug with a test
case that triggers the buggy behavior, either deterministically
on every run or almost deterministically such that one needs
a small number of runs to trigger the buggy behavior. For
JaConTeBe, we leverage the bug reports to create a test case for
each bug. If a bug report has an attached test case, we modify
it to deterministically trigger the bug. Otherwise, we design
a new test case according to the description and discussion
in the bug report (e.g., stacktraces, buggy interleaving, or bug
symptoms), expecting to reproduce the reported bug.

To reproduce a concurrency bug (almost) deterministically,
a test case needs to specify appropriate (1) thread interleaving
that schedules the execution to the buggy location by following
a mostly deterministic interleaving and (2) inputs that lead the
execution through the branches to reach the buggy location
by following a mostly deterministic execution path. When
necessary to achieve this goal, we use instrumentation and
mocking to design the test cases.

We can usually enforce the interleaving by adding state-
ments in the test case, e.g., to control that one thread starts

1 t h r e a d 1
2 p u b l i c vo id l o g (LogRecord r e c o r d){
3 . . .

4 i f (filter! = null1 && !filter.isLoggable(record)2)

5 {
6 re turn ;
7 }
8 . . .
9 }

10
11 t h r e a d 2
12 p u b l i c vo id s e t F i l t e r (F i l t e r n e w F i l t e r) . . . {
13 . . .
14 f i l t e r = n e w F i l t e r ;
15 }

Fig. 5. An instrumentation example in OpenJDK6. This bug happens when
filter is assigned to null at line 14 in one thread just between the two condition
checks at line 4 in another thread.

1 i f (p h y s i c a l C o n n e c t i o n . i s C l o s e d ())
2 {
3 . . .
4 } e l s e {
5 . . .
6 i f (! p h y s i c a l C o n n e c t i o n . i s G l o b a l P e n d i n g ()) {
7 p o o l e d C o n n e c t i o n . r e c y c l e C o n n e c t i o n () ;
8 }
9 }

Fig. 6. A mock example in DERBY-5560. The bug is in the method call at
line 7 and requires the checks at lines 1 and 6 to be false and true, respectively.

before another, but when more elaborated controls are required
during the thread execution, we use instrumentation to ensure
the threads follow the expected interleaving to trigger the bug.
For example, Fig. 5 shows the code snippet for a bug that is
very unlikely to be triggered when the test is repeated without
instrumentation, because the time for preemption between the
two condition checks at line 4 is very short. However, the
bug can be triggered easily if we add some instrumentation,
either (1) a pause (e.g., sleep for a few milliseconds) between
condition 1 and “&&”, so that the bug triggers much more
frequently, or (2) some control statements to enforce the
statement at line 14 to execute just between the conditions
1 and 2 at line 4, so that the bug can be deterministically
reproduced. We use ASM [1], a Java bytecode manipulation
and analysis framework, to instrument the Java binary code.
In this example, as we modify the JDK code itself, we need
to start the test with the -Xbootclasspath/p option to

183

TABLE V. RESULTS FOR THREE APPROACHES.

Detection #Succeed #Fail #Crash
Approach JaC + SIR JaC + SIR JaC + SIR

JPF 11 + 36 10 + 0 26 + 0

RV-Predict 10 + 17 2 + 0 0 + 0

CheckMate 8 + 13 17 + 2 0 + 0

preload the instrumented code instead of the original code from
JDK.

We also use mocking to ensure that the concurrent code
strictly follows a given program trace to reach a buggy program
location. For example, Fig. 6 shows the code snippet for bug
DERBY-5560 that is triggered in the method call at line 7.
The execution reaches line 7 only when the checks at lines
1 and 6 are false and true, respectively. The real process of
setting up and maintaining a physicalConnection object
is rather complex, so mocking its behavior makes it easier to
get the required values. We use mockito [3], a popular Java
mocking framework, to mock the method call at line 1 to return
false directly without calling the real method. The method call
at line 6 always return false, so we need no mocking for it.

Strictly speaking, neither instrumentation nor mocking can
guarantee deterministic triggering of a bug on every run.
But, in practice, using one of them is often effective to help
reproduce bugs deterministically. There is only one bug that
we could not reproduce very deterministically. That is the SC
violation bug, where we cannot easily enforce the execution
sequence of statements in one thread at runtime. In addition,
any insertion or deletion of statements may affect the behavior
of the Java memory model, making the reproduced bug to
not be the original one. In this case, we can only execute
the test case for a large number of times to reproduce the
bug. In particular, using the test case from JaConTeBe, the
SC violation bug GROOVY-5198 can be reproduced within
seconds on a typical JVM.

In summary, each bug in JaConTeBe is accompanied by
a test case and a description of the bug. Most test cases (36
out of 47) can reproduce the bug deterministically on every
run. To achieve that, 6 test cases use mocking, and 3 test
cases use instrumentation; no test case uses both mocking and
instrumentation. The other 11 test cases need several runs to
trigger the bug, and one of those test cases uses mocking; these
test cases could have used more mocking or instrumentation
to reproduce the bug faster, but it takes only a few seconds
for multiple runs to trigger the bug, so it was not worthwhile
to make them more deterministic. Only one test case (for the
bug GROOVY-5198) requires many more runs, as described
in more detail in Section IV-B. In addition, we design a
framework for the JaConTeBe benchmark suite to provide
the common utilities for running the buggy programs and the
capability of executing the bugs in their expected scenarios
such as controlling the threads, terminating deadlocks, and
enforcing thread interleavings.

IV. EVALUATION

To evaluate JaConTeBe, we perform small experiments
with three approaches for detecting Java concurrency bugs:
the Java PathFinder (JPF) research tool6 [79], the RV-Predict

6http://babelfish.arc.nasa.gov/trac/jpf/

TABLE VI. DETAILED RESULTS FOR CHECKMATE ON JACONTEBE.

Buggy
Program

JaConTeBe
Result

Deadlock
Type

Project
Version

Result
in [45]

POOL-146 succeed
communication
deadlock

POOL 1.5 2

POOL-149 succeed
communication
deadlock

POOL-162 fail
communication
deadlock

LOG4J-38137 succeed
communication
deadlock Log4j 1.2.13

1

LOG4J-41214 fail
resource dead-
lock

DBCP-65 fail
resource dead-
lock DBCP 1.2 2

DBCP-270 succeed
resource dead-
lock

commercial tool7 [39], and our implementation of the Check-
Mate approach [45]. (Both RV-Predict and CheckMate were
proposed in the papers we have surveyed in Section II.) We
also run these three implementations on SIR-old-conc, which
is how we call the old 36 concurrency bugs in SIR8) now that
JaConTeBe is also a part of SIR. 5 bugs overlap in JaConTeBe
and SIR-old-conc, belonging to the Apache Log4j and Apache
Pool projects.

We run JPF on all concurrency bugs in JaConTeBe (47
bugs) and SIR-old-conc (36 bugs). We run JPF V7 and JDK
1.7 whenever possible, but JaConTeBe has 14 JDK6 bugs,
and JPF V7 is incompatible with lower JDK versions, so we
also run JPF V6 and JDK 1.6.0 on these JDK6 bugs. We
run RV-Predict 1.4 on the buggy programs known to contain
data races: 12 bugs from JaConTeBe (excluding 10 OpenJDK6
and OpenJDK7 bugs because they are incompatible with RV-
Predict’s requirement of JRE 8) and 17 bugs from SIR-old-
conc (excluding atomicity violations that RV-Predict does not
detect). We run CheckMate on all deadlock bugs in JaConTeBe
(25 bugs) and SIR-old-conc (15 bugs). 3 programs in SIR-old-
conc contain both non-deadlock and deadlock bugs that can be
triggered by the same test case via different schedules, so we
put these programs into non-deadlocks and run on RV-Predict
(because detecting a deadlock that actually happened is rather
obvious when a program hangs).

We run both JPF and RV-Predict “out-of-the-box”, only
with their default configurations, except that for JPF we change
the option search.multiple_errors from default false
to true, which instructs JPF to search for multiple bugs in
one run. Our CheckMate implementation has no configuration
options. The results could differ for different configurations of
these tools or for different tools.

A. Overall Results

Table V summarizes the results. For each approach, we
tabulate the numbers of bugs it successfully detects, it fails to
detect, and where it crashes. “JaC” is short for JaConTeBe,
“SIR” is short for SIR-old-conc, and “JaC+SIR” has the first
value for JaConTeBe and the second for SIR-old-conc.

JPF detects all 36 bugs in SIR-old-conc but does not
detect most bugs in JaConTeBe. For 10 bugs, JPF terminates
exploration but fails to detect the bug, i.e., either reports

7https://runtimeverification.com/predict/
8http://sir.unl.edu/portal/bios/concurrency.php

184

only other bugs not the expected one (although we set the
option search.multiple_errors) or does not report
any bug. For 26 bugs, JPF conceptually crashes, i.e., does
not terminate exploration, mainly due to unsupported (na-
tive) methods. JPF is a Java virtual machine implemented
in Java itself and requires special implementation for native
methods. While JPF implements many native methods, it
does not implement all the native methods required by the
JVM specification [51]. When the code invokes an unim-
plemented native method, JPF terminates execution and re-
ports an error message such as “cannot find native
(method name)”. Some seeming implementations of JDK
methods in JPF are also incomplete, e.g., JPF implements
java.lang.Class.getProtectionDomain by throw-
ing UnsupportedOperationException whenever in-
voked. As the test cases in JaConTeBe run unmodified, real-
world projects, some of them invoke native and JDK methods
unimplemented in JPF, making JPF crash. These results con-
firm a known limitation of JPF with native methods [75] and
show that handling unmodified real code (in JaConTeBe) is
different from handling carefully prepared simplified examples
(in SIR-old-conc).

RV-Predict is a commercial tool that evolved from a long
line of research, with the most recent result by Huang et
al. [39]. RV-Predict is designed to detect data races for com-
plex applications. It succeeds to detect 10 bugs in JaConTeBe
and 17 in SIR-old-conc. The two missed bugs from JaConTeBe
are in the java.* packages that RV-Predict by default does
not check.

CheckMate is chosen among various deadlock detection
approaches because it is designed to detect both communi-
cation deadlocks and resource deadlocks (unlike many other
approaches focusing on resource deadlocks only). We imple-
ment CheckMate following the original description [45] and
run it against all deadlock bugs in JaConTeBe and SIR-old-
conc. While CheckMate finds almost all deadlocks in SIR-
old-conc (and the 2 missed bugs are real-world bugs), it
fails to find over two thirds of deadlock bugs in JaConTeBe.
Table VI compares the results of running CheckMate on the
projects that overlap in JaConTeBe and the original evaluation
of CheckMate [45]. For each bug, we tabulate the result
of CheckMate on the test case from JaConTeBe, the bug’s
deadlock type, and the corresponding project version. The
last column shows the number of deadlocks detected in the
corresponding project in the original evaluation [45] that does
not report all bug IDs but only reports how many deadlocks are
found in which version of which project. (The evaluation does
mention two bug IDs, LOG4J-38137 and GROOVY-1890;
we have LOG4J-38137 in Table VI, and Section III-C
describes why GROOVY-1890 is not selected.) The results
indicate that JaConTebe finds more limitations in CheckMate
than SIR-old-conc finds.

B. Most challenging bugs in JaConTeBe

During the evaluation, we found two particularly challeng-
ing bugs: native deadlock and SC violation.

Native deadlock. Most resource and communication dead-
locks in Java code are caused by the synchronization at
the pure Java level. We find a special subtype of resource

deadlocks caused by the native locks acquired in the native
methods. We refer to this type of deadlock as native deadlock;
it often mixes execution from two different levels [16], the Java
level and the native C/C++ level. As any ordinary resource
deadlock, a native deadlock is caused by cyclic locking. How-
ever, unlike an ordinary resource deadlock, a native deadlock
has some native C/C++ lock(s) acquired by native methods
and potentially some Java lock(s) acquired by Java methods.
For example, a native deadlock occurs when a thread holds
a native lock and acquires a Java lock, while another thread
holds the Java lock and waits for the native lock.

We find only one native deadlock in the 8 projects currently
in JaConTeBe, but there are likely more such deadlocks in
other projects, and they are still harmful and can hang the
program. Moreover, they are difficult for developers to even
comprehend, e.g., consider a Stackoverflow question9 about a
deadlock caused by a native method. JVM does not provide
information about acquisition of native locks in the stacktraces.

The bug GROOVY-4736 in JaConTeBe is a native
deadlock bug from Groovy 1.7.9. Fig. 7 shows its sim-
plified stacktrace. The thread dump of Compiling and
instantiation 2 shows literately no lock acquisition,
but the deadlock information shows the thread Compiling
and instantiation 3 waiting for a lock held by thread
Compiling and instantiation 2. In fact, the native
lock is held in the native method forName0() by the thread
Compiling and instantiation 2 and attempted to
be acquired in the native method getDeclaredFields0()
by the other thread. Therefore, the deadlock is formed by a
native lock and a Java lock.

Such native deadlocks are difficult to detect and reproduce,
and both JPF and CheckMate fail to detect the deadlock
in GROOVY-4736. Static analysis usually considers native
methods as “black box” [50] and has a limited support for
them [67]. Dynamic deadlock prediction (e.g., [45]) analyzes
the execution trace to find potential deadlocks, but the ac-
quisition of locks in native methods is not visible in the
program execution trace at the Java level. Similarly, reproduc-
tion techniques (e.g., [83]) need to know where the lock has
been acquired and released. The bug GROOVY-4736 could
motivate a bigger study of native deadlocks in Java.

SC violation. JMM [56] allows statement reordering that can
be surprising to the developer and lead to bugs. Fig. 8 shows
the example bug GROOVY-5198 where two threads execute
the same method. If thread 1 executes line 11 after line 10,
then thread 2 passes the condition checks at line 4 and returns
the value at line 6 without problems. However, JMM allows
thread 1 to execute line 11 before line 10, and if thread 2
executes in between those lines, it completes the check at line
4 and can return an unintended null value at line 6. Different
from order-violation bugs [54] caused by a nondeterministic
execution order of statements in two threads, SC violation is
caused by the relaxed memory consistency model.

C. Comparison with other benchmark suites

Compared with the currently used benchmark suites for
evaluating bug detection for Java—JPG, DaCapo, IBM, and

9http://stackoverflow.com/questions/37551/multiple-threads-stuck-in-native-
calls-java

185

” Compi l ing and i n s t a n t i a t i o n 3 ” : w a i t i n g t o l o c k m o n i t o r
0 x000000000cc5b3a8 (o b j e c t 0 x00000007d6ce9040 ,

a groovy . l a n g . G r o o v y C l a s s L o a d e r $ I n n e r L o a d e r) , which
i s h e l d by ” Compi l ing and i n s t a n t i a t i o n 2”

” Compi l ing and i n s t a n t i a t i o n 2 ” : w a i t i n g t o l o c k m o n i t o r
0 x000000000cc5bc98 (o b j e c t 0 x00000007d7da8070 ,

a j a v a . u t i l . HashMap) , which i s h e l d by ” Compi l ing and
i n s t a n t i a t i o n 3”

Java s t a c k i n f o r m a t i o n f o r t h e t h r e a d s l i s t e d above :
===
” Compi l ing and i n s t a n t i a t i o n 3 ” :

a t j a v a . l a n g . C l a s s . g e t D e c l a r e d F i e l d s 0 (N a t i v e Method)
. . .
a t groovy . l a n g . GroovyClassLoader . r e c o m p i l e (

GroovyClassLoader . j a v a : 7 7 7)
− l o c k e d <0x00000007d7da8070> (a j a v a . u t i l . HashMap)
. . .
a t Groovy4736$3 . run (Groovy4736 . j a v a : 1 6 9)

” Compi l ing and i n s t a n t i a t i o n 2 ” :
a t groovy . l a n g . GroovyClassLoader . r e c o m p i l e (

GroovyClassLoader . j a v a : 7 7 6)
− w a i t i n g t o l o c k <0x00000007d7da8070> (a j a v a . u t i l .

HashMap)
a t groovy . l a n g . GroovyClassLoader . l o a d C l a s s (

GroovyClassLoader . j a v a : 7 3 7)
a t groovy . l a n g . G r o o v y C l a s s L o a d e r $ I n n e r L o a d e r .

l o a d C l a s s (GroovyClassLoader . j a v a : 4 4 9)
a t groovy . l a n g . GroovyClassLoader . l o a d C l a s s (

GroovyClassLoader . j a v a : 7 9 3)
a t j a v a . l a n g . C l a s s L o a d e r . l o a d C l a s s (C l a s s L o a d e r . j a v a

: 3 5 7)
a t j a v a . l a n g . C l a s s . forName0 (N a t i v e Method)
a t j a v a . l a n g . C l a s s . forName (C l a s s . j a v a : 1 9 0)
a t t e s t . D1 . c l a s s $ (t e s t . D1)
a t t e s t . D1 . $ g e t $ $ c l a s s $ t e s t $ E 3 (t e s t . D1)
a t t e s t . D1.< i n i t >(t e s t . D1 : 4)
a t sun . r e f l e c t . N a t i v e C o n s t r u c t o r A c c e s s o r I m p l .

n e w I n s t a n c e 0 (N a t i v e Method)
a t sun . r e f l e c t . N a t i v e C o n s t r u c t o r A c c e s s o r I m p l .

n e w I n s t a n c e (N a t i v e C o n s t r u c t o r A c c e s s o r I m p l . j a v a
: 5 7)

a t sun . r e f l e c t . D e l e g a t i n g C o n s t r u c t o r A c c e s s o r I m p l .
n e w I n s t a n c e (D e l e g a t i n g C o n s t r u c t o r A c c e s s o r I m p l .
j a v a : 4 5)

a t j a v a . l a n g . r e f l e c t . C o n s t r u c t o r . n e w I n s t a n c e (
C o n s t r u c t o r . j a v a : 5 2 6)

a t Groovy4736$3 . run (Groovy4736 . j a v a : 1 6 9)

Fig. 7. Stacktrace of the native deadlock bug GROOVY-4736.

1 p u b l i c MetaMethod r e t r i e v e S t a t i c M e t h o d (S t r i n g
methodName , O b j e c t [] a rgumen t s) {

2 . . .
3 c a c h e E n t r y = e . c a c h e d S t a t i c M e t h o d ;
4 i f (c a c h e E n t r y != n u l l && M e t a C l a s s H e l p e r .

s a m e C l a s s e s (c a c h e E n t r y . params , a rguments , e .
s t a t i c M e t h o d s i n s t a n c e o f MetaMethod))

5 {
6 re turn c a c h e E n t r y . method ;
7 }
8 . . .
9 c a c h e E n t r y . params = c l a s s e s ;

10 c a c h e E n t r y . method = p i c k S t a t i c M e t h o d (methodName ,
c l a s s e s) ;

11 e . c a c h e d S t a t i c M e t h o d = c a c h e E n t r y ;
12 re turn c a c h e E n t r y . method ;
13 }
Fig. 8. A SC violation example, GROOVY-5198. JMM allows the sequence
T1.L11→T2.L4→T2.L6→T1.L10 that can return unexpected null.

SIR—JaConTeBe provides more bugs, from real open-source
projects, with test cases for reproduction, and with detailed
documentation of root causes and buggy interleavings.

Although JPG and DaCapo are frequently used in eval-
uations, they were not initially designed for the purpose of
concurrency bug detection. Both consist of a set of multi-

TABLE VII. COMPOSITION OF SIR-OLD-CONC BENCHMARKS.

Source #Programs Average Size
(LOC)

IBM benchmark suite 10 86.8

Newly designed 7 121.0

Used by research papers 8 495.5

Real-world applications 11 4043.6

threaded applications whose concurrency bugs were unknown.
As a result, the effectiveness of evaluated techniques may
not be precisely calculated when these benchmarks are used.
In contrast, JaConTeBe is built up from real-world buggy
projects, where the symptom, type, and root cause of each
bug have been clearly stated, and a test case is provided.
Researchers can use JaConTeBe to evaluate the effectiveness
of their approaches in handling real software systems.

Unlike JPG and DaCapo, IBM and SIR benchmark suites
provide documented buggy programs and tests to reproduce
them. However, 24 out of 41 programs in IBM are written by
undergraduate students, 1 is from a real-world application, and
the others are open-source programs. The 36 buggy programs
in SIR are from 4 sources: bugs from IBM benchmarks, bugs
designed based on several bug patterns [24], [25], bugs used
by other studies [19], [65], and real-world bugs, as shown in
Table VII. These buggy programs cover traditional pedagogical
concurrency programs (e.g., dining philosophers and sleeping
barbers) and typical concurrency bug idioms (e.g., two-stage
locking). Although both IBM and SIR cover various types of
concurrency bugs with good diversity, the small code size is
insufficient to show the limitations of some approaches, e.g.,
how model checking can encounter the state-space explosion
problem with larger scale. JaConTeBe complements SIR in
that it provides more real-world bugs, and JaConTeBe has been
accepted as a part of SIR.

V. DISCUSSION AND FUTURE WORK

Enriching JaConTeBe with more concurrency bugs. While
we have inspected hundreds of bug reports (potentially) re-
lated to concurrency in the bug databases of 8 projects,
our inspection is still incomplete. For example, a bug report
may not mention any keywords that we queried, even if
it is about a concurrency bug. Specifically, DBCP-37910

has been confirmed as a concurrency bug, but it does not
mention our keywords. Therefore, we need to improve our
searching method, trying to include more true positive matches
without substantially enlarging false positives. Additionally,
we inspected only 7 of the 13 projects from the surveyed
papers (Section III-B), so we plan to inspect the other 6—
Apache Xalan, Apache Tomcat, Apache FTP Server, Eclipse,
HSQLDB, and PMD—for the future JaConTeBe versions.
Moreover, we also plan to analyze more concurrency bugs
from other projects to further enrich JaConTeBe.

Evaluating the effectiveness of JaConTeBe. We have com-
pared the results of running three approaches against JaCon-
TeBe and SIR-old-conc to determine if JaConTeBe can confirm
some known limitations of these approaches. We did not use
the IBM benchmark suite for comparison because it is no
longer available on its web site, and its current maintainer

10https://issues.apache.org/jira/browse/DBCP-379

186

provided us a distribution that contains only some of the
programs from the benchmark suite. We plan to evaluate more
detection approaches and tools in the future.

The effectiveness of real bugs in benchmarks. Whether (or
when) artificial faults can replace real bugs in software testing
research is an open question. Recent research [47] finds that
the elaborately designed mutants “can be used as a substitute
for real faults when comparing (generated) test suites” [47],
i.e., the substitution equivalence is conditional on having
appropriate mutants. Somewhat older research [32], [85] finds
that, for typical mutation operators, operator-based mutant
selection may not be better than random mutant selection in
several cases, increasing the importance of selecting proper
mutants that can represent real bugs.

The importance of practical testing scenarios. JaConTeBe
follows the methodology established by prior benchmark suites
to provide test cases that focus on the bugs and can (almost) de-
terministically reproduce them with relatively short executions.
However, in an actual practical usage of a tool for detection
of concurrency bugs, the developers would not have such test
cases. In fact, they may even have no test cases (with both
program inputs and expected outputs) but only have some
program inputs, and/or they may have much longer executions,
not focused on the bug. In the future, it would be important to
study not only what bugs can be found by various approaches
with focused test cases but also how developers actually use
the approaches/tools, e.g., following the work of Parnin and
Orso on analyzing automated debugging [64].

VI. RELATED WORK

As a benchmark suite of real-world Java concurrency bugs,
JaConTeBe is related to several lines of research.

Benchmark guidelines. As pointed out by Bird et al. [6], the
quality of a benchmark can substantially impact the results
of evaluating an approach. To prepare successful benchmarks,
Sim et al. [76] proposed seven guidelines, and Lu et al. [53]
further distilled them into five guidelines. Section II-A presents
a survey of four existing benchmark suites of concurrency
bugs; comparing to these benchmark suites, our JaConTeBe
benchmark suite has the following benefits: (1) it has clearly
documented root causes for bugs; (2) all bugs are from real-
world open-source applications; (3) many of our bugs are
difficult to detect; and (4) it includes tests and scripts to
reproduce the concurrency bugs deterministically and easily.

Bradbury et al. [10] propose a methodology for creat-
ing a benchmark suite based on a combinatorial test-design
technique. Specifically, they design a matrix that covers 44
combinations of 7 benchmark metrics, and suggest to fill the
matrix with programs from three sources: existing benchmarks
such as 28 programs from the IBM benchmark suite, bugs
from open-source repositories, and artificial mutants. They do
not provide a benchmark suite covering the full matrix.

Bug detection approaches. Lu et al. [54] classify concurrency
bugs into deadlock bugs and non-deadlock bugs, and further
classify the latter into atomicity violations, order violations,
and other bugs. Numerous approaches have been proposed for
detecting such bugs. For deadlocks, static approaches (e.g.,
[59]) typically analyze code for cyclic use, and dynamic

approaches (e.g., [21], [71]) analyze execution traces to locate
potential deadlocks. As some reports can be false alarms, Cai et
al. [14] propose an approach that validates detected deadlocks
dynamically. For non-deadlock concurrency bugs, such as
atomicity violations and races, static approaches (e.g., [58],
[80]) analyze code, and dynamic approaches (e.g., Falcon [63])
analyze runtime behavior to check whether threads can access
the same memory locations. Most approaches have to predefine
the nature of target bugs. For example, FindBugs [2], [37]
defines 46 multi-threaded bug patterns, and Farchi et al. [25]
summarized 8 patterns from Java concurrency bugs, with
regard to how bugs are manifested. All these studies reveal
some aspects of concurrency bugs, and help us to prepare
our benchmark suite. Moreover, while collecting the bugs for
JaConTeBe, we also find some less studied concurrency bugs,
complementing the above studies.

Concurrency bug reproduction. Huang et al. [38] proposes
LEAP that monitors and records shared-memory dependencies
at runtime and replays concurrency bugs deterministically.
Typically, record-and-replay suffers from side effects, because
instrumented code may change the behavior of the original
code. To address the problem, researchers (e.g., [69], [83])
explore offline approaches that reproduce the concurrency
bugs based on execution traces and bug reports. Furthermore,
hybrid approaches (e.g., CLAP [41]) record little information
at runtime and search for executions that reproduce buggy
behaviors. Tools such as CalFuzzer [44], Concurrit [20], and
IMUnit [42] allow programmers to manipulate thread inter-
leavings to reproduce buggy behaviors. We manually prepare
a test case for each bug in JaConTeBe, but the mentioned
approaches could reduce the effort for preparing such test cases
when we enlarge JaConTeBe in the future.

VII. CONCLUSION

We have conducted a survey of the existing benchmarks
used for evaluating concurrency bug detection approaches in
Java, and we have prepared JaConTeBe, a new benchmark
suite of Java concurrency bugs. JaConTeBe currently contains
47 real-world bugs from 8 practical software projects. We
believe that JaConTeBe can help researchers to evaluate the
effectiveness of their bug detection approaches. The experi-
ment results and survey datasets are available at http://stap.
sjtu.edu.cn/index.php?title=JaConTeBe.

ACKNOWLEDGMENTS

We thank Xinxi Chen and Fei Luo for helping us to analyze
JaConTeBe concurrency bugs, Wayne Motycka and Gregg
Rothermel for inspecting JaConTeBe and accepting it as a part
of SIR, Yilong Li for help with RV-Predict, and Rachel Tzoref-
Brill for providing the IBM benchmark suite. This research
was sponsored in part by 973 Program in China (Grant No.
2015CB352203), the National Nature Science Foundation of
China (Grant Nos. 9111800420 and 612721020), and the US
NSF (Grant Nos. CCF-1012759 and CCF-1438982). Ziyi Lin
and Yuting Chen are supported by China Scholarship Council
and partially supported by NSFC (Grant Nos. 61472242 and
61572312), and Hao Zhong is partially supported by NSFC
(Grant No. 61572313).

187

REFERENCES

[1] ASM homepage.[online].available: http://asm.ow2.org.

[2] FindBugs website.[online].available: http://findbugs.sourceforge.net/
bugDescriptions.html.

[3] Mockito homepage.[online].available: http://site.mockito.org.

[4] S. Bensalem and K. Havelund. Dynamic deadlock analysis of multi-
threaded programs. In HVC, 2005.

[5] S. Bindal, S. Bansal, and A. Lal. Variable and thread bounding for
systematic testing of multithreaded programs. In ISSTA, 2013.

[6] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu. Fair and balanced?: Bias in bug-fix datasets. In ESEC/FSE,
2009.

[7] S. Biswas, J. Huang, A. Sengupta, and M. D. Bond. DoubleChecker:
Efficient sound and precise atomicity checking. In PLDI, 2014.

[8] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. L. Hosking, M. Jump, H. B. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In OOPSLA, 2006.

[9] M. D. Bond, K. E. Coons, and K. S. McKinley. PACER: Proportional
detection of data races. In PLDI, 2010.

[10] J. S. Bradbury, I. Segall, E. Farchi, K. Jalbert, and D. Kelk. Using
combinatorial benchmark construction to improve the assessment of
concurrency bug detection tools. In PADTAD, 2012.

[11] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey.
A benchmark suite for high performance Java. Concurrency - Practice
and Experience, 12(6):375–388, 2000.

[12] J. Burnim, T. Elmas, G. C. Necula, and K. Sen. NDSeq: Runtime
checking for nondeterministic sequential specifications of parallel cor-
rectness. In PLDI, 2011.

[13] Y. Cai and W. Chan. Magiclock: Scalable detection of potential
deadlocks in large-scale multithreaded programs. IEEE Transactions
on Software Engineering, 40(3):266–281, 2014.

[14] Y. Cai, S. Wu, and W. K. Chan. ConLock: A constraint-based approach
to dynamic checking on deadlocks in multithreaded programs. In ICSE,
2014.

[15] J. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridha-
ran. Efficient and precise datarace detection for multithreaded object-
oriented programs. In PLDI, 2002.

[16] M. d’Amorim, A. Sobeih, and D. Marinov. Optimized execution of
deterministic blocks in Java PathFinder. In ICFEM, 2006.

[17] D. Dimitrov, V. Raychev, M. T. Vechev, and E. Koskinen. Commuta-
tivity race detection. In PLDI, 2014.

[18] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact. Empirical Software Engineering: An International Journal,
10(4):405–435, 2005.

[19] M. B. Dwyer, S. Person, and S. Elbaum. Controlling factors in
evaluating path-sensitive error detection techniques. In FSE, 2006.

[20] T. Elmas, J. Burnim, G. Necula, and K. Sen. CONCURRIT: A domain
specific language for reproducing concurrency bugs. In PLDI, 2013.

[21] M. Eslamimehr and J. Palsberg. Sherlock: Scalable deadlock detection
for concurrent programs. In FSE, 2014.

[22] Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Towards a framework
and a benchmark for testing tools for multi-threaded programs. Con-
currency and Computation: Practice and Experience, 19(3):267–279,
2007.

[23] Y. Eytani, R. Tzoref, and S. Ur. Experience with a concurrency bugs
benchmark. In TESTBENCH, 2008.

[24] Y. Eytani and S. Ur. Compiling a benchmark of documented multi-
threaded bugs. In PADTAD, 2004.

[25] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test
them. In IPDPS, 2003.

[26] A. Farzan, P. Madhusudan, N. Razavi, and F. Sorrentino. Predicting
null-pointer dereferences in concurrent programs. In FSE, 2012.

[27] C. Flanagan and S. N. Freund. FastTrack: Efficient and precise dynamic
race detection. In PLDI, 2009.

[28] C. Flanagan and S. N. Freund. Adversarial memory for detecting
destructive races. In PLDI, 2010.

[29] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A sound and complete
dynamic atomicity checker for multithreaded programs. In PLDI, 2008.

[30] M. K. Ganai. Scalable and precise symbolic analysis for atomicity
violations. In ASE, 2011.

[31] M. K. Ganai. Efficient data race prediction with incremental reasoning
on time-stamped lock history. In ASE, 2013.

[32] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam. Selective mutation
testing for concurrent code. In ISSTA, 2013.

[33] G. Golan-Gueta, G. Ramalingam, M. Sagiv, and E. Yahav. Concurrent
libraries with foresight. In PLDI, 2013.

[34] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic detection of
atomic-set-serializability violations. In ICSE, 2008.

[35] S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold. Testing concurrent
programs to achieve high synchronization coverage. In ISSTA, 2012.

[36] S. Hong and M. Kim. A survey of race bug detection techniques
for multithreaded programmes. Software Testing, Verification and
Reliability, 25(3):191–217, 2015.

[37] D. Hovemeyer and W. Pugh. Finding bugs is easy. In OOPSLA, 2004.

[38] J. Huang, P. Liu, and C. Zhang. LEAP: Lightweight deterministic multi-
processor replay of concurrent Java programs. In FSE, 2010.

[39] J. Huang, P. O. Meredith, and G. Rosu. Maximal sound predictive race
detection with control flow abstraction. In PLDI, 2014.

[40] J. Huang and C. Zhang. Persuasive prediction of concurrency access
anomalies. In ISSTA, 2011.

[41] J. Huang, C. Zhang, and J. Dolby. CLAP: Recording local executions
to reproduce concurrency failures. In PLDI, 2013.

[42] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, and G. Rosu. Improved
multithreaded unit testing. In ESEC/FSE, 2011.

[43] V. Jagannath, Q. Luo, and D. Marinov. Change-aware preemption
prioritization. In ISSTA, 2011.

[44] P. Joshi, M. Naik, C.-S. Park, and K. Sen. CalFuzzer: An extensible
active testing framework for concurrent programs. In CAV, 2009.

[45] P. Joshi, M. Naik, K. Sen, and D. Gay. An effective dynamic analysis
for detecting generalized deadlocks. In FSE, 2010.

[46] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A randomized dynamic
program analysis technique for detecting real deadlocks. In PLDI, 2009.

[47] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser. Are mutants a valid substitute for real faults in software
testing? In FSE, 2014.

[48] Z. Lai, S. Cheung, and W. K. Chan. Detecting atomic-set serializability
violations in multithreaded programs through active randomized testing.
In ICSE, 2010.

[49] Z. Letko, T. Vojnar, and B. Kr̆ena. AtomRace: Data race and atomicity
violation detector and healer. In PADTAD, 2008.

[50] S. Li, Y. D. Liu, and G. Tan. JATO: Native code atomicity for Java. In
APLAS, 2012.

[51] T. Lindholm and F. Yellin. Java virtual machine specification. Addison-
Wesley Longman Publishing Co., Inc., 1999.

[52] P. Liu, J. Dolby, and C. Zhang. Finding incorrect compositions of
atomicity. In ESEC/FSE, 2013.

[53] S. Lu, Z. Li, F. Qin, L. Tan, and P. Zhou. BugBench: Benchmarks
for evaluating bug detection tools. In Workshop on the Evaluation of
Software Defect Detection Tools, 2005.

[54] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics. In
ASPLOS, 2008.

[55] B. Lucia, B. P. Wood, and L. Ceze. Isolating and understanding
concurrency errors using reconstructed execution fragments. In PLDI,
2011.

[56] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In
POPL, 2005.

188

[57] D. Marino, C. Hammer, J. Dolby, M. Vaziri, F. Tip, and J. Vitek.
Detecting deadlock in programs with data-centric synchronization. In
ICSE, 2013.

[58] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for
Java. In PLDI, 2006.

[59] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock
detection. In ICSE, 2009.

[60] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov. Ballerina:
Automatic generation and clustering of efficient random unit tests for
multithreaded code. In ICSE, 2012.

[61] C.-S. Park and K. Sen. Randomized active atomicity violation detection
in concurrent programs. In FSE, 2008.

[62] S. Park. Debugging non-deadlock concurrency bugs. In ISSTA, 2013.

[63] S. Park, R. W. Vuduc, and M. J. Harrold. Falcon: Fault localization in
concurrent programs. In ICSE, 2010.

[64] C. Parnin and A. Orso. Are automated debugging techniques actually
helping programmers? In ISSTA, 2011.

[65] C. S. Păsăreanu, M. B. Dwyer, and W. Visser. Finding feasible
abstract counter-examples. International Journal on Software Tools for
Technology Transfer, 5(1):34–48, 2003.

[66] W. Pugh and T. Lindholm. JSR-133: Java memory model and thread
specification. Java Community Process, 2004.

[67] C. Radoi and D. Dig. Practical static race detection for Java parallel
loops. In ISSTA, 2013.

[68] R. Raman, J. Zhao, V. Sarkar, M. T. Vechev, and E. Yahav. Scalable
and precise dynamic datarace detection for structured parallelism. In
PLDI, 2012.

[69] J. Rößler, A. Zeller, G. Fraser, C. Zamfir, and G. Candea. Reconstructing
core dumps. In ICST, 2013.

[70] M. Samak and M. K. Ramanathan. Omen+: A precise dynamic deadlock
detector for multithreaded Java libraries. In FSE, 2014.

[71] M. Samak and M. K. Ramanathan. Trace driven dynamic deadlock
detection and reproduction. In PPOPP, 2014.

[72] K. Sen. Effective random testing of concurrent programs. In ASE, 2007.

[73] K. Sen. Race directed random testing of concurrent programs. In PLDI,
2008.

[74] O. Shacham, E. Yahav, G. Golan-Gueta, A. Aiken, N. G. Bronson,
M. Sagiv, and M. T. Vechev. Verifying atomicity via data independence.
In ISSTA, 2014.

[75] N. Shafiei and F. van Breugel. Automatic handling of native methods
in Java PathFinder. In SPIN, 2014.

[76] S. E. Sim, S. M. Easterbrook, and R. C. Holt. Using benchmarking to
advance research: A challenge to software engineering. In ICSE, 2003.

[77] L. A. Smith, J. M. Bull, and J. Obdrizalek. A parallel Java grande
benchmark suite. In Supercomputing, 2001.

[78] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE: Weaving
threads to expose atomicity violations. In FSE, 2010.

[79] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking
programs. Automated Software Engineering, 10(2):203–232, 2003.

[80] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static race detection on
millions of lines of code. In ESEC/FSE, 2007.

[81] J. Yi, T. Disney, S. N. Freund, and C. Flanagan. Cooperative types for
controlling thread interference in Java. In ISSTA, 2012.

[82] T. Yu, W. Srisa-an, and G. Rothermel. SimRT: An automated framework
to support regression testing for data races. In ICSE, 2014.

[83] C. Zamfir and G. Candea. Execution synthesis: A technique for
automated software debugging. In Eurosys, 2010.

[84] K. Zhai, B. Xu, W. K. Chan, and T. H. Tse. CARISMA: A context-
sensitive approach to race-condition sample-instance selection for mul-
tithreaded applications. In ISSTA, 2012.

[85] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei. Is operator-based
mutant selection superior to random mutant selection? In ICSE, 2010.

189

