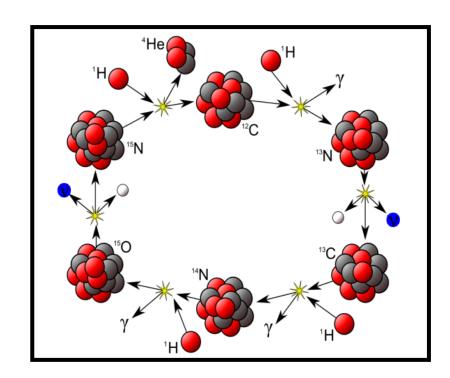
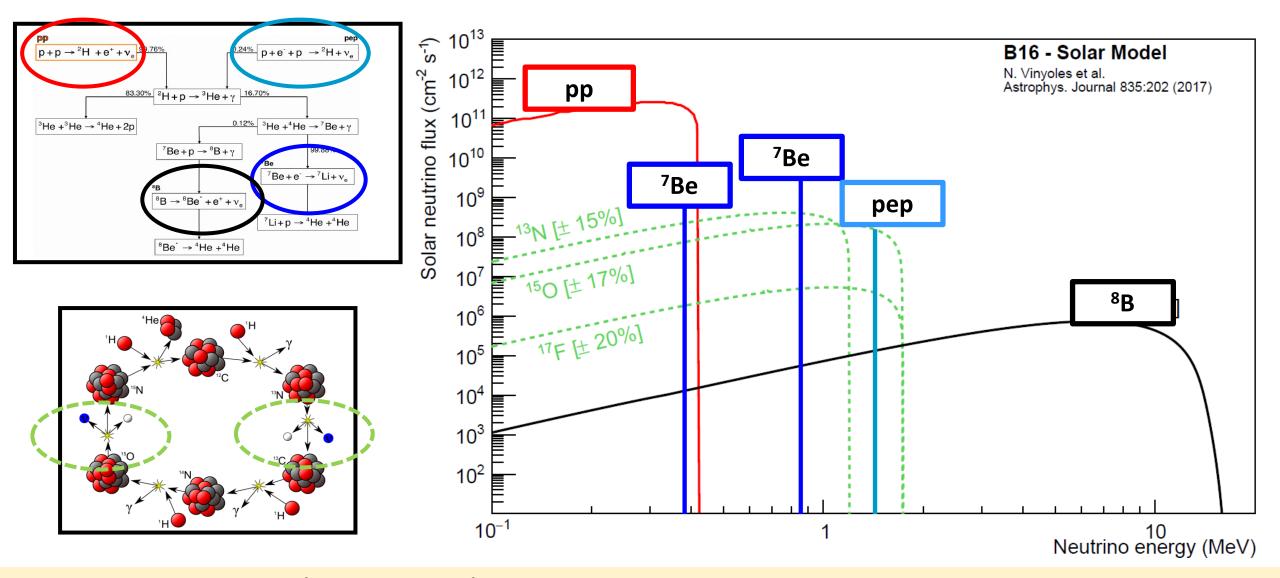

Comprehensive measurement of pp-chain solar neutrinos


Borexino:


Barbara Caccianiga on behalf of the Borexino collaboration

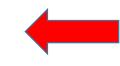
Neutrinos are emitted by fusion reactions occurring in the Sun 4 p $\rightarrow \alpha$ +2 e⁺ +2v (E released ~ 26 MeV)

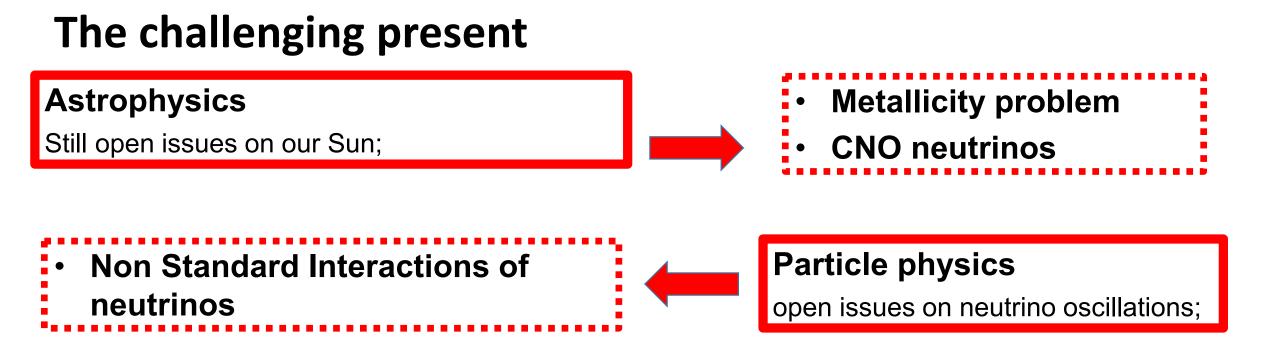
CNO cycle: ~1% of the Sun energy

The glorious past

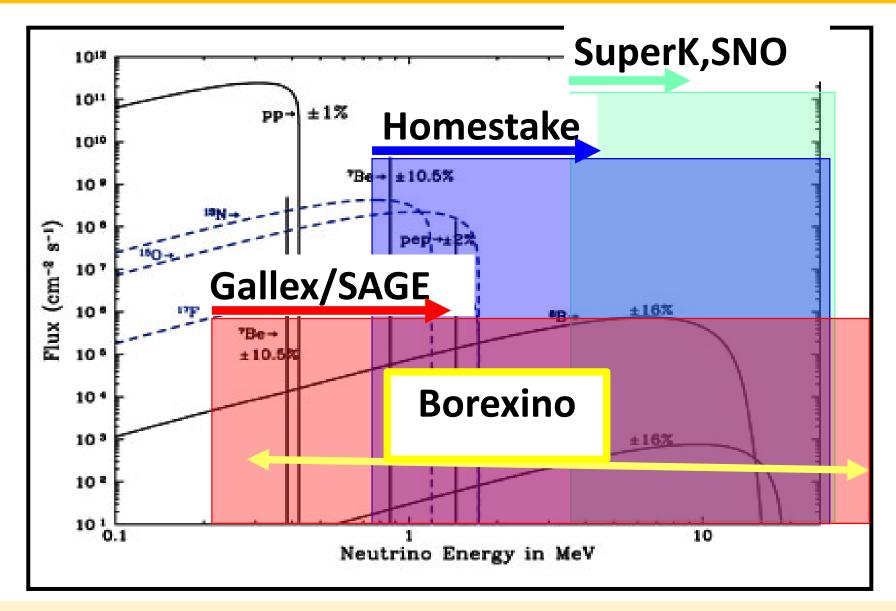
Astrophysics

Original motivation of the first experiments on solar v was to test Standard Solar Model (SSM);

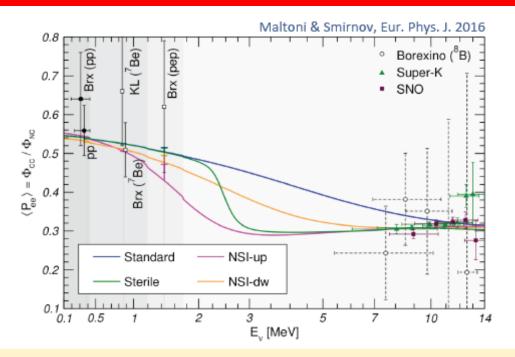




Particle physics


Study of the details of ν flux

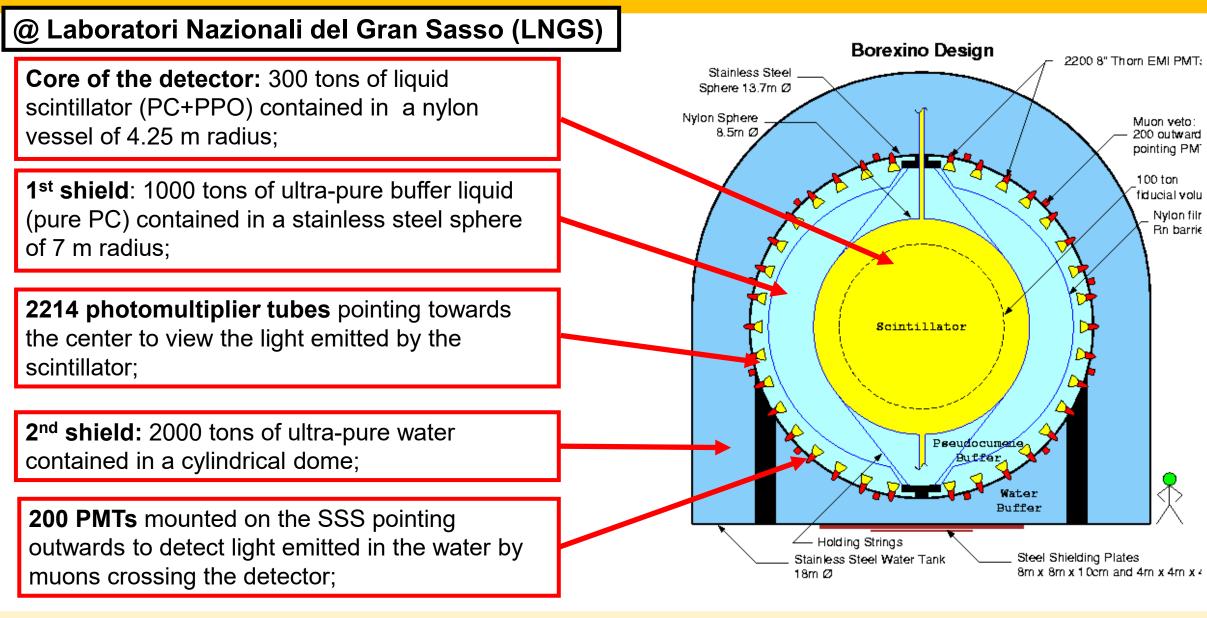
Breakthrough! The solar neutrino problem provided one of the first hints towards the discovery of neutrino oscillations;



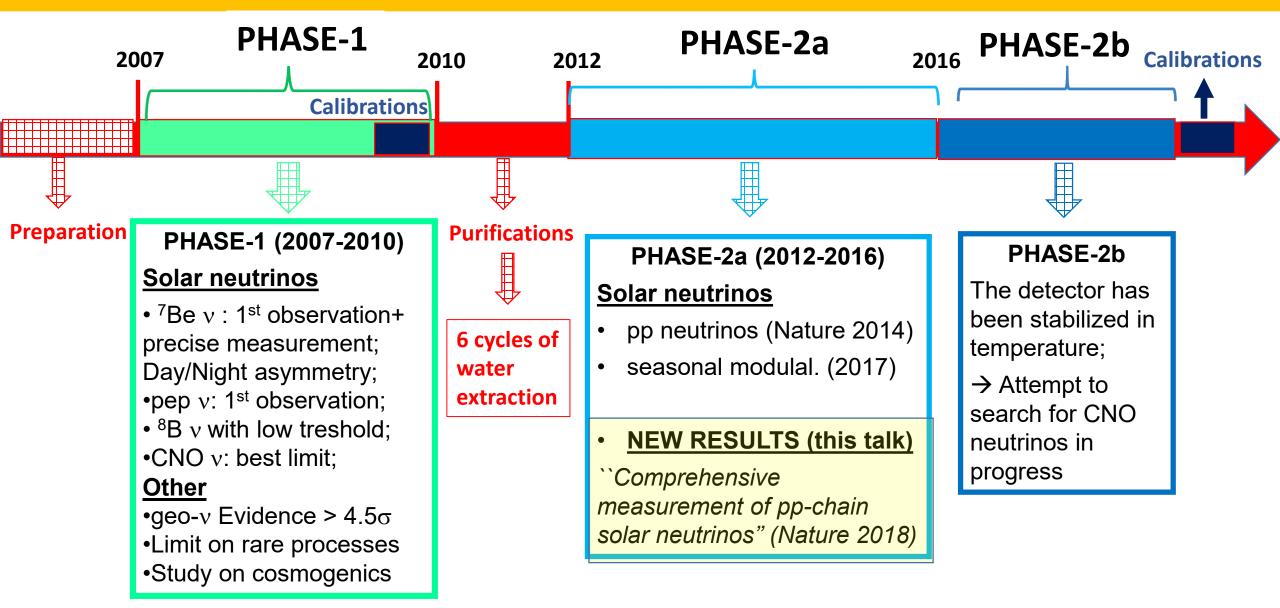
Both astrophysics and particle physics can greatly profit from a detailed knowledge of the solar neutrino spectrum

Astrophysics: metallicity puzzle

- The metallicity determines the opacity of solar plasma and, as a cosequence, regulates the central T of the Sun and the Branching Ratios of the reactions:
- Measuring with high precision the flux of ⁷Be, ⁸B or CNO neutrinos could provide an experimental answer to the puzzle;


FLUX	B16-GS98	B16-AGSs09met	DIFF. (HZ-LZ)/HZ		
pp (10 ¹⁰ cm ⁻² s ⁻¹)	5.98(1±0.006)	6.03(1±0.005)	-0.8%		
pep (10 ⁸ cm ⁻² s ⁻¹)	1.44(1±0.01)	1.46(1±0.009)	-1.4%		
⁷ Be (10 ⁹ cm ⁻² s ⁻¹)	4.94(1±0.06)	4.50(1±0.06)	8.9%		
⁸B (10⁶ cm⁻² s⁻¹) 5.46(1±0.12)		4.50(1±0.12)	17.6%		
¹³ N (10 ⁸ cm ⁻² s ⁻¹)	2.78(1±0.15)	2.04(1±0.14)	26.6%		
¹⁵ O (10 ⁸ cm ⁻² s ⁻¹) 2.05(1±0.17)		1.44(1±0.16)	29.7%		
¹⁷ F(10 ⁶ cm ⁻² s ⁻¹)	5.29(1±0.20)	3.261±0.18)	38.3%		

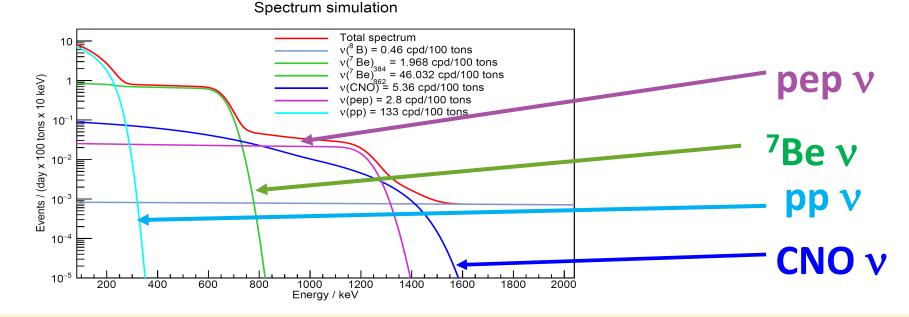
Particle physics: NSI

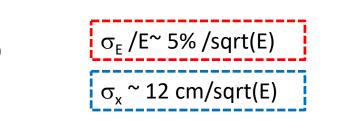

- Study of the Pee at different energies;
- Study of the shape of recoil e⁻ after interaction with neutrinos;

Borexino

Borexino

Borexino: the long story..


Borexino: essential ingredients


For each scintillation event, we record

- Number of photons \rightarrow Energy (approx 500 p.e./MeV)
- Time of arrival of photons \rightarrow position reconstruction

Borexino detects neutrinos through scattering on electrons

- $v_x + e^- \rightarrow v_x + e^-$
- So what we see is the energy carried away by the electron NOT the neutrino energy

Requirements: since the neutrino signal is virtually indistinguishable from background, radiopurity is a MUST

- The expected rate of solar v in BX (in the energy window considered) is at most ~ 50 counts/day/100t which corresponds to ~ 5 10⁻⁹ Bq/Kg;
- Just for comparison:
 - Natural water is ~ 10 Bq/Kg in 238 U, 232 Th and 40 K
 - Air is ~ 10 Bq/m³ in ³⁹Ar, ⁸⁵Kr and ²²²Rn
 - Typical rock is ~ 100-1000 Bq/m³ in 238 U, 232 Th and 40 K

BX scintillator must be 9 order of magnitude less radioactive than anything on Earth!

15 years of work

- Internal background: contamination of the scintillator itself (²³⁸U, ²³²Th, ⁴⁰K, ³⁹Ar, ⁸⁵Kr, ²²²Rn)
 - Solvent purification (pseudocumene): distillation, vacuum stripping with low Argon/Kripton N2 (LAKN);
 - Fluor purification (PPO): water extraction, filtration, distillation, N₂ stripping with LAKN;
 - Leak requirements for all systems and plants < 10⁻⁸ mbar · liter/sec;

• External background: γ and neutrons from surrounding materials

- Detector design: concentric shells to shield the inner scintillator;
- Material selection and surface treatement;
- Clean construction and handling;

Achievements

Internal background: contamination of the scintillator itself

- Contamination from ${}^{14}C \sim 2x10^{-18} {}^{14}C/{}^{12}C$ OK!
- Contamination from ²³⁸U chain < 9.4x10⁻²⁰g/g and ²³²Th chain ~5.7x×10⁻¹⁹g/g; More than two orders of magnitude better than specifications! OK!
- Contamination from ⁴⁰K not observed;
 OK!
- Contamination from ⁷Be (cosmogenic) not observed; OK!
- Contamination from ³⁹Ar <<1 cpd/100t
 OK!
- Some backgrounds out of specifications:²¹⁰Po, ⁸⁵Kr, ²¹⁰Bi, ¹¹C ← See later

External background: γ and neutrons from surrounding materials

Contribution in the relevant energy window ~3 counts/day/100t

The fight against background is not over...

Even in these high radiopurity conditions, we still have background events contaminating our solar neutrino signal;

- We need to apply software cuts to data, in order to remove as much background as possible;
- Furthermore, we need a fit to separate the signal from the residual background components;

New Borexino Phase-II results

New Phase-II results

Summary of improvements with respect to Phase-I

- **1. Improved radiopurity**, because of the purification campaign;
- **2.** Increased statistics (x 1.6 exposure of published Phase-I data);
- **3. Increased stability** of the detector;
- 4. Better comprehension of the details of the energy scale and detector response;

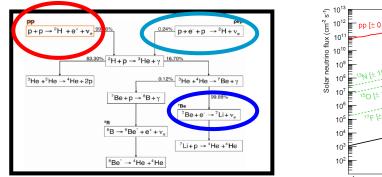
New Phase-II results

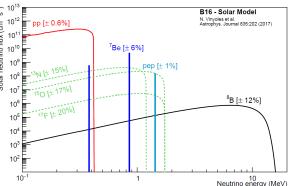
ARTICLE

https://doi.org/10.1038/s41586-018-0624-y AAG (2018) 505.

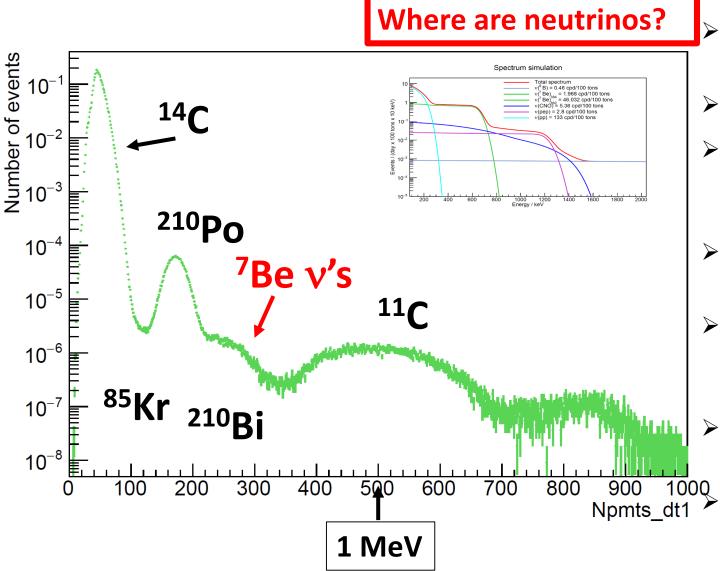
Comprehensive measurement of *pp*-chain solar neutrinos

The Borexino Collaboration*


About 99 per cent of solar energy is produced through sequences of nuclear reactions that convert hydrogen into helium, starting from the fusion of two protons (the *pp* chain). The neutrinos emitted by five of these reactions represent a unique probe of the Sun's internal working and, at the same time, offer an intense natural neutrino beam for fundamental physics. Here we report a complete study of the *pp* chain. We measure the neutrino–electron elastic–scattering rates for neutrinos produced by four reactions of the chain: the initial proton–proton fusion, the electron–capture decay of beryllium–7, the three–body proton–electron–proton (*pep*) fusion, here measured with the highest precision so far achieved, and the boron–8 beta decay, measured with the lowest energy threshold. We also set a limit on the neutrino flux produced by the ³He–proton fusion (hep). These measurements provide a direct determination of the relative intensity of the two primary terminations of the *pp* chain (*pp*–I and *pp*–II) and an indication that the temperature profile in the Sun is more compatible with solar models that assume high surface metallicity. We also determine the survival probability of solar electron neutrinos at different energies, thus probing simultaneously and with high precision the neutrino flavour–conversion paradigm, both in vacuum and in matter–dominated regimes.


Comprehensive measurement of pp-chain solar neutrinos

Comprehensive analysis performed on two energy ranges


- LER (Low Energy Range) between (0.19 2.93) MeV (pp, pep and ⁷Be neutrinos)
- HER (High Energy Range) between (2.3 -16) MeV (⁸B neutrinos)

- The analysis follows similar strategies in LER and HER;
- It is optimized differently in the two energy regions to comply with the different backgrounds affecting each specific energy range;

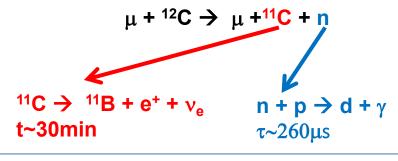
Analysis in the LER (0.19- 2.93) MeV: pp, pep and ⁷Be neutrinos

- ¹⁴**C**: irreducible background in an organic scintillator. It decays β^- (Q=156 keV);
- pile-up of events (especially ¹⁴C);
- ²¹⁰Po: belongs to the ²³⁸U chain. Not in equilibrium with the ²³⁸U chain nor with ²¹⁰Pb; it decays with its livetime of ~ 200 d
- ⁸⁵Kr: present in air. Decays β⁻ (Q= 687 keV);
- ²¹⁰Bi: comes from ²¹⁰Pb not in equilibrium with ²³⁸U chain. It decays β⁻ (Q= 1160 keV)
 - ¹¹**C**: produced by μ . It decays in 30 minutes;
 - ²⁰⁸TI from the PMTs High energy gamma at 2.6 MeV mainly affectig the ⁸B v search

Extracting the neutrino signal from data

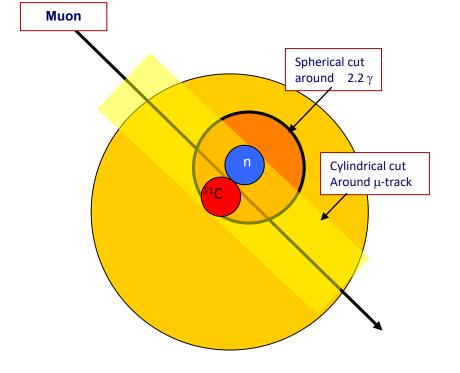
The presence of residual backgrounds (¹⁴C, pile-up, ⁸⁵Kr, ²¹⁰Bi, ²¹⁰Po, ¹¹C) makes it complex to extract the neutrino signal from our data;

- Energy spectrum (TFC-tagged and TFC-subtracted)
- Pulse-shape distribution PS-L_{PR};
- Radial distribution;

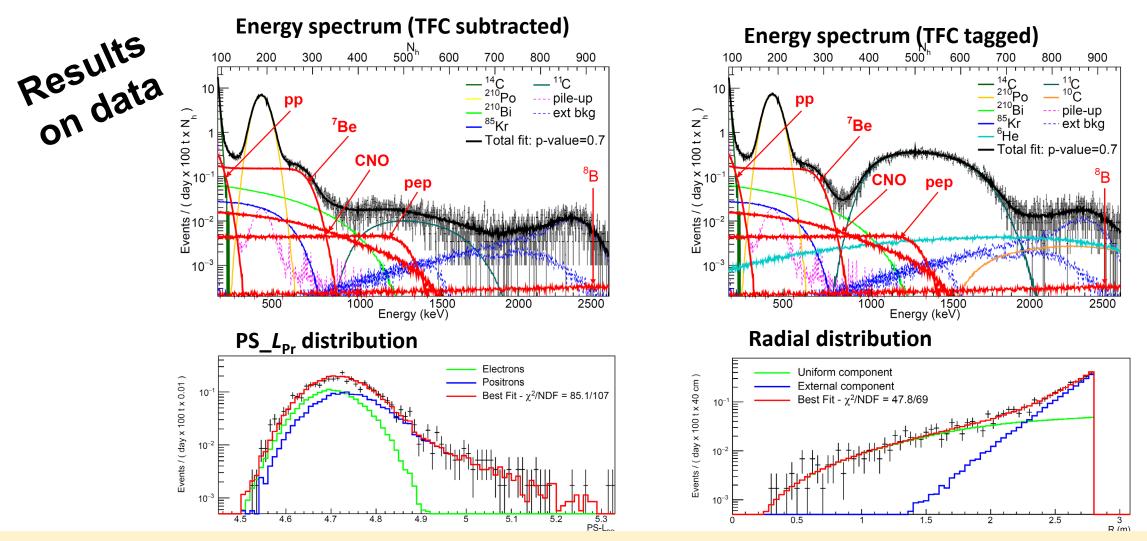

to improve the fit capability to disentangle ¹¹C

to improve the fit capability to disentangle external background

The Three-fold Coincidence technique (TFC)


to improve the fit capability to disentangle ¹¹C

¹¹C is produced by muons together with neutron(s);


The likelihood that a certain event is ¹¹C is obtained using:

- Distance in space and time from the μ-track;
- Distance from the neutron;
- neutron multiplicity;
- Muon dE/dx and number of muon clusters in an event;

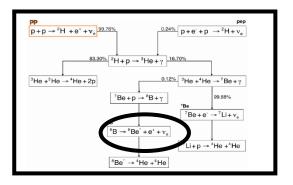
The data-set is divided in two samples: one depleted in ¹¹C (TFC-subtracted) and one enriched in ¹¹C (TFC-tagged) which are simultaneously fit;

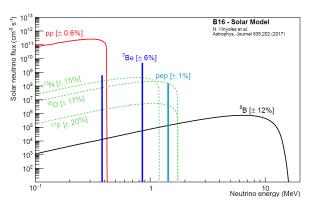
Data-set: Dec 14th 2011- May 21st 2016; Total exposure: 1291.51 days x 71.3 tons;

Systematic errors

			pp		⁷ Be		pep	
	Source of uncertainty	-%	+%	-%	+%	-%	+%	
Two methods to take into	Fit method (analytical/MC)	-1.2	1.2	-0.2	0.2	-4.0	4.0	
account pile-up:	Choice of energy estimator	-2.5	2.5	-0.1	0.1	-2.4	2.4	
Effects of non perfect	Pile-up modeling	-2.5	0.5	0	0	0	0	
modelling of the detector	Fit range and binning	-3.0	3.0	-0.1	0.1	1.0	1.0	
response;Uncertainty on theoretical	 Fit models (see text)	-4.5	0.5	-1.0	0.2	-6.8	2.8	
input spectra (²¹⁰ Bi);	Inclusion of 85 Kr constraint	-2.2	2.2	0	0.4	-3.2	0	
	Live Time	-0.05	0.05	-0.05	0.05	-0.05	0.05	
• ⁸⁵ Kr constrained to be	Scintillator density	-0.05	0.05	-0.05	0.05	-0.05	0.05	
<7.5cpd/100t(95% C.L.) (from Kr-Rb_delayed	Fiducial volume	-1.1	0.6	-1.1	0.6	-1.1	0.6	
coincidences)	Total systematics $(\%)$	-7.1	4.7	-1.5	0.8	-9.0	5.6	

Borexino results and comparison with the theoretical predictions


	Solar ν	Borexino results Rate [cpd/100 t]	
Neutrino	pp ⁷ Be	$ \begin{array}{r} 134 \pm 10 \begin{array}{c} +6 \\ -10 \end{array} \\ 48.3 \pm 1.1 \begin{array}{c} +0.4 \\ -0.7 \end{array} $	Total uncertainty at 2.7% (it was 5%)
rates	pep (HZ)	$ \begin{array}{r} 40.3 \pm 1.1 & _{-0.7} \\ 2.43 \pm 0.36 & _{-0.22}^{+0.15} \\ \end{array} $	\leftarrow >5 σ evidence
	pep (LZ)	$2.65 \pm 0.36 \substack{+0.15 \\ -0.24}$	


Borexino results and comparison with the theoretical predictions

	Solar ν	Borexino results Rate [cpd/100 t]	
Neutrino	pp	$134 \pm 10 {}^{+6}_{-10}$	
rates	⁷ Be	$48.3 \pm 1.1 \ ^{+0.4}_{-0.7}$	Total uncertainty at 2.7% (it was 5%)
14100	pep (HZ)	$2.43 \pm 0.36 \begin{array}{c} +0.15 \\ -0.22 \end{array}$	← >5σ evidence
	pep (LZ)	$2.65 \pm 0.36 \substack{+0.15 \\ -0.24}$	
			_

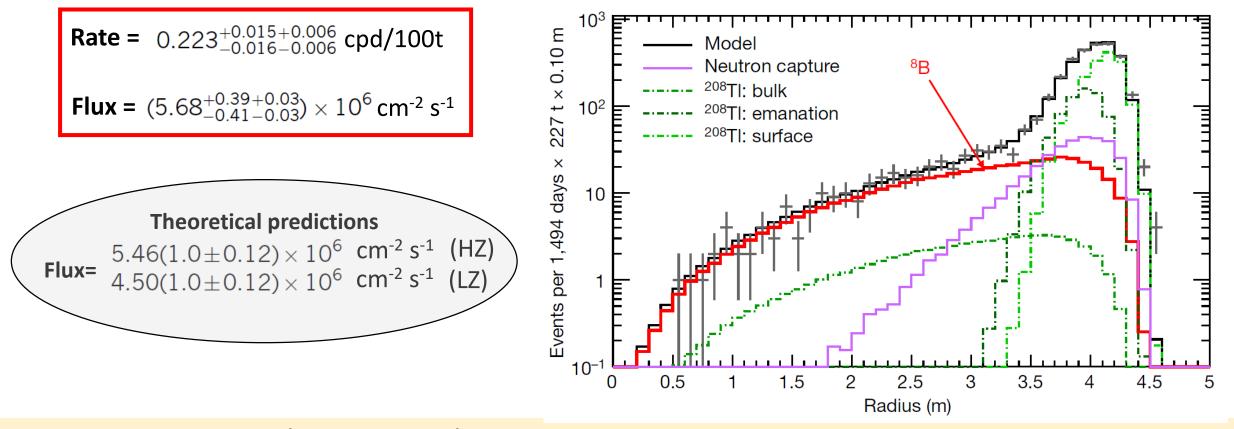
	Solar ν	Borexino results $Flux [cm^{-2}s^{-1}]$	$\begin{array}{c} \text{Expected-HZ} \\ \text{Flux} \ [\text{cm}^{-2}\text{s}^{-1}] \end{array}$	$\begin{array}{c} \text{Expected-LZ} \\ \text{Flux} \left[\text{cm}^{-2} \text{s}^{-1} \right] \end{array}$
Neutrino	pp	$(6.1 \pm 0.5 \ ^{+0.3}_{-0.5}) \times 10^{10}$	$5.98 (1 \pm 0.006) \times 10^{10}$	$6.03 (1 \pm 0.005) \times 10^{10}$
	$^{7}\mathrm{Be}$	$(4.99 \pm 0.13 \ ^{+0.07}_{-0.10}) \times 10^9$	$4.93(1\pm0.06) imes10^9$	$4.50(1\pm0.06) imes10^9$
fluxes Φ	pep (HZ)	$(1.27 \pm 0.19 \ ^{+0.08}_{-0.12}) \times 10^8$	$1.44 (1 \pm 0.009) \times 10^8$	$1.46(1\pm0.009)\times10^{8}$
	pep (LZ)	$(1.39 \pm 0.19 \ ^{+0.08}_{-0.13}) \times 10^8$	$1.44 (1 \pm 0.009) \times 10^8$	$1.46(1\pm0.009)\times10^{8}$

*oscillation parameters from: I.Esteban, MC.Gonzalez-Concha, M.Maltoni, I.Martinez-Soler and T.Schwetz, Journal of High Energy Physics 01 (2017) **neutrino fluxes from: N.Vinyole, A.Serenelli, F.Villante, S.Basu, J.Bergstrom, M.C.Gonzalez-Garcia, M.Maltoni, C.Pena-Garay, N.Song, Astr.Jour. 835, 202 (2017)

Analysis in the HER (2.3-16) MeV: ⁸B neutrinos

Analysis in the HER: ⁸B neutrinos

Extracting the neutrino signal from data


Residual backgrounds affecting this energy region are: ²⁰⁸TI (emanated from PMTs, from the vessel or internal), cosmogenic isotopes, ²¹⁴Bi (intl);

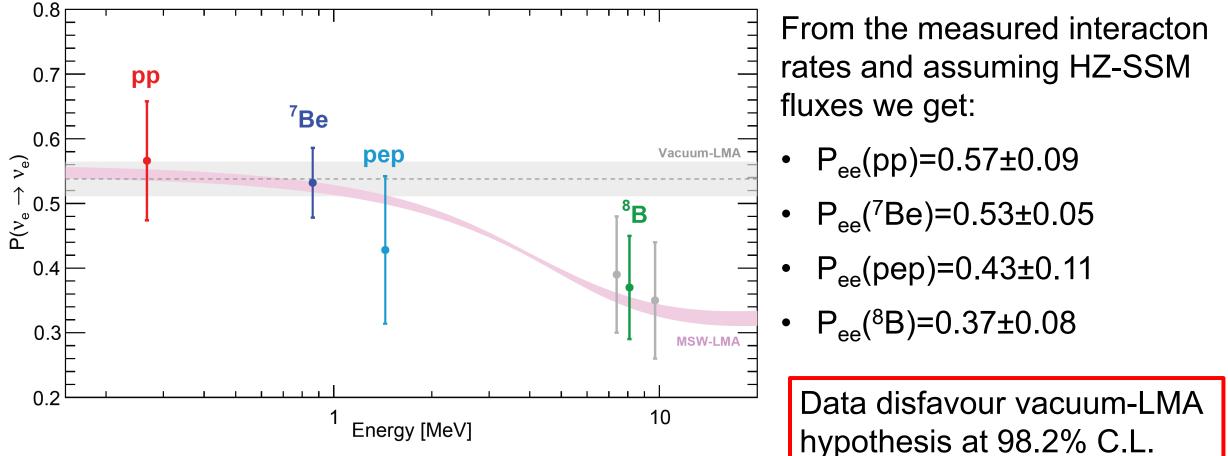
- Analysis is performed in two energy window HER-1 (3.2 -5.7 MeV) and HER-2 (5.7-16 MeV);
- A fit to the radial distribution of events is performed, in order to separate the external background contribution from the signal;
- The internal background is estimated and fixed in the fit;

Analysis in the HER: 8 neutrinos

Results on data

• Data-set: Jan 2008- Dec 2016; Total exposure: 2062.4 days x 227.8 (266) tons;

Analysis in the HER: ⁸B neutrinos


Systematic errors

	HER-I		HER-II		HER (tot)	
Source of uncertainty	-%	+%	-%	+%	-%	+%
Target mass	-2.0	+2.0	-2.0	+2.0	-2.0	+2.0
Energy scale	-0.5	+0.5	-4.9	+4.9	-1.7	+1.7
z-cut	-0.7	+0.7	0	0	-0.4	+0.4
Live time	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05
Scintillator density	-0.05	+0.05	-0.05	+0.05	-0.05	+0.05
Total systematics (%)	-2.2	+2.2	-5.3	+5.3	-2.7	+2.7

Implications of the new BX results

Implications of the new BX results on particle physics

Implication n.1: survival probability P_{ee}

*oscillation parameters from: I.Esteban, MC.Gonzalez-Concha, M.Maltoni, I.Martinez-Soler and T.Schwetz, Journal of High Energy Physics 01 (2017)

Implications of the new BX results on astrophysics

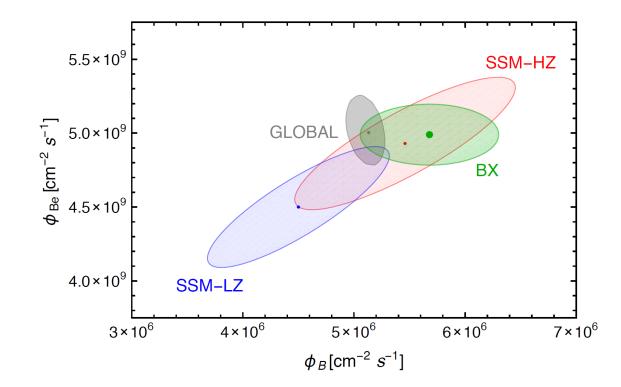
Implication n.2: solar luminosity

- Neutrinos are detected on Earth only 8 minutes after they have been produced in the core of the Sun → They provide a real-time picture of the core of the Sun;
- Using only Borexino results we can calculate the solar luminosity

$$L = (3.89^{+0.35}_{-0.42}) \times 10^{33} \,\mathrm{erg}\,\mathrm{s}^{-1}$$

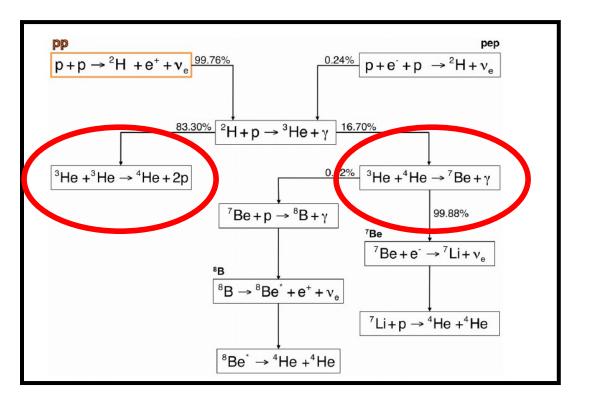
which is found to be in agreement with the well measured photon output

 $L = (3.846 \pm 0.015) \times 10^{33} \,\mathrm{erg}\,\mathrm{s}^{-1}$


- This confirms the nuclear origin of the solar power;
- It proves that the Sun has been in thermodynamic equilibrium over 10⁵ years (the time required fro radiation to flow from the center to the surface of the Sun)

Implications of the new BX results on astrophysics

Implication n.3: metallicity issue

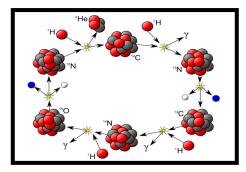

The metallicity determines the opacity of solar plasma and, as a cosequence, regulates the central T of the Sun and the Branching Ratios of the different pp-chain terminations;

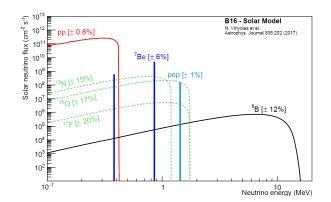
- Combining the BX results on ⁷Be and ⁸B in a likelihood-ratio test we obtain a small hint towards High Metallicity;
- Assuming HZ, we disfavours LZ at 96.6% C.L.;
- Note: we are now largely dominated by the theoretical error;

Implications of the new BX results on astrophysics

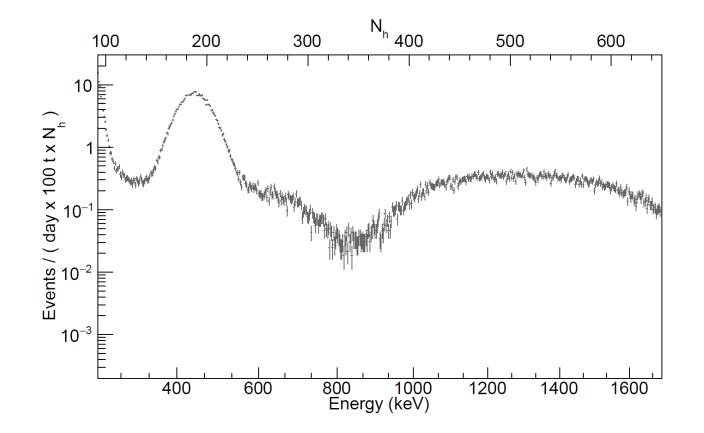
Implication n.4: probing solar fusion

From the pp and ⁷Be flux new measurement

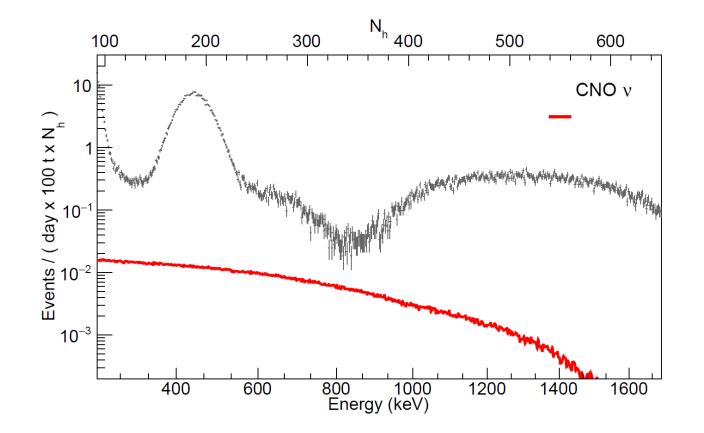

$$R = 0.178^{+0.027}_{-0.023}$$

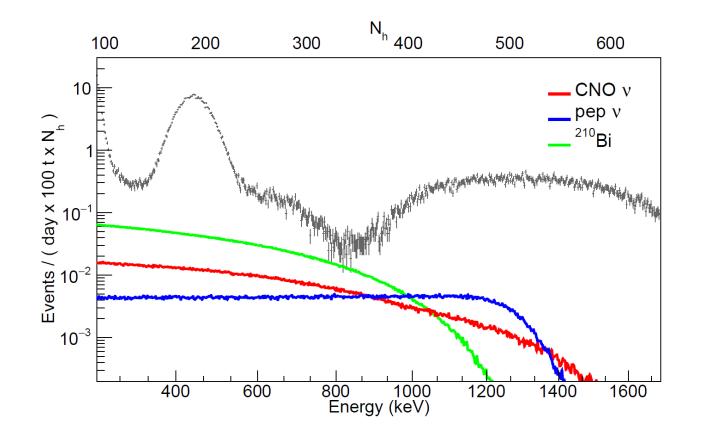

 From the pp and ⁷Be flux measurements it is possible to determine the ratio R between the rate of ³He-³He e ⁴He-³He;

$$R \equiv \frac{<^{3} \text{He} + {}^{4} \text{He} >}{<^{3} \text{He} + {}^{3} \text{He} >} = \frac{2\phi({}^{7}\text{Be})}{\phi(\text{pp}) - \phi({}^{7}\text{Be})}$$


- It is an important experimental test of the solar fusion
- Theoretical predictions

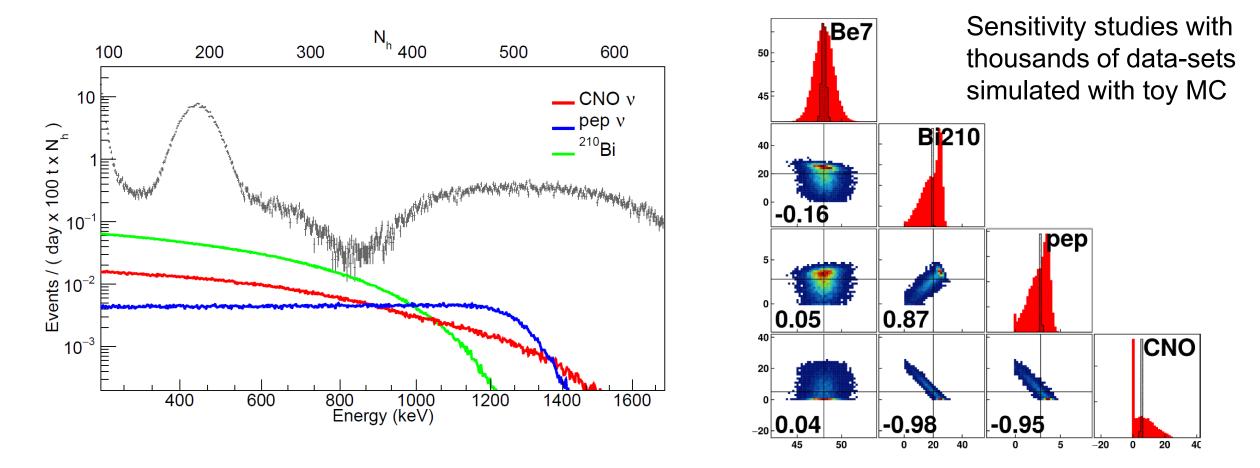
 $\Re(HZ) = 0.180 \pm 0.011$ $\Re(LZ) = 0.161 \pm 0.010$




Difficulties to extract the CNO rate

Difficulties to extract the CNO rate

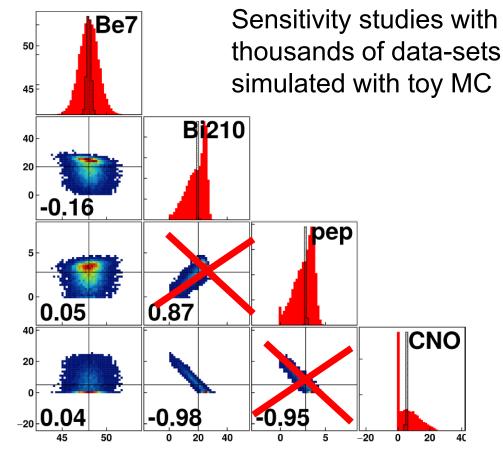
Difficulties to extract the CNO rate

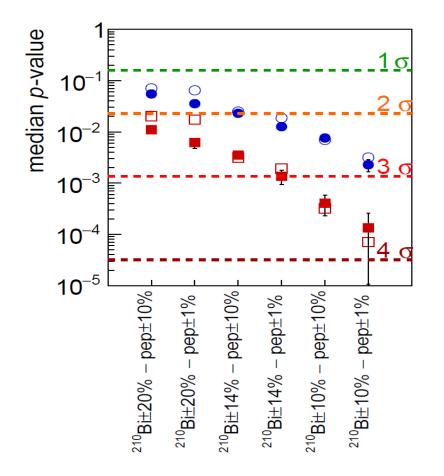


 The similarity between the CNO, pep and ²¹⁰Bi spectral shapes limits the sensitivity of Borexino;

Note also the rates:

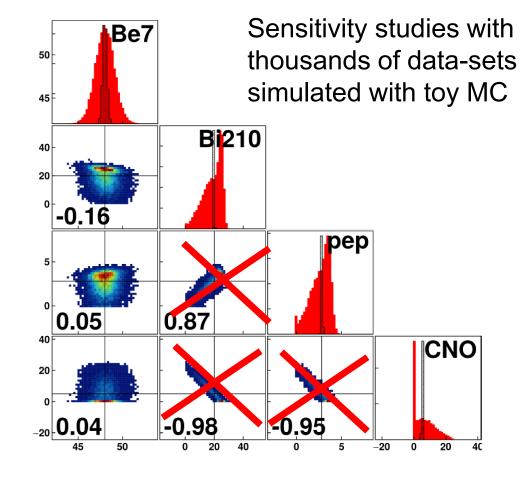
- CNO v ~ 4-5 cpd/100t
- pep v ~ 3 cpd/100t
- ²¹⁰Bi ~ 15-20 cpd/100t


Difficulties to extract the CNO rate


Limits on CNO neutrino rate

- To reduce correlations we put a constraint on the pp/pep ratio following the theoretical predictions:
- R(pp/pep): (47.7±1.2)
- In this way we obtain the most stringent limit on CNO flux;

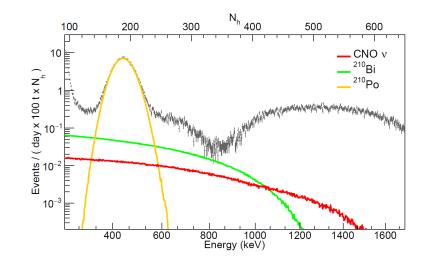
	Borexino results	Expected HZ	Expected LZ
	(cpd/100t)	(cpd/100t)	(cpd/100t)
CNO ν	<8.1 (95% C.L.)	4.91±0.56	3.62±0.37



What if we could constraint also the ²¹⁰Bi rate?

Sensitivity studies with thousands of data-sets simulated with toy MC with different constraints on 210Bi and pep

Possibility to get a measurement of CNO flux between 2σ and 4σ

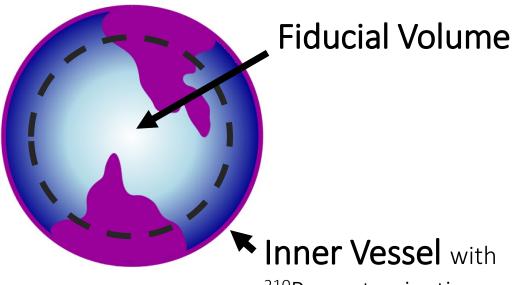


How could we constraint the ²¹⁰Bi rate?

- ²¹⁰Bi is coming from ²¹⁰Pb ;
- ²¹⁰Bi decays to ²¹⁰Po;
- At secular equilibrium the rate of ²¹⁰Bi is equal to that of ²¹⁰Po;

²¹⁰Pb
$$\xrightarrow{\beta^{-}}_{32 \text{ y}}$$
 ²¹⁰Bi $\xrightarrow{\beta^{-}}_{7.23 \text{ d}}$ ²¹⁰Po $\xrightarrow{\alpha}_{199.1 \text{ d}}$ ²⁰⁶Pb

Possibility to measure the ²¹⁰Bi rate from the ²¹⁰Po rate



²¹⁰Po is "easier" to identify wrt ²¹⁰Bi:

- Monoenergetic decay \rightarrow "gaussian" peak
- α decay \rightarrow pulse shape discrimination

Problem

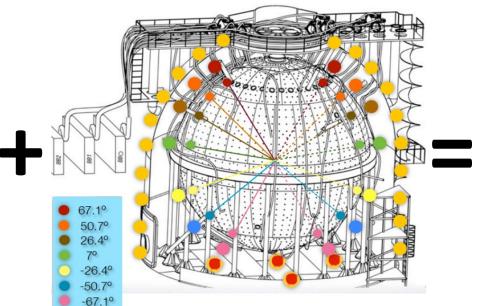
- There is ²¹⁰Po contamination on the vessel; •
- Convective motions triggered by changes in temperature bring inside the scintillator ²¹⁰Po • which is present on the nylon Vessel
- This breaks the secular equilibrium of the ²¹⁰Pb chain! •

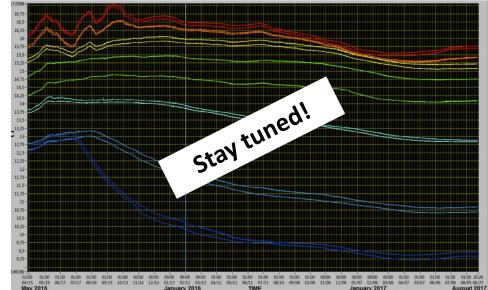
We need to thermally insulate the detector to stop convective motions!

Inner Vessel with ²¹⁰Po contamination

Hardware

- Insulation with rock wool (2015);
- Active T control sys;




Monitoring

54 temperature probes located both in the buffer and in the external tank and at different levels

Results

- The temperature profile has stabilized after insulation;
- We are collecting data in these stable conditions to verify our capability to tag ²¹⁰Bi from ²¹⁰Po;

CONCLUSIONS

The present

The newest results of Borexino on pp-chain solar neutrinos

- Comprehensive study of all neutrinos from the pp-chain (pp, pep, ⁷Be and ⁸B) with the same detector and with a uniform data analysis procedure;
- Improved precision with respect to previous BX measurements (⁷Be precision is now 2.7%!);
- >5 σ evidence of the pep neutrino signal;
- Simultaneous test of the P_{ee} in the vacuum and matter dominated region;
- Hint towards the High Metallicity hypothesis coming from the ⁷Be and ⁸B ν measurement;
- First experimental determination of the ratio between ³He-⁴He and ³He-³He reactions in the Sun;

The future

We are not stopping here

• We continue to take data with temperature stabilized detector in an attempt to measure CNO v;

Thank you!

