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Abstract 

X-ray Computed Tomography (XCT) analysis was applied to identify and quantify typical 

defects in dense 3Y-TZP zirconia processed by the Lithography-based Ceramic 

Manufacturing (LCM) technique. XCT derived strengths were anticipated from the XCT data 

and compared to experimental measurement. A good agreement between XCT data, bending 

strength measurement and fractographic analysis demonstrates the suitability of X-ray 

tomography for both defects detection and predictive mechanical strength estimation. It 

allows also to rank the different defects related to LCM in terms of their criticality versus 

mechanical resistance.  
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1. Introduction 

Additive manufacturing (AM) is a process which enables to produce an object by adding 

material layer-by-layer from a 3D model data. This technology is currently developed for 

ceramic materials to avoid expensive machining, to obtain complex shapes or even to process 

geometries that could not be produced by other technologies [1, 2]. Different AM techniques 

have been used for these materials, among which are Direct Ink-jet Printing (DIP) [3], 

robocasting or direct ink writing (DIW) [1], Selective Laser Melting (SLM) [4], Selective 

Laser Sintering (SLS) [5,6], Stereolithography (SLA for StereoLithography Apparatus) [7], 

Lithography-based Ceramic Manufacturing (LCM) [8] and Ceramic On-Demand Extrusion 

(CODE) [9]. Most research and developments in AM of ceramic materials are related to 
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alumina and zirconia based ceramics for which high densities and promising mechanical 

properties, sometimes comparable to those of conventional manufacturing, could be reached 

(Table 1). However, it is still premature to make a direct comparison of the different processes 

due to insufficient data and to the non uniformity of the mechanical testing methods used to 

evaluate the final products. Moreover, the strength reliability of AM ceramics is still a 

challenge that requires to clarify the interdependencies between their final properties and the 

processes. In particular, only few works have been devoted to the characterization of the 

defects inherent to AM, which is crucial for the optimization of the mechanical properties. For 

example, Hagedorn et al. [28] reported that SLM of a zirconia toughened alumina (ZTA) 

ceramic resulted in crack formation that could be avoided by high-temperature preheating 

below the melting point of the material. In the case of stereolithography manufacturing of 

alumina, it has been shown [29] that large cracks and delamination between layers could be 

suppressed using an optimized two-step debinding process. Harrer et al. [20] have shown that 

for Y-TZP zirconia manufactured using the LCM technology, defects could be induced at 

different steps of the process, especially during the detachment of the green body from the 

building platform. The authors proposed some improvements of the manufacturing process to 

reduce the defects and their influence on the strength, which depend on the layers architecture 

and the loading configuration. Gan and Wong [30] have reported that the printing defects and 

the flexural strength of SLM manufactured alumina composites depend on the layer thickness, 

which shows that internal defects between layers may also compromise strength.  

Microstructural characterization of ceramic materials is commonly achieved using optical or 

Scanning Electron Microscopy (SEM) that provides only 2D information of outer surfaces. 

Successive sectioning and subsequent microscopy are thus needed to evaluate 3D 

microstructure. X-ray Computed Tomography (XCT) is a non-destructive technique that 

receives increasing attention as it enables new insight into 3D microstructure [31,32]. It is 

based on X-ray attenuation and 3D reconstruction of the internal structure from sequential 2D 

projection images, with a typical resolution of few microns. Particular interest has 

been recently shown for the application of XCT in the field of AM, to evaluate AM methods, 

to control the geometry of the produced components or to characterize their microstructure 

[33-37]. In the field of ceramic materials, XCT have been particularly used for structural or 

damage characterization of ceramic matrix composites [38-43] and to evaluate pore 

morphology and interconnectivity of porous or cellular ceramics [44-50]. XCT analysis was 

also applied to follow the microstructural evolutions during the compaction process of 
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ceramic materials [51] or their sintering [52-54], and to investigate indentation induced 

cracking in dense alumina [55]. Pecanac et al. [56] used computed tomography data for 

numerical simulation of the mechanical behavior and strength prediction of tubular porous 

ceramics containing large defects. However, to our knowledge, this method has not been 

systematically applied to identify critical flaws in dense ceramics and their correlation to the 

mechanical properties. This study thus focuses on the application of XCT to characterize 

typical defects induced in a tetragonal polycrystalline zirconia stabilized with 3 mol % of 

yttria (3Y-TZP) processed by the LCM technology and to investigate their correlation with 

the bending strength. 

2. Material and Methods  

2.1. Material and samples 

In this work, samples of tetragonal polycrystalline zirconia (3Y-TZP), received as rectangular 

bars (2.2 x 2.5 x 25 mm3), were produced by Lithoz Gmbh (Austria). The materials were 

manufactured using the technique of Lithography-based Ceramic Manufacturing (LCM), the 

principle of which is based on a selective polymerization of a photosensitive ceramic source 

material obtained by dispersing a ceramic powder into a mixture of photocurable monomers. 

A laser beam is deflected onto the positions calculated by the CAD software and hardens or 

polymerizes the binder, so that the desired object is built up layer-by- layer. The material was 

identical to that described in [20]. In summary, the slurries were composed of 42  vol.% of 

3Y-TZP ceramic powder and a photopolymerizable monomer mixture based on acrylates and 

methacrylates. Green bodies were first printed with a layer thickness of 25 µm, then they were 

cleaned and debinded under air atmosphere to remove the organic photopolymer matrix, 

before sintering at 1450°C for 2 hours. Two different layer architectures were produced by 

upright (U) or horizontal (H) building (fig. 1). Both materials were highly dense (relative 

density of 99%) and characterized by identical elastic properties. The Young’s modulus and 

Poisson’s ratio determined by the resonance vibration method were of 213 GPa and 0.3 

respectively, and the Vickers hardness was of 13.1 GPa. The final microstructure (Fig. 2) was 

isotropic for both architectures with identical mean fine grain size  of 0.5 ± 0.2µm (evaluated 

by the linear-intercept method over 200 grains and applying a factor of 1.56 to account for the 

2D to 3D correction), which is typical of conventionally manufactured 3Y-TZP [57].  
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2.2. X-ray computed tomography  

Systematic XCT analysis was carried out before fracture on most samples (21 from a total of 

26 for each architecture), to identify typical LCM defects and quantify their size / distribution. 

XCT measurements were carried out using a Phoenix vTomeX/CT scanner (GE Phoenix | X-

Ray GmbH, Germany). A continuous rotation was used and the integration time was 1000 ms 

for each of the 900 projections acquired over 360°. These parameters resulted in measurement 

periods of 15 minutes for a complete scan.  The experiments were performed at a voltage of 

140 kV and a current of 80 μA with a copper filter of 0.3 mm on the X-ray tube. XCT scans 

were generated in 4 identical steps, over a total length of 10 mm (in z direction) at the center 

of the samples. Each scan step allowed to obtain a stack of 1250 slices, perpendicular or 

parallel to the layers respectively in H and U samples (Fig. 1), with a voxel size of 2 μm. The 

cone-beam XCT data were reconstructed by a filtered back projection Feldkamp-algorithm. 

The reconstructed data were processed and visualized with the public domain ImageJ/Fiji 

shareware. In order to allow quantitative analysis of defects distributions and correlation with 

SEM micrographs, a low scan speed was achieved with improved conditions i.e., 900 

projections and averaging 3 images at each step angle for selected samples to improve the 

quality (i.e. signal/noise ratio) of XCT images.  

2.3. Strength measurements 

To characterize the ‘as received’ surface state, the samples were only chamfered on the tensile 

side and they were tested so as the fracture plane was parallel or perpendicular to the layers 

respectively for U and H samples (Fig. 1). Due to a slight curvature of the samples, three 

points bending configuration was chosen rather than the generally more suitable 4 points one 

(where the stress is constant between the inner spans), to ovoid asymmetrical bending which 

would result finally in a more complex stress distribution. The three-points bending were 

performed on 26 samples of each architecture, with a span of 20 mm and a cross-head speed 

of 2 mm/min, using a universal hydraulic INSTRON 8500 testing machine.  

 

3. Results and discussion 

 

3.1. Defects characterization by XCT  
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Typical cross-sectional XCT-images of H and U samples are shown in Fig. 3. They allowed to 

identify four types of defects, already observed by fractography in LCM processed Y-TZP 

with architectures similar to those used in the present study [20]: large surface defects, pores, 

delamination’s and agglomerates. In addition to these defects, cracks (marked with the letter 

C in Fig. 3), were also identified in U samples.  

Large surface defects and delamination’s, examples of which can be seen in Fig. 3, are typical 

of H samples and result from the removing of the specimens from the building platform. 

Indeed, the primary layer (in contact with the platform) that ensures the adherence of the 

sample on the building platform in the LCM process [20] has not been removed for this study. 

Surface defects can be distinguished by their irregular shape and delamination’s by their 

elongated shape at the edges.  

Pores were easily detected by XCT analysis as they provide sufficient X-Ray absorption 

contrast (Fig. 3). From 3D reconstructions (Fig. 4), it can be seen that they are mostly 

spherical for both architectures and are distributed throughout the entire scanned volume of U 

samples. By contrast, for H samples, the pores are often concentrated near the largest surface 

and within a central channel perpendicular to the layers. Fig. 5 shows typical differential and 

cumulative size distributions (in number) of pores, determined automatically using imageJ 

software, within the total scanned volume (length of 10 mm at the centre of samples). Given 

the thresholding used to remove background noise, only pores with equivalent sphere 

diameters (ESD) larger than 7 µm were detected. Reproducible and similar positively skewed 

distributions were observed for both architectures and the range of 7 to 20 µm is the dominant 

pore size for both architectures, with cumulative frequency exceeding 90%. The average pore 

size based on the value of D50 was determined from the cumulative pore size distribution of 

Fig. 5b and both architectures presented a similar value of 11 µm. The maximum of the 

distribution is at an ESD in the range of 8 - 10 µm and two other peaks can be seen at about 

15 and 20 µm, with a lower number of pores. The largest ESD observed in the scanned zone 

was of 54 µm, detected in H sample. The sphericity was also determined and it was close to 1 

for 90% of pores, confirming that they have a quite perfect spherical shape.  

Agglomerates could be a consequence of the powder-binder preparation process and 

correspond to large under-densified zones. This differential densification didn’t always 

provide sufficient X-Ray absorption contrast necessary to detect these defects by XCT 

analysis. They could be detected only by scrolling through the slice projections of U samples 
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(Fig. 3), due to the presence of characteristic surrounding small voids that provide higher 

contrast. 3D reconstruction (Fig. 6) showed that they are in the form of circular discs parallel 

to the layers, with an average thickness of 22 µm, which is on the order of the layers 

thickness. The agglomerates size distribution (Fig. 7) was determined manually as the X-Ray 

absorption contrast was not sufficient for automated detection of these defects. It is shown 

that agglomerate diameters lay in the range of 20-180 µm with a maximum frequency at 50 

µm. Most of them are smaller than 100 µm with cumulative frequency of 94%. The average 

agglomerate size based on the value of D50 was of 56 µm. 

Cracks emanating from agglomerates (marked with the letter C in Fig. 3) were often detected 

in U samples.  They extend perpendicularly to the cross section of the agglomerates, over a 

width equivalent to the thickness of the latter’s. Due to this orientation (parallel to the stress 

direction for U sample), these cracks would not be relevant to fracture initiation in the used 

loading configuration.  

3.2. Flexural strength 

Fig. 8 shows a Weibull plot of the strength data for U and H architectures. Unbiased values of 

the Weibull modulus, m, and the characteristic strength 0 (the stress corresponding to 

63% fracture probability), with their 90% confidence intervals, were calculated following 

[58].  The obtained values of m were 11.2 [7.9-15] for U samples and 6.4 [4.5-8.6] for H 

samples and 0 was of 939 [810-968] MPa and 851[825-877] MPa respectively for U and H 

samples. The results are in accordance with those of four points bending tests in [20], with a 

lower difference between the strengths of H and U samples in the present work. 

 

3.3.  XCT derived critical defects  

3.3.1. Detection and classification           

A systematic examination of the XCT scans performed before fracture was performed to 

identify the potential fracture initiating defects. The investigation was started from the tensile 

side and two H samples fractured out of the scanned zone were eliminated. For each sample, 

four potential critical defects were detected (one in each of the 4 scanned volumes) then their 

sizes, aCT, and their locations along the longitudinal direction (z axe in Fig. 1), zCT, were 

measured from the sample center. Considering a fixed applied load, the stress intensity factor 

corresponding to each defect was determined taking into account the linear decrease of the 
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stress from its maximal value,max (reached at the centre of the tensile side, in the used 3 

point bending configuration): 

 CT
I max CT

1 Z
K Y a

10

 
   

 
 (1)  

Y is a geometric factor for which the values of 1.13 and 1.3 were taken respectively for 

volume and surface defects [59]. 

The defect corresponding to the maximal stress intensity factor was retained as the critical 

defect in the sample.  

The type, the size and the frequency of the retained critical defects are compared for U and H 

architectures in Table 2. As the samples were chamfered, potential critical defects were rarely 

detected at the edges; this was the case only for 4 H samples that presented large delamination 

defects on the tensile side. For this architecture, 85 % of the potential critical defects were 

detected on the tensile surface (including edge ones), and most of them could be considered as 

handling defects due to their large size (up to 84 µm). For U samples, surface defects are very 

small compared to those observed in H ones, and agglomerates near the tensile surface and 

perpendicular to the stress direction, were identified as the most critical defects in all samples. 

It is to not that agglomerates are also present in H samples. However, they are not fracture-

initiation relevant for this architecture since they are parallel to the direction of tensile stress. 

Pores were rarely identified as potential critical defects (only in 15 % of H samples), in 

accordance with the small tensile stressed area in the used 3 points bending configuration, as 

it was also reported for ball on three balls tests in [20]. Moreover, their size is smaller than 

that of agglomerates in U samples.  

3.3.2. Correlation with strength measurements  

For the scanned samples, an effective strength, eff, corresponding to the location (zCT) of the 

XCT derived potential critical defect, was calculated from the measured strength, f (eff =f 

(1-zCT/10)). An XCT derived strength, CT-f was also determined using the Griffith criterion 

[60]: 

 IC
CT f

CT

K

Y a
   (2) 

where aCT is the XCT derived defect size, KIC is the fracture toughness taken as 4.9 MPam1/2 
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(after [20]) and Y the geometrical factor used for eq. 1. 

In Fig. 9, CT-f is plotted versus efffor the critical defects retained in both U and H samples. 

A good agreement between the two values is obtained for almost all samples with greater 

consistency for U architecture. Indeed, in this case, the failure origins are agglomerates, 

similar to circular internal defects perpendicular to the applied stress, for which the 

geometrical factor used in the calculations for volume defects is particularly useful. For H 

architecture, large differences (> 100 MPa) were observed between CT-f and eff for some 

samples and can be attributed essentially to the approximated values of the geometrical 

factors, as they are not precisely known for the large surface defects with complex shapes 

detected in XCT projection images. Moreover, the large delamination’s observed in these 

samples could reduce the cross sections of the bars over a long distance and thus, may lead to 

underestimation of the experimental determined strengths (eff). Precise calculations taking 

into account real defect shapes would reduce the differences between the XCT derived and 

the experimental effective strengths. 

3.3.3. Correlation with SEM analysis  

After the bending tests, a fractographic analysis using SEM was carried out on representative 

samples to verify the fracture origins. In most cases, the lasts are similarly positioned as 

predicted by XCT analysis and a very good agreement was found between XCT images and 

SEM micrographs of the fracture origins in H and U samples (Fig. 10 and 11). These results, 

added to the good correlation between XCT data with mechanical strength, clearly 

demonstrate that XCT analysis is entirely relevant to characterize the defects in AM dense 

ceramics in order to monitor and then to optimize their manufacturing process.  

4. Conclusion 

X-Ray computed tomography analysis was successfully applied for non-destructive detection 

of typical defects in LCM processed 3Y-TZP zirconia and allowed to obtain information on 

their 3D nature and distribution. Moreover, XCT analysis allowed the identification of 

potential critical defects with a good correlation with bending strength measurements and 

SEM observations of the fractured surfaces. Such advanced quantification of defects may be a 

powerful tool to qualify ceramics processed by AM and highlight the most critical defect 

populations, in order to improve process and reach very high-performance products. 
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Fig. 1. Schematic representation of the horizontal (H) and upright (U) 

architectures showing the orientation of the material layers in relation to the tensile 

side and the direction, z, of XCT scans completed over a length of 10 mm at the 

center of the specimens (colored area). 
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Fig. 2. SEM micrograph of 3Y-TZP studied material. 
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Fig. 3. Examples of XCT slices showing typical detected defects. Pores 

(P) are present in both H and U architectures, delamination (D) and large 

surface defects (S) were detected in H samples and agglomerates (A) with 

associated cracks (C) are typical of U samples. 
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Fig. 4. 3D XCT reconstructions showing the pores distribution in H and U 

samples (Observation volume: 2.2 x 2.5 x 2.5 mm3). 
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Fig. 5. Pore size distribution (a) and cumulative pore size distribution (b) in H and U 

samples, over the total scanned volume (2.2 x 2.5 x 10 mm3). 
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Fig. 6. Example of 3D perspective view of an agglomerate, with views in x and z 

directions. Colored area correspond to under-densified zones. 
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Fig. 7. Agglomerate size distribution (a) and cumulative agglomerate size distribution (b), 

over a total scanned volume (2.2 x 2.5 x 10 mm3) of U sample. 
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                        Fig. 8. Weibull plot showing the probability of failure versus strength. 
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Fig. 9. Correlation between the effective and the XCT derived strengths. Open symbols 

correspond to surface defects and solid ones to volume defects (i.e. agglomerates for U 

samples and pores for H samples). 
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Fig. 10. Example of comparison between an XCT slice of H sample containing the 

potential surface critical defect (a), and corresponding SEM micrograph of the fracture 

surface (b). Upper surface corresponds to the tensile side.  
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Fig. 11. Example of comparison between an XCT slice of U sample containing the potential 

agglomerate critical defect (a) and corresponding SEM micrograph of the fracture surface, 
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corroborating the presence of 150 m-sized agglomerate (b). Upper surface corresponds to 

the tensile side. 
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Tables 

 

Table 1: Properties of alumina, 3YTZP zirconia and zirconia toughened alumina (ZTA) processed by additive manufacturing (AM) compared to 

those obtained for conventional manufacturing (CM). Subscript symbols defined below indicate the testing methods for toughness and strength 

measurements. 

 

Material Process 
Density 

(%) 

Grain size 

(μm) 

Vickers hardness 

(GPa) 

Toughness 

(MPa.m1/2) 

Strength 

(MPa) 

Weibull  

modulus 
References 

 AM        

 
DIW 97 1.4 18.6 3.31 IF 230 4P 8.9 

[10] 

 
LCM 99.3 3.05 - - 427 4P 11.2 

[8] 

Al2O3 LCM - - 15.8 6.5 FA 490 B3B 11.43 
[11] 

 SLA 
- 4.22 17.2 5.94 IF - - 

[12] 

 SLA 
98.5 1.9 - - 486 3P - 

[13] 

 SLS 
98 - - - 363.5 3P - 

[14] 

 CM > 99 2 – 4 17 -1 8 3 - 4 300-500 8-11 [15-18] 

 AM 
      

 

 DIP 
96.9 - - 6.7 SEVNB 763 4P 3.5 

[3] 

3Y-TZP DIP 
- < 1 - - 1393 B3B 10.4 

[19] 

 CODE 
99.1 0.81 13.1 4.6 CNB 563 4P 7.9 

[9] 

 LCM 
99 - 13.4 4.9 SEVNB 878 4P 11.1 

[20] 

 CM > 99 < 1 ≈13 4 - 6 SEVNB 900- 1200 13-17 [19,21-23] 

ZTA* AM 
      

 

20 SLA 
99.5 1.08 17.8 5.7 IF 530 3P - 

[ 24] 

41.5 SLM 
> 99 - - - 538 B3B - 

[25] 

20-21 CM > 99 < 1 17-19 5-7 500 -1000 13 [26, 27] 

 

SEVNB: Single Edge V Notched Beam. 

IF: Indentation Fracture method. 

FA: Fractographic Analysis. 

CNB: Chevron Notched Beam. 

3P: three points bending test 

4P: four points bending test. 

B3B: biaxial ball-on-three balls test. 

*  indicated is the wt% of zirconia and the  

    grain size of alumia. 

   
 

 
 

 

 

Table 2: Fracture origins detected by XCT before 3P-bending tests (21 samples for each architecture). 

Defects 
Sample H  Sample U 

Number Size (µm) Number Size (µm) 

Agglomerate 

Surface 

Edge 

Pore 

Not determined* 

0 

12 

4 

3 

2 

0 

13 – 84 

35 – 68 

35 – 65 

0 

21 

0 

0 

0 

0 

54 – 173 

0 

0 

0 

0 

*Fractured out of the scanned area 
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