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Abstract

Iterative solvers based on Krylov subspace methods are widely used for the solution of the problems that appear in large-
scale parallel scientific simulations. These solvers, when parallelized, often suffer from global synchronization overheads
due to the collective communication operations. Block CG variants have the advantage of reduced communication
overheads at the expense of increased computation per iteration. The aim of this project is the scalable parallelization of
two such block CG variants, Orthomin and Orthodir, proposed by FET-HPC project NLAFET to enable the use of these
methods on future exascale systems through reducing number of the synchronization points. We investigate 1D- and
2D-partitioning of the sparse coefficient matrix for encapsulating the minimization of the communication overhead as well
as one- and two-constraint partitioning for computational load balancing. Two different parallel codes for Orthomin and
Orthodir variants are developed. The relative performance of different partitioning techniques are evaluated by running
the parallel Orthomin and Orthodir codes on two different HPC systems up to 1024 processors with 26 symmetric positive
definite matrices. The number of rows in these matrices ranges between 13,681 and 1,391,349, whereas the number of
nonzero entries ranges between 340,431 and 77,651,847.

1. Introduction

Iterative solvers based on Krylov subspace methods are widely used for the solution of the problems that
appear in large-scale parallel scientific simulations. These solvers, when parallelized, often suffer from global
synchronization overheads due to the collective communication operations as discussed in several works [6, 7,
8, 9, 14, 15, 16, 18].

Recently, FET-HPC project NLAFET (Parallel Numerical Linear Algebra for Future Extreme Scale Systems)
has proposed new iterative methods based on enlarged Krylov subspaces that are variants of the Conjugate
Gradient (CG) method [10, 11]. Block CG variants have the advantage of reduced communication overheads at
the expense of increased computation per iteration. These methods are based on Orthomin and Orthodir variants
and they dynamically reduce the number of search directions compared to the existing block CG methods. It
is shown that these two variants converge faster and reduce the computation and memory overheads compared
to the existing block CG variants for solving symmetric positive definite linear systems with a single right hand
side.

The aim of this project is to enable the scalable parallelization of Orthomin and Orthodir methods pro-
posed by FET-HPC project NLAFET for future exascale systems. Both methods contain the following kernel
operations: sparse matrix dense matrix multiply (SpMM), dense matrix update (DMU), dense matrix matrix
transpose multiply (DMMT), and forward and backward substitution (FS/BS) on triangular factors of block
matrices. Intelligent partitioning of the sparse coefficient matrix is crucial for the efficient parallelization of
these kernel operations. The input and output dense matrices of the SpMM operation should be partitioned
conformably in order to avoid redundant communication during DMU and DMMT operations. In this setting,
SpMM incurs irregular point-to-point communications, DMU incurs no communication, DMMT incurs a regu-
lar collective communication, and FS/BS incurs no communication based on sequential factorization of a block
matrix .

We investigated and implemented one-dimensional (1D) and two-dimensional (2D) partitioning models with
single-constraint and multi-constraint variants. In 1D partitioning, we implemented row-wise partitioning of the
sparse coefficient matrix, utilizing the standard graph model, that aims to minimize the total inter-processor
communication volume while maintaining computational load balance. In 2D partitioning, we adopted a two-
phase approach in which we utilized the described 1D partitioning in the first phase and 2D cyclic matrix
distribution in the second phase [3]. The 2D model has the nice property of providing O(

√
K) bound on the

number of messages sent/received by a processor, where K denotes the number of processors. Note that the
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bound for the same metric in 1D partitioning is O(K). In both 1D- and 2D-partitioning, using a single constraint
aims at maintaining balance on the computational loads of processors during the parallel SpMM operations,
whereas using two constraints aims at maintaining balance on the computational loads of processors during
both parallel SpMM and DMU-DMMT-FS/BS operations.

Parallel Orthomin and Orthodir codes were developed for both 1D- and 2D-partitioned sparse coefficient
matrices. The row-parallel [1, 19, 20] and the row-column-parallel [2, 17, 19] SpMM algorithms were utilized for
the former and latter parallelization schemes. The parallel codes follow the steps of the sequential MATLAB
code that is provided by NLAFET. The relative performance of the above-mentioned four different partitioning
techniques were evaluated by speedup values, obtained through running the parallel Orthomin and Orthodir
codes on two distributed memory systems, Sariyer and Juwels, with up to 1024 processors for 26 symmetric
positive definite matrices from SparseSuite Matrix Collection [5]. The number of rows in these matrices ranges
between 13,681 and 1,391,349, whereas the number of nonzero entries ranges between 340,431 and 77,651,847.

2. Block Conjugate Gradient Variants: Orthomin and Orthodir

Algorithm 1 Block CG: orthomin

Require: A,B,X, ε
1: R← B −AX
2: P ← A−R
3: Q← AP
4: [P,Q]← A Chol QR(P,Q) . orthonormalize P and Q
5: while ||R|| > ε do
6: α← PTR . DMMT
7: X ← X + Pα . DMU
8: R← R−Qα . DMU
9: β ← QTR . DMMT

10: P ← R− Pβ . DMU
11: Q← AP . SpMM
12: [P,Q]← A Chol QR(P,Q) . orthonormalize P and Q

Algorithm 2 Block CG: orthodir

Require: A,B,X, ε
1: R← B −AX
2: P ← A−R
3: Q← AP
4: [P,Q]← A Chol QR(P,Q) . orthonormalize P and Q
5: Qp ← 0
6: Pp ← 0
7: while ||R|| > ε do
8: α← PTR . DMMT
9: X ← X + Pα . DMU

10: R← R−Qα . DMU
11: β ← QTQ . DMMT
12: γ ← QTpQ . DMMT
13: Qp ← Q . memcopy
14: Q← Q− Pβ . DMU
15: Q← Q− Ppγ . DMU
16: Pp ← P . memcopy
17: P ← Q . memcopy
18: Q← AP . SpMM
19: [P,Q]← A Chol QR(P,Q) . orthonormalize P and Q

Algorithm 3 A Chol QR

Require: P,Q
1: C ← PTQ . DMMT
2: L←chol(C) . decompose (Cholesky) C into its triangular factors (C = LLT )
3: P ← P/L (LLTPT = PT ) . triangular solve with multiple RHS (for each row of P)
4: Q← Q/L (LLTQT = QT ) . triangular solve with multiple RHS (for each row of Q)
5: return P,Q

Algorithms 1 and 2 display the pseudocodes for the Orthomin and Orthodir algorithms, respectively. Algo-
rithm 3 displays the pseudocode for the orthonormalization operation performed in both Orthomin and Orthodir
algorithms. These pseudocodes are important to understand the basic computation steps that are repeatedly
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performed at each iteration of Orthomin and Orthodir algorithms. There are five different basic operations in
Orthomin and Orthodir algorithms, which are summarized in Table 1.

Table 1: Basic operations performed at each iteration of Ortomin and Orthodir algorithms. A is a n×n sparse
matrix that contains nnz(A) nonzeros. X, Y and Z are dense matrices of size n × t. α, β, and C are dense
block matrices of size t× t, where t� n .

abbreviation full name form # of flops omin odir

SpMM sparse matrix dense matrix multiply Y ← AX 2·t·nnz(A) 1 1
DMU dense matrix update operation Z ← Z + αX n·t2 3 4
DMMT dense matrix matrix transpose multiply β ← XTY 2·n·t2 3 4
chol cholesky decomposition into triangular factors C = LLT t3/3 1 1
FS/BS forward and backward substitution LLTXT = XT ≈ 2·n·t2 1 1

SpMM can be formulated as Y ← AX, where A is an n × n sparse matrix whereas X and Y are n × t
dense matrices. Here, t is assumed to be much smaller than n. SpMM is repeatedly performed in line 11 of
Algorithm 1 and in line 17 of Algorithm 2.

DMU is used in updating the descent matrix P , residual matrix R and solution matrix X at each iteration.
The DMU operation can be formulated as Z ← Z+αX. Here, Z and X are dense matrices of size n×t, whereas
α is a block matrix of size t× t. The DMU operation involves the multiplication of an n× t matrix by a t× t
block matrix followed by a linear matrix addition/subtraction operation for the update. DMU is performed in
lines 7, 8 and 10 of Algorithm 1 and in lines 9, 10, 14 and 15 of Algorithm 2.

DMMT is used in computing the block matrices α, β, and γ . The DMMT operation can be formulated as
β ← XTY . Here, X and Y are dense matrices of size n× t, whereas β is a block matrix of size t× t. DMMT
is performed in lines 6, 9 and 12 of Algorithm 1, where the last one is actually inside the orthonormalization
step, which can be seen in line 1 of Algorithm 3. In Algorithm 2, DMMT is performed in lines 8, 11, 12 and
18, where the last one is again inside the orthonormalization.

Both orthomin and orthodir algorithms involve the A-orthonormalization operation at the end of each
iteration. This orthonormalization operation involves the cholesky decomposition of the t × t block matrix
C = PTQ into its lower and upper triangular factors. Then, these triangular factors are used to update P and
Q matrices through FS/BS operations.

In Table 1, the “# of flops” column shows the complexity of the above-mentioned basic operations in terms
of the number of floating point operations performed. The “omin” and “odir” columns display the number of
times these basic operations are performed at each iteration of Orthomin and Orthodir algorithms, respectively.

Table 2 summarizes the communication and computational-load-balancing requirements of the basic oper-
ations SpMM, DMU, DMMT, and FS/BS, when they are performed in parallel. We should note here that
Cholesky factorization of the t× t block matrix C is performed sequentially at each processor. Since t�n this
is a reasonable implementation which is not expected to disturb scalability for large scale matrices.

Table 2: Communication and computational-load-balancing requirements of the basic operations.

abbreviation communication computational load balancing

SpMM irregular P2P communication number of nonzeros
DMU no communication (if conformal) number of rows
DMMT collective communication number of rows
chol no communication (sequential) –
FS/BS no communication (if conformal) number of rows

In SpMM, the irregular sparsity pattern of A results in irregular point-to-point communication for trans-
ferring either X-matrix rows or partial results for Y -matrix rows, respectively, before or after the local SpMM
computations. Since the flop counts in SpMM is proportional to the number of nonzeros in matrix A, the
balance on computational loads of processors during SpMM is achieved by obtaining balance on the number of
A-matrix nonzeros assigned to processors.

For avoiding redundant communication in DMU and FS/BS operations, it is common practice to partition
rows of input and output n × t matrices of SpMM operation in a conformal way. That is, the processor that
owns row i of Z also owns row i of X. Provided that the partitions of all other n× t dense matrices in parallel
Orthomin and Orthodir algorithms are conformal, DMU and FS/BS operations are communication-free. The
flop counts in DMU, DMMT, and FS/BS operations are proportional to the number of rows in the dense
matrices involved, hence, the balance on computational loads of processors during DMU, DMMT, and FS/BS
is achieved by obtaining balance on the number of dense-matrix rows assigned to processors. In DMMT with
conformal partitions of X and Y , processors do not need to communicate anything before the local computation
starts. However, each processor produces a partial result for β of size t× t, which are then reduced to the final
value by an all-to-all reduction. This collective communication operation is unavoidable.
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Recall from Table 1 that a single Orthomin iteration contains one SpMM, three DMUs, three DMMTs,
and one FS/BS, whereas a single Orthodir operation contains one SpMM, four DMUs, four DMMTs, and one
FS/BS. Among these four different operations, SpMM is considered to be the most expensive one, however,
since DMU and DMMT operations are repeated at least three times as well as FS/BS operation performed
once, while SpMM is performed once, they may have a detrimental effect on the overall performance if they
are not optimized at all. For achieving the best performance in the parallelization of Orthomin and Orthodir
algorithms, one should optimize the communication costs of SpMM while balancing the computational loads of
processors for both SpMM and DMU-DMMT-FS/BS operations.

3. Partitioning Techniques for Parallel Orthomin and Orthodir Algorithms

In this section, we describe different techniques that we use for parallelizing the Orthomin and Orthodir algo-
rithms. Before describing these techniques, first, we give some insights on their motivations.

The irregular memory access pattern during SpMM necessitates distributing the sparse matrix among pro-
cessors carefully. Graph/hypergraph partitioning models [4, 12, 13] have been used for partitioning sparse
matrices for decades so that the matrix elements (rows/columns or even nonzeros) with similar memory access
patterns are assigned to the same processor to exploit the locality. Using these models, the communication
overhead is almost always reduced significantly compared to utilizing a simple uniform block partitioning. The
partitions obtained by these models are also well-balanced in terms of processors’ computational loads since
partitioning constraint of maintaining balance on the part weights correctly encode computational load balance
via proper vertex weighting.

The communication overhead can and should be defined by multiple communication cost metrics. For parallel
SpMM operation, in which the pattern of the communication can be as irregular as the sparsity pattern of the
input sparse matrix, defining the communication by multiple cost metrics is especially important. One metric
is the bandwidth cost, which is associated with the communication volume. Another metric is the latency cost,
which is associated with the number of messages. The number of columns of the dense block matrices in the
Orthomin and Orthodir algorithms, i.e., t value, may dramatically affect the overall communication cost. As t
value increases, since the rows of dense matrices that are communicated during the parallel SpMM operation
become more loaded, the bandwidth cost becomes important again. Therefore, depending on the sparsity
pattern of the input matrix as well as block size t, one may have to consider both bandwidth- and latency-based
communication cost metrics in the partitioning models used for Orthomin and Orthodir algorithms.

Recall that for SpMM operation, balance should be maintained on the number of nonzeros, whereas for
DMU, DMMT and FS/BS operations, it should be maintained on the number of rows. These two constraints
often conflict with each other. Considering a sparse matrix A whose rows have high variability in the number of
nonzeros, a row-balanced partition of A exhibits a poor nonzero balance. In a dual manner, a nonzero-balanced
partition exhibits a poor row balance. It is possible to obtain balance on both row and nonzero counts, thanks
to the multi-constraint partitioning tools such as METIS [12]. However, since we have more constraints in the
optimization problem solved by the partitioner, the solution quality is not as good as the case where there is
only one constraint. That is, the total communication volume (the quality metric of the partitioner), when both
row and nonzero counts are balanced and it is generally higher than the communication volume, when only row
counts or nonzero counts are balanced. Therefore, while obtaining balance on both it is expected to perform
better for a computation-bound instance. Obtaining balance on only one is expected to perform better for a
communication-bound instance.

We consider four partitioning techniques that are different from each in terms of the above-mentioned
communication-related and computation-related issues. All these methods rely on graph partitioning. Sec-
tions 3.1., 3.2., 3.3., and 3.4. describe these methods in detail.

3.1. 1D-sc: One-Dimensional Single-Constraint Partitioning

In this method, the rows of the given n × n sparse matrix A is partitioned into K parts/processors using
single-constraint graph partitioning. First, an undirected graph G = (V,A) is formed with vertex set V =
{v1, v2, . . . , vn} and edge set E = {ei,j : ai,j 6= 0 and aj,i 6= 0}. Each row i of A is represented by a vertex vi
in V . In a similar manner, nonzero entries ai,j and aj,i are represented by an edge ei,j in E if i 6= j. Note
that since matrix A is symmetric we have ai,j = aj,i and so ai,j 6= 0 iff aj,i 6= 0. The diagonal nonzero entries
of A are not represented by edges in G. In this method, we maintain balance only on the number of nonzeros
assigned to parts/processors. So, each vertex vi in V is assigned a weight w(vi) which is equal to the number
of nonzeros in row i. Each edge ei,j is associated with unit a cost, that is, c(ei,j) = 1.

Consider a K-way partition Π = {V1, V2, . . . , VK} of G. An edge ei,j is said to be cut in Π if vi and vj are
assigned to different parts. Then the cutsize of Π is defined as the sum of the costs of the cut edges in Π, that
is,

cutsize(Π) =
∑

ei,j is cut

c(ei,j).

The weight of part Vk ∈ Π is defined as the sum of the weights of vertices in part Vk, that is, W (Vk) =∑
vi∈Vk

w(vi). The graph partitioning problem is defined as finding a balanced partition Π of a given G with
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the objective of minimizing the cutsize. The partitioning constraint, which requires balanced parts, is formulated
as

W (Vk) < Wavg(1 + ε) for k = 1, 2, . . . ,K,

where Wavg denotes average part weight and ε denotes a maximum allowable imbalance ratio.
A K-way partition Π of G can be utilized to distribute the rows of A among K processors so that part

Vk corresponds to the kth processor for k = 1, 2, . . . ,K. That is, row i of A is assigned to processor k if and
only if vi ∈ Vk. Since we utilize conformal partitions, row partitions of the input and output dense matrices
of SpMM are also the same as the row partition of A, that is the ith rows of A, Y , and X are all assigned to
processor k if vi ∈ Vk. Then, the partitioning objective of minimizing the cutsize of Π relates to minimizing
the total communication volume of parallel SpMM. The partitioning constraint of maintaining balance on the
part weights corresponds to maintaining balance on the number of nonzeros assigned to processors, hence on
processors’ computational loads during parallel SpMM.

3.2. 1D-mc: One-Dimensional Multi-Constraint Partitioning

This method is very similar to 1D-sc. The only difference is that we maintain balance on two quantities instead
of one, that is, we have two partitioning constraints. The first one is the same as the partitioning constraint of
1D-sc, that is, we maintain balance on the number of nonzeros when we assign rows to processors. The second
constraint in 1D-mc deals with the numbers of the rows itself, instead of the nonzeros they contain. That is,
we also maintain balance on the number of rows assigned to processors. Although maintaining balance on this
quantity is not important for SpMM’s parallel performance, since we utilize conformal partitions, it determines
the balance achieved on the number of dense-matrix rows assigned to processors, which is important for the
parallel performances of DMU, DMMT, and FS/BS.

In this method, we utilize the same graph partitioning model used in 1D-sc, except for the following difference.
To be able to achieve balance on both, the number of nonzeros and the number of rows, we add an additional
constraint to the graph partitioning problem. For this purpose, vertices are assigned a secondary weight, which
is a unit weight, to encode the number or rows assigned to processors. Then, the first and second weights of
vertex vi are formulated as follows:

w1(vi) = |{ai,j 6= 0}| and w2(vi) = 1.

The cth constraint of the two-constraint graph partitioning problem can be formulated as

W c(Vk) < W c
avg(1 + εc) for k = 1, 2, . . . ,K.

Here, W c(Vk) denotes the sum of the cth weights of vertices in part Vk, whereas W c
avg denotes the average

part weight for the cth weight. In some partitioning tools such as METIS [12], it is possible to use different
maximum allowable imbalance ratios for different constraints, hence the maximum allowable imbalance ratio
for the cth constraint is denoted by εc.

Since 1D-mc has an additional constraint compared to 1D-sc, its cutsize and hence the total communication
volume of parallel SpMM is expected to be higher than that of 1D-sc.

3.3. 2D-sc: Two-Dimensional Single-Constraint Partitioning

In this method, instead of assigning all nonzero entries in a row to a single processor, we assign them to multiple
processors. Since the nonzero partitioning of the input sparse matrix A is along both row and column dimensions,
this method is called two-dimensional. We utilize the method proposed in [3] to obtain the 2D partition of A.
It is a two-phase method where a 1D partitioning is obtained in the first phase and it is converted into a 2D one
in the second phase. In the first phase of 2D-sc, we use the 1D partitioning obtained in 1D-sc. At the end of
the first phase, the input matrix A can be reordered to form Aπ in a K-way block-structure form. To do so, the
rows that are represented by the vertices that belong to the same part in Π are reordered consecutively in Aπ.
Fig. 1 displays a 6-way partition of the graph (on the left) and the reordered matrix Aπ in 6-way-block-structure
form (on the right). As seen in the figure, each part/processor is shown in a different color. The dashed arrow
lines in this figure correspond to the messages that yellow processor sends. Note that it can send at most K− 1
messages with this 1D partitioning layout.

The second phase of 2D-sc redistributes the nonzeros in the off-diagonal blocks of Aπ in a cyclic manner. To
do so, it assumes that the K processors in the parallel system is organized as a virtual 2D mesh of processors
of size Kr×Kc, where Kc and Kr respectively denote the number of rows and columns in the processor mesh.
Then it assigns the blocks of matrix Aπ to processors according to their coordinates in the mesh, where Aπ is
the reordered matrix that can be obtained after applying 1D-sc. Fig. 2 displays how the blocks of Aπ given in
Fig. 1 are redistributed for a 2× 3 virtual mesh of processors. Note that Kr horizontally-consecutive blocks are
assigned to each processor in the corresponding row of the processor mesh and the assignments are repeated in
a vertical manner.

In this 2D method, each processor is guaranteed to send at most Kr−1 messages for communicating the input
dense matrix rows and to send at most Kc−1 messages for communicating the partial results for the output
dense matrix rows. The dashed arrow lines in this figure show the messages sent by the yellow processor. For
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Fig. 1: Matrix Aπ which is obtained by symmetrically reordering rows and columns of A according to a K-way
partition Π obtained in the first phase.
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Fig. 2: The 2D partitioning of Aπ for a 2× 3 mesh.

communicating the input dense matrix rows, at worst, it sends a single (Kr−1=1) message, whose destination
is the purple processor. For communicating the partial results for output dense matrix rows, at worst, it sends
two (Kc−1=2) messages, whose destinations are the orange and red processors. These numbers are the same for
the messages that it receives. It can be generalized that each processor only communicates with the processors
in the same column of the mesh for communicating the input data and only communicates with the processors
in the same row of the mesh for communicating the output data.

For a
√
K×
√
K processor mesh, observe that the number of messages that a processor send/receives is

bounded above by
√
K−1. Matrices with a very dense row/column generally suffer from a high maximum message

count, when partitioned in a one-dimensional way, hence, they are latency-bound. For the one-dimensional
partition of such matrices, the number of messages that a processor sends/receives can be as high as K−1,

which then hinders the scalability. Therefore, the two-dimensional matrix partitioning that provides O(
√
K)

upperbound on the number of messages, handled by a processor, is expected to be very beneficial for improving
the parallel performance on the instances that are latency-bound.

Converting a 1D matrix partition to a 2D partition, for obtaining the nice upper bound of O(
√
K) on the

message count per processor, comes at the following expenses. The computational balance obtained on the
number of nonzeros in 1D-sc is not valid anymore in 2D-sc. It is because the rows are not assigned to the
processors as a whole anymore, which was the assumption of 1D-sc in maintaining the computational balance.
The total communication volume of 2D-sc may be higher than 1D-sc since there are two phases of communication
in 2D-sc (one for input and one for output communication) in constrast to the single communication phase in
1D-sc (for input communication).

3.4. 2D-mc: Two-Dimensional Multi-Constraint Partitioning

This method is very similar to 2D-sc, except for the fact that in this one, we use 1D-mc in the first phase
instead of 1D-sc. So, 2D-mc has balanced row counts while 2D-sc does not. Note that for the 2D methods, it
is not guaranteed that processors are assigned balanced number of nonzeros due to the conversion from 1D to
2D partitioning that takes place in the second phase.

4. Experiments

In our experiments, we compare the four partitioning techniques discussed in Section 3. in terms of the speedup
values obtained for parallel Orthomin and Orthodir codes. For this comparison, we consider sparse real-world
problems obtained from SuiteSparse Matrix Collection [5].
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Table 3: Properties of test matrices.

matrix problem kind nrows nnzs avg min max sparsity (%)

gyro m duplicate model reduction 17,361 340,431 19.61 4 120 0.11295
cbuckle structural 13,681 676,515 49.45 26 600 0.36145
gyro k duplicate model reduction 17,361 1,021,159 58.82 12 360 0.33880
gyro model reduction 17,361 1,021,159 58.82 12 360 0.33880
vanbody structural 47,072 2,336,898 49.65 6 232 0.10547
smt structural 25,710 3,753,184 145.98 52 414 0.56780
pdb1HYS weighted undirected graph 36,417 4,344,765 119.31 18 204 0.32761
thread structural 29,736 4,470,048 150.32 48 306 0.50553
ship 001 structural 34,920 4,644,230 133.00 18 438 0.38086
shipsec8 structural 114,919 6,653,399 57.90 15 132 0.05038
bmw7st 1 structural 141,347 7,339,667 51.93 1 435 0.03674
shipsec1 structural 140,874 7,813,404 55.46 24 102 0.03937
ship 003 structural 121,728 8,086,034 66.43 18 144 0.05457
m t1 structural 97,578 9,753,570 99.96 48 237 0.10244
shipsec5 structural 179,860 10,113,096 56.23 12 126 0.03126
x104 structural 108,384 10,167,624 93.81 30 324 0.08655
crankseg 1 structural 52,804 10,614,210 201.01 48 2,703 0.38068
crankseg 2 structural 63,838 14,148,858 221.64 48 3,423 0.34719
nd12k 2D/3D 36,000 14,220,946 395.03 126 519 1.09730
bundle adj computer vision 513,351 20,208,051 39.36 3 12,588 0.00767
Fault 639 structural 638,802 28,614,564 44.79 15 318 0.00701
nd24k 2D/3D 72,000 28,715,634 398.83 110 520 0.55393
inline 1 structural 503,712 36,816,342 73.09 18 843 0.01451
PFlow 742 2D/3D 742,793 37,138,461 50.00 1 137 0.00673
Serena structural 1,391,349 64,531,701 46.38 15 249 0.00333
audikw 1 structural 943,695 77,651,847 82.28 21 345 0.00872

We performed our experiments on 64, 256, and 1024 processors, that is, K ∈ {64, 256, 1024}. Note that each
considered processor count is a perfect square, which is more convenient for comparing our 2D methods against
1D methods. The tested block sizes, t values, are 4, 8, 16, and 32.

The parallel Orthomin and Orthodir codes were implemented in C using MPI for inter-processor communi-
cation. The parallel codes follow the steps of the sequential MATLAB code that is provided by NLAFET. We
used Intel MKL’s BLAS and LAPACK routines for performing the factorization during the orthonormalization
step.

We performed our parallel experiments on two different systems. The first one, Sariyer, is a Tier-1 system
where each node contains 28 cores (two Intel Xeon E5-2680 v4 CPUs) running at 2.40 GHz clock frequency and
128 GB memory. The nodes are connected by an InfiniBand FDR 56 Gbps network. On this system, we used
ICC (version 17.0.4) with OpenMPI (version 3.0.1) and Intel MKL (version 2017.0.098). The second system,
JUWELS, is a Tier-0 system where each node contain 48 cores (two Intel Xeon Platinum 8168 CPUs) running
at 2.70 GHz clock frequency and 96 GB memory. The nodes are connected by an EDR InfiniBand, fat-tree
interconnection network. On this system, we used GCC (version 8.2.0) with ParaStation MPI (version 5.2.1,
based on MPICH v3) and Intel MKL (version 2019.0.117).

We used METIS [12] for partitioning the graphs in 1D-sc and 1D-mc methods. Recall that 2D-sc and 2D-mc
use the partitions obtained by 1D-sc and 1D-mc, respectively, in their first phases. In 1D-sc, the maximum
allowable imbalance ratio ε is set to 3%. Similarly, in 2D-mc, both ε values are set to 3%, that is ε1 = ε2 = 0.03.

In our experiments, we considered 26 test matrices obtained from SuiteSparse Matrix Collection [5]. All
test matrices we considered are symmetric positive definite. Table 3 displays the properties of these matrices
in the increasing order of the number of nonzero entries. As seen in the table, the number of rows in these
matrices ranges between 13,681 and 1,391,349, whereas the number of nonzero entries ranges between 340,431
and 77,651,847. Note that these matrices exhibit various charasteristics in terms of average, minimum, and
maximum numbers of nonzeros in a row, as well as the sparsity rate. Also note that all matrices in our dataset
exhibit irregularity in their sparsity pattern to a certain extent.

Table 4 displays the average run times obtained by the sequential Orthomin and Orthodir algorithms on
Sariyer. In the table, a running time value refers to the geometric average of the running times over all 26
matrices.

Table 4: Average sequential run times of Orthomin and Orthodir algorithms.

run time (seconds)

t=4 t=8 t=16 t=32
Orthomin 0.051 0.072 0.138 0.348
Orthodir 0.056 0.084 0.169 0.437
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Table 5: Speedup values obtained by the parallel Orthomin algorithm averaged over all 26 matrices.

speedup values
normalized values

w.r.t. 1D-sc

K t 1D-sc 1D-mc 2D-sc 2D-mc 1D-mc 2D-sc 2D-mc

64

4 39.63 39.83 40.29 40.71 1.01 1.02 1.03
8 39.74 40.13 40.93 42.01 1.01 1.03 1.06

16 39.91 40.55 41.58 42.72 1.02 1.04 1.07
32 40.69 42.51 41.34 42.99 1.04 1.02 1.06

256

4 51.19 56.16 64.97 63.08 1.10 1.27 1.23
8 60.91 65.00 68.33 71.92 1.07 1.12 1.18

16 74.65 76.78 84.21 85.62 1.03 1.13 1.15
32 89.45 94.88 96.42 101.98 1.06 1.08 1.14

1024

4 49.85 53.27 74.61 69.62 1.07 1.50 1.40
8 68.73 66.61 89.65 85.37 0.97 1.30 1.24

16 99.83 104.91 113.53 118.39 1.05 1.14 1.19
32 132.02 143.43 150.22 150.00 1.09 1.14 1.14

average values for different K values

K = 64 39.99 40.75 41.03 42.11 1.02 1.03 1.05
K = 256 69.05 73.21 78.48 80.65 1.06 1.14 1.17
K = 1024 87.61 92.06 107.00 105.84 1.05 1.22 1.21

average values for different t values

t = 4 46.89 49.75 59.96 57.80 1.06 1.28 1.23
t = 8 56.46 57.25 66.30 66.43 1.01 1.17 1.18
t = 16 71.46 74.08 79.77 82.24 1.04 1.12 1.15
t = 32 87.39 93.61 95.99 98.32 1.07 1.10 1.13

average values for all

all 1.05 1.15 1.16

Tables 5 and 6 display the average speedup values obtained by the parallel Orthomin and Orthodir algo-
rithms, respectively, on Sariyer. Here, a speedup value for a given matrix and (K, t) pair is computed as the
ratio of the parallel running time of the algorithm on K processors to the sequential running time both with
the same block size of t. In the tables, a speedup value for a (K, t) pair refers to the geometric average of the
speedup values over all 26 matrices. In these tables, columns 3, 4, 5, and 6 display the actual average speedup
values obtained by 1D-sc, 1D-mc, 2D-sc, and 2D-mc, respectively, whereas columns 7, 8, and 9 display the
average speedup values of 1D-mc, 2D-sc, and 2D-mc, respectively, normalized with respect to those of 1D-sc.

As seen in Table 5, for parallel Orthomin algorithm, 1D-sc, 1D-mc, 2D-sc, and 2D-sc achieve average speedup
values of 132, 143, 150, and 150 for t= 32 on 1024 processors, respectively, averaged over all matrices. Note
that, compared to 1D-sc, 1D-mc improves the parallel performance by 9% on average, whereas 2D-sc and 2D-mc
improve it by 14%, on average. Note that the improvement obtained by the multi-constraint partitioning is
more visible for 1D partitionings compared to 2D partitionings. On overall average, 1D-mc performs 5% better
than 1D-sc, whereas 2D-mc performs only 0.9% better than 2D-sc.

In Table 5, on 64 processors, all the speedup values are around 40 although they are obtained by different
methods and using different t values. This can be attributed to the coarse computational granularity in SpMM
operation dominating the parallel runtime so that neither the change in communication requirements across 1D
and 2D methods nor the change in computational balance requirements for DMU, DMMT, and FS/BS operations
across single-constraint and multi-constraint methods affect the performance significantly. Nevertheless, on
K = 64, it is still possible to observe that 2D and multi-constraint methods achieve better performance compared
to 1D and single-constraint methods, respectively, by a slight amount. Note that the performance difference
among different methods becomes more visible as the number of processors increases.

Recall that 2D methods are superior to 1D methods in terms of the latency cost. The results given in Table 5
are in agreement with that statement, that is, the performance gap between 2D and 1D methods increases in
favor or 2D methods as the number of processors increases and t value decreases, i.e., latency cost becomes more
important than the bandwidth cost. On average, the 2D models perform better than their 1D counterparts by
up to 3% for K = 64, by up to 14% for K = 256, and by up to 22% for K = 1024. These average improvement
rates are 28% for t = 4, 17% for t = 8, 12% for t = 16, an 10% for t = 32.

Recall that we expect multi-constraint methods to perform better than single-constraint ones for compu-
tational load balancing during DMU, DMMT, and FS/BS operations. The results given in Table 5 validate
this statement for 1D methods on all t values, except for t = 8 on K = 1024 processors. However for 2D
methods, there are more exceptions to this statement, e.g., for t = 4 and t = 8 on 1024 processors. This is
probably because the balance achieved on DMU, DMMT, and FS/BS operations do not pay the increase in
total communication volume for these settings.
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Table 6: Speedup values obtained by the parallel Orthodir algorithm averaged over all 26 matrices.

speedup values
normalized values

w.r.t. 1D-sc

K t 1D-sc 1D-mc 2D-sc 2D-mc 1D-mc 2D-sc 2D-mc

64

4 40.01 39.83 40.26 40.39 1.00 1.01 1.01
8 39.73 39.75 40.82 41.44 1.00 1.03 1.04

16 40.45 41.33 40.91 42.23 1.02 1.01 1.04
32 40.64 42.19 41.01 43.31 1.04 1.01 1.07

256

4 58.33 55.75 60.71 62.64 0.96 1.04 1.07
8 69.20 67.92 68.51 68.77 0.98 0.99 0.99

16 79.71 82.93 84.20 87.21 1.04 1.06 1.09
32 93.00 98.32 98.52 104.38 1.06 1.06 1.12

1024

4 50.81 50.59 59.40 64.63 1.00 1.17 1.27
8 70.44 73.65 80.86 91.84 1.05 1.15 1.30

16 106.06 114.08 112.17 116.13 1.08 1.06 1.09
32 138.43 154.71 141.26 159.50 1.12 1.02 1.15

average values for different K values

K = 64 40.21 40.77 40.75 41.84 1.01 1.01 1.04
K = 256 75.06 76.23 77.98 80.75 1.02 1.04 1.08
K = 1024 91.44 98.26 98.42 108.03 1.07 1.08 1.18

average values for different t values

t = 4 49.72 48.72 53.46 55.89 0.98 1.08 1.12
t = 8 59.79 60.44 63.39 67.35 1.01 1.06 1.13
t = 16 75.41 79.45 79.09 81.86 1.05 1.05 1.09
t = 32 90.69 98.41 93.60 102.40 1.09 1.03 1.13

average values for all

all 1.04 1.05 1.12

As seen in Table 6, for parallel Orthodir algorithm, 1D-sc, 1D-mc, 2D-sc, and 2D-sc achieve average speedup
values of 138, 155, 141, and 160 for t=32 on 1024 processors, respectively, averaged over all matrices. Note that
compared to 1D-sc, 1D-mc improves the parallel performance by 12% on average, whereas 2D-sc and 2D-mc
improve it by 5% and 12%, respectively, on average.

Most of the observations made on the speedup values obtained by the Orthomin algorithm are also valid for
the speedup values obtained by the Orthodir algorithm. The major differences are summarized as follows. Note
that, in constrast to the Orthomin algorithm, the improvement obtained by the multi-constraint partitioning in
Orthodir algorithm is almost the same for both 1D and 2D partitionings. On overall average, 1D-mc performs
4% better than 1D-sc and 2D-mc performs 6.5% better than 2D-sc.

Another interesting observation is that the performance improvement obtained by 2D-sc compared to 1D-sc
on small t values and large K values is not as high in parallel Orthodir as in parallel Orthomin. Normalized
speedup values of 1.50 and 1.30 obtained by 2D-sc on K = 1024 with t = 4 and t = 8 on Orthomin reduce
to 1.17 and 1.15 for Orthodir, respectively. As the last observation, note that as t value increases, the im-
provement obtained by the multi-constraint partitioning becomes much more than the improvement obtained
by the 2D partitioning. This is because latency cost becomes less important with increasing t value, whereas
the computational balance on DMU, DMMT, and FS/BS operations becomes more important.

Fig 3 displays the speedup curves for parallel Orthomin algorithm on nine sample matrices from our dataset.
As seen in the figure, the 2D methods generally scale the parallel Orthomin code better than the 1D methods.
Matrices bmw7st 1, crankseg 2, Fault 639, and Serena constitute good examples for this observation. While
single-constraint and multi-constraint methods may be interleaved for 1D and 2D methods on some matrices,
it is generally the case that multi-constraint methods perform better than single-constraint methods. The
exceptions for this observation are inline 1 and audikw 1, where the best performer is 2D-sc.

Fig. 4 displays the speedup curves for parallel Orthomin on JUWELS on the same matrices given in Fig. 3.
Observe that the parallel performances, obtained by the different partitioning methods, are closer to each other
on JUWELS compared to Sariyer. This is especially true across 1D and 2D methods, that is, they behave
similar on all matrices, except for crankseg 2. The decrease in the performance discrepancy between 1D and
2D methods can be attributed to the fast interprocessor network used in JUWELS, that is, improving the
communication overhead on such a network does not considerably alter the parallel performance up to 1024
processors. The more visible performance gap exists across single-constraint and multi-constraint methods in
favor of multi-constraint ones. Matrices bmw7st 1, bundle adj, and PFlow 742 constitute good examples for
this gap. Recall that multi-constraint methods performing better than single-constraint methods is explained
by the fact that they achieve balance on the computational loads of the processors on every kernel operation
(SpMM, DMU, DMMT, and FS/BS), while single-constraint methods achieve it only on SpMM.
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Fig. 3: Speedup curves of Orthomin comparing 1D-sc, 1D-mc, 2D-sc, and 2D-mc on Sariyer.
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Fig. 4: Speedup curves of Orthomin comparing 1D-sc, 1D-mc, 2D-sc, and 2D-mc on JUWELS.
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5. Conclusion

Scalable parallelization of block CG variants Orthomin and Orthodir, proposed by FET-HPC project NLAFET,
is investigated to enable the use of these methods on future exascale systems. 1D- and 2D-partitioning models
with single-constraint and two-constraint variants are realized for partitioning the sparse coefficient matrix as
well as the dense matrices involved in the Ortodir and Orthomin iterations. Parallel Orthomin and Orthodir
codes that utilize 1D and 2D sparse matrix partitioning models are developed and the performance of these
methods are evaluated on two different HPC systems with four different partitioning techniques. Experimental
findings show that encapsulating computational load balance during sparse matrix and dense matrix compu-
tations simultaneously via two-constraint partitioning formulation leads to better scalability. 2D-partitioning
models are found to perform better in general for smaller block sizes and larger number of processors.
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