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Characterization of Biologically Relevant Network Structures form

Time-series Data

Zoltan A. Tuza and Guy-Bart Stan

Abstract— High-throughput data acquisition in synthetic bi-
ology leads to an abundance of data that need to be processed
and aggregated into useful biological models. Building dynam-
ical models based on this wealth of data is of paramount
importance to understand and optimize designs of synthetic
biology constructs. However, building models manually for each
data set is inconvenient and might become infeasible for highly
complex synthetic systems. In this paper, we present state-
of-the-art system identification techniques and combine them
with chemical reaction network theory (CRNT) to generate
dynamic models automatically. On the system identification
side, Sparse Bayesian Learning offers methods to learn from
data the sparsest set of dictionary functions necessary to capture
the dynamics of the system into ODE models; on the CRNT
side, building on such sparse ODE models, all possible network
structures within a given parameter uncertainty region can
be computed. Additionally, the system identification process
can be complemented with constraints on the parameters to,
for example, enforce stability or non-negativity—thus offering
relevant physical constraints over the possible network struc-
tures. In this way, the wealth of data can be translated into
biologically relevant network structures, which then steers the
data acquisition, thereby providing a vital step for closed-loop
system identification.

I. INTRODUCTION

One of the goals in the Systems and Synthetic Biology is

to characterize possible network structures that can explain

the observed data. This is usually done by incorporating

the information content of noisy experimental data into

parametrized process models [1]. Then, these network struc-

tures give us a blueprint for the possible interactions between

chemical species. Building on that, one can understand a

complex biological process or even manipulated it by other

chemical species. Synthetic Biology is particularly successful

identifying small interaction networks in nature or even

building artificial ones from well understood biological parts

such as the repressilator. The need to grow this library of

well-characterized biological parts to build more complex in-

teraction networks drove the development of high-throughput

data acquisition. This type of data collection soon generates

a large volume of data which is incompatible with the current

model building methodology. Mainly because of the current

practice involves manually curating the data and the possible

network structure. As the need for fast characterization

of biological parts drove development of high-throughput
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methods, the abundant data from high-throughput methods

drives the need for automatic model building methods.

Automatic model building is standard practice in, for

example, machine learning, but usually, the building blocks

of such models are general nonlinear functions, e.g. Gaussian

kernels. In contrast to that, in Biochemistry we have a well-

understood family of nonlinear functions that can capture the

underlying chemical interactions. Even first principle models

can be built by these nonlinearities. For example, Chemical

Reactions Networks (CRNs) are often used to build such

models.

In CRN modeling, it is usually assumed that there is a one-

to-one correspondence between the dynamical model and

the underlying CRN structure. However, this is only true if

one builds the differential equations from the CRN structure.

The other way may yield multiple structures that exhibit the

same dynamics. Since the later direction is used in system

identification, it needs to be carefully investigated.

The existence of multiple network structures for a given

dynamics has been investigated extensively in [2], [3]. How-

ever, this investigation was done with the assumption of per-

fect measurements, and the uncertain case was investigated in

[4]. As we show in this paper, this allows us to handle noisy

time-series data and to compute network structures using the

same computational tools developed for the noiseless case.

The goal of the paper is to develop a framework that

characterizes all possible network structures from time-series

data. All possible structure means that it can be proven the

set of network structures, computed in our framework, is

complete and no other other network structure exists for

a given dynamical model. Complementing the underlying

optimization problem with further constraints on the dy-

namics or on the structure helps to reduce the number of

possible network structures, thus we can not only add a

priori knowledge to the identification process but measure

its impact on the number of possible network structure.

This allows us to compare the effect of different a priori

knowledge. Moreover, we can even characterize the set of

assumptions needed for a unique the network structure from

time-series data.

Notations.: R≥0 denotes the nonnegative real numbers,

N0 is the set of integers including zero. [A]ij is the entry in

the ith row and jth column of the matrix A. Furthermore,

[A]i· is the ith row of matrix A, and diag[a] is matrix

which has the elements of a in the diagonal and the rest

is zero. Finally, A � 0 is a positive semidefinite matrix and

vec(A) = [[A]1·, [A]2·, . . . , [A]n·]
⊤ is transpose of the row

expansion of matrix A ∈ R
n×m.
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II. BACKGROUND

The concept of CRNs was introduced by Feinberg during

his seminal lectures, and since then it has become a widely

used modeling framework [5]; first in process engineering,

then later in Systems and Synthetic Biology.

The dynamics of CRNs can be described by the class

of kinetic systems which offer certain algebraic proprieties

that lead to several powerful results (see, e.g., [6], [7], [8]).

There has been a constant effort to characterize the systems

theoretical properties of kinetic systems (see, [9], [10],

[11] for more details). This paper follows an optimization-

based approach which translates the dynamical and structural

properties of kinetic systems into the constraint set, see [2],

[3] for an overview.

This section defines the system class represented by poly-

nomial Ordinary Differential Equations (ODEs) and defines

Chemical Reaction Networks as well; then establishes a

connection between the two. Building on these definitions,

we can introduce the optimization problems to compute

certain graph structures.

Let us define the following polynomial differential equa-

tion with state vector x ∈ R
n
≥0, and

ẋ =Mϕ(x), x(0) ∈ R
n
≥0, (1)

where the matrix M ∈ R
n×m is the coefficient matrix and

ϕ(x) : Rn
≥0 → R

m
≥0 is a monomial-type vector mapping de-

fined as ϕj(x) =
∏n

i=1 x
[B]ij
i , j = 1, . . . ,m and B ∈ N

n×m
0 .

Note that the system in (1), with certain sign constraints in

matrix M , belongs to the class of nonnegative systems, i.e.

R
n
≥0 is forward invariant (see, e.g. Chapter 9 in [12]).

Next, we define chemical reaction networks, which can be

characterized by three sets:

• a set of species: S = {Xi | i = 1, . . . , n},

• a set of complexes: C = {Cj | j = 1, . . . ,m}, where

Cj =
n∑

i=1

αjiXi j = 1, . . . ,m and

αji ∈ N0 j = 1, . . . ,m, i = 1, . . . , n,

αji are called the stoichiometric coefficients,

• and a set of reactions: R ⊆ {(Ci, Cj) | Ci, Cj ∈ C},

each ordered pair (Ci, Cj) has a reaction rate coefficient

kij ∈ R≥0 so that the corresponding reaction Ci → Cj

takes place if and only if kij > 0.

In the rest of the paper, we assume mass action kinetics, but

the results summarized in this section have been extended to

rational kinetics as well, see e.g. [13] for more details.

For computation purposes, we can characterize a CRN by

two matrices: the complex composition matrix Y ∈ N
n×m
0

describes the complexes as follows

[Y ]ij = αji i = 1, . . . , n, j = 1, . . . ,m,

and the set of reactions is encoded by the Kirchhoff matrix

Aκ ∈ R
m×m as

[Aκ]ij =







kji if i 6= j

−
m∑

l=1,l 6=i

kil if i = j.
(2)

The dynamics of a CRN can be written as a nonnegative

polynomial differential equation

ẋ = Y Aκψ
Y (x), x(0) ∈ R

n
≥0, (3)

where x represents the concentration vector of the species

and the monomial vector mapping ψY (x) is defined as

ψY
j (x) =

n∏

i=1

x
[Y ]ij
i j = 1, . . . ,m. (4)

At this point, we can make a connection between a nonnega-

tive polynomial ODE and the dynamics of CRNs as follows:

a nonnegative polynomial ODE in (1) can be transformed

into the form of (3), i.e.

Mϕ(x) = Y Aκψ
Y (x), (5)

if and only if the following condition is fulfilled

if [M ]ij ≤ 0, then [B]ij > 0, (6)

i = 1, . . . , n, j = 1, . . . ,m.

If the above condition is satisfied, we call (1) a kinetic

system because it has at least one CRN realization. This

condition also ensures that there are no negative cross-effects

in the kinetic system, as it is explained in [14]. Furthermore,

using this condition a so-called canonical realization can be

computed from (1) (see [15] for the details). However, it

should be stressed that CRNs with different sets of complexes

and reactions can generate the same dynamics [14], [16].

In this paper, we assume that the set of used complexes

is known, which defines the matrix Y and consequently

the monomial vector mapping ψY (x). Note that the left

hand side of (5) is a multivariate polynomial function, while

the factorization on the right hand side defines a CRN

structure. Therefore, the sets of monomials in ϕ and ψY

are not necessarily identical. The reason for this is that the

monomials of pure product complexes do not appear in the

kinetic equations, but ψY contains the monomials of each

complex, even if some of them have zero coefficients in the

equations. Naturally, ψY must contain all the monomials of

ϕ. This means that without the loss of generality we can

assume that ϕ = ψY and write the matrix M accordingly.

Using this assumption, dynamical equivalence can be simply

represented as

M = Y Aκ. (7)

The equation above shows that even with a fixed set of

complexes, several different Aκ matrices can lead to the

same dynamics. Hence, these differentAκ matrices are called

dynamically equivalent realizations of a kinetic system. The

total number of such realizations and their (structural and

dynamical) properties are the main focus of the past and the

current research presented in this paper.

It should be noted that a kinetic system—with a fixed set

of complexes—is uniquely characterized by the matrix pair

(Y , M ), thus we can refer to it by this pair.



A. Optimization-based computation of realizations

Optimization problems can be formulated to find realiza-

tions of the same kinetic system with different dynamical or

structural properties [3]. Jonhston et al. also proved that there

exists a unique superstructure for each kinetic system, and all

possible realizations are contained by the superstructure as

subgraphs [17]. This superstructure is also called the dense

realization since it contains the most number of reactions for

a given kinetic system.

Based on the superstructure property, an algorithm was

developed to compute all possible realizations of a given

kinetic system [3]. This algorithm effectively excludes dif-

ferent edge patterns from the dense realization, and by

construction, it returns all possible realizations (see details

of the proof in [3]). Additionally, this algorithm can be

massively parallelized (see [18] for more details).

A kinetic system has not only a structurally unique dense

realization but a structurally sparse realization as well. How-

ever, this sparse realization is not always structurally unique,

meaning that multiple sparse realizations may exist and have

the same minimum number of reactions (i.e. edges in the

reactions graph).

Several graph properties can be translated as constraints in

an optimization problem, a non-exhaustive list includes weak

reversibility [19], complex balance [20], deficiency zero [21],

or deficiency one [22]. The resulting optimization problems

not only give solutions with the given graph properties, but

these may also give a certificate about the lack of such

realizations. For example, if one is looking for a weakly

reversible realization of a given kinetic system, and there

is provably no feasible solution to the optimization problem

complemented with the constraints of weak reversibility, then

there exists no weakly reversible realization for a given

dynamics. Thus, such optimization problems can be used to

characterize some of the structural and dynamical properties

of kinetic systems.

1) Computation of the dense realization: The computa-

tion of the dense reaction graph can be formulated as an

optimization problem. A possible approach for that would

be a mixed integer linear programming problem where the

number of reactions in the network has to be maximized,

see [23] for the details. To make the computation tractable

for large networks, an iterative algorithm to compute the

dense realization was reported in [24]. The main steps of

this algorithm are summarized below.

First, by combining (2) and (7), a linear programming

(LP) problem can be formulated with the following set of

constrains

M = Y Aκ

[Aκ]ij ≥ 0 i = 1, . . . ,m, j = 1, . . . ,m i 6= j (8)

[Aκ]ii = −
m∑

j=1
j 6=i

[Aκ]ji i = 1, . . . ,m,

where dynamics of a kinetic system is given by (Y , M ) and

Aκ ∈ R
m×m is now the decision variable of the optimization

problem.

In many cases, the edge exclusion from the reaction graph

is needed. Formally, a set H ⊂ R of reactions has to be

excluded from the network that can be written as a linear

constraint:

[Aκ]ji = 0 (Ci, Cj) ∈ H. (9)

Second, we formulate the linear cost function as

maximize

m∑

i=1

m∑

j=1

[E]ij [Aκ]ij , (10)

where the binary matrix E ∈ {0, 1}m×m selects the elements

of Aκ into the cost function. Further details of the optimiza-

tion problem and the algorithm itself is given in [24].

B. Uncertain Kinetic Systems

So far, we encoded dynamics of a kinetic system by

(Y , M ) and we assumed that the coefficients matrix M

is constant. We then computed certain graph structures. In

this section, we define a family of kinetic systems where

elements of the coefficient matrix belong to a set, denoted

by M which contains all admissible parameter vectors of the

kinetic system. Clearly, the properties of the kinetic system

depend on the set M. Therefore, we first characterize the

type of uncertainty considered in this paper. Then, building

on the results summarized in the previous section, we define

a convex optimization problem to compute the dense realiza-

tion and subsequently all realizations of the uncertain kinetic

system.

C. Optimization-based computation of uncertain realizations

We assume two properties of the parametric uncertainty.

First, the nominal matrix M̄ ∈ M is given, thus we have

one member of the family of kinetic systems. Second, the

nominal M̄ is perturbed by an unknown matrix ∆, and

we only know the upper bound of the uncertainty in some

norm, e.g. in Frobenius norm: ||∆||F ≤ ρ, where ρ ∈ R≥0.

With these assumptions, we can characterize the possible

parameters vectors as vec(M) = vec(M̄) + ρu where

vec(M) ∈ R
nm is the vectorization of the parameter matrix

M ∈ R
n×m and u ∈ R

nm is given as u = vec(∆).
The uncertainty set around the nominal M̄ is given by

M = {vec(M̄) + ρu, ||u||2 ≤ 1}. (11)

This type of uncertainty describes a sphere around vec(M̄),
which can be translated to an second order conic (SOC)

constraint as follows

||vec(M)− vec(M̄)||22 ≤ ρ (12)

where vec(M) is an optimization variable. We can add (12)

as an SOC constraint to the optimization problem defined in

(8), (9), (10) and compute the dense realization with spherical

uncertainty using the Algorithm 1 from [24].

In this paper, we are more interested in the case where

the uncertainty not uniform in all directions. In this case,



the ellipsoidal uncertainty is defined by Σ ∈ R
nm×nm and

Σ � 0 and the corresponding uncertainty set is the following

M = {vec(M̄) +Ru, ||u||2 ≤ 1},

where R ∈ R
nm×nm is defined by the Cholesky decompo-

sition, Σ = R⊤R. Then, using the same derivation as above,

the modified M can be represented as a SOC constraint

||R⊤(vec(M)− vec(M̄))||22 ≤ 1. (13)

Again, just as in the spherical case, we can compute the

uncertain dense realization. For the complete treatment of

uncertain kinetic systems and the proofs, see [4]. It should

be mentioned that other types of uncertainty are possible

for a kinetic system, as long as the uncertainty set can be

translated as convex constraints, the dense realization exists,

see [4].

Besides the framework described in this paper, a useful

application of this technique could be the design of dynam-

ics, i.e. designing a kinetic system which operates inside the

prescribed operational limits or design envelope, see [25] for

details on CRN controller design.

At this point, we have the tools to compute the uncertain

dense realization. As it was shown in [4] that the all possible

realizations can be computed in the uncertain case as well.

In summary, in order to calculate the dense and subse-

quently all realizations, we need to define Y , the nominal

coefficient matrix M̄ and a spherical or ellipsoidal uncer-

tainty. Therefore, the next step is to compute M̄ from time-

series data with the assumption of that Y is known.

III. PARAMETER ESTIMATION

There are many possible ways to estimate the parameters

of a kinetic system from time-series data, see e.g. [26] or

[27]. In this paper, we work with the following assumptions:

all state variables can be measured, and the set of complexes

(i.e. the matrix Y ) is known a priori. The former assumption

can be relaxed, by using state estimation for the unmeasured

states. However, Y is usually assumed to be known, because

it represents our knowledge about the participating chemical

complexes.

For the purpose of parameter estimation, we need to

discretize the kinetic system in (1). Using sufficiently small

sampling time, we apply the forward Euler method and get

xi(tk) = xi(tk−1) + h[M ]i,· · ψ
Y
i (x(tk−1)), (14)

x(0) = x0, k = 1, . . . , N, i = 1, . . . , n,

where tk is the sampling time point, xi(tk) is the ith state

variable at time tk, x0 ∈ R
n
≥0 are the initial values, the

ψY
i (x) is the ith element of vector mapping ψY (x), the

vector [M ]i,· is the ith row of matrix M , the h is the

sampling time, and the N is the last sampling time point.

For the framework later on, we need the time derivate of x.

It can be estimated in many ways (see [28] for details). In our

case, it is given from the forward Euler method. Therefore,

we assume that the measurement of ith state variable of the

discrete kinetic system is available in this transformed form

y(i)(tk) :=
xi(tk)− xi(tk−1)

h
, k = 1, . . . , N, i = 1, . . . , n.

Then, we get a linear process for each state variable which

is linear in parameters, and the ith state is given as

ỹ(i)(tk, θ) = Φ(tk−1)θ
(i)⊤ + νi(tk), (15)

where the parameter vector is defined as θ(i) = [M ]i,· and

the regressor vector is given as

Φ(tk−1) = (16)
[
ψ1(x(tk−1)), ψ2(x(tk−1)), . . . , ψm(x(tk−1))

]
.

and the measurement noise is νi ∼ N (0, σ2). We assume

that the distribution of measurement noise is the same for

all the output channels.

It must be emphasized that kinetic system with mass

action kinetics is always linear in parameters, therefore the

standard algorithms and tools for analysis from the parameter

estimation literature can be applied in this case [1]. For

example, we can use the well-known Least Squares method

to calculate the parameters of (15) as the following

θ̂(i) = argmin
θ

1

2
||y(i) − Φθ||22 (17)

The problem with this path is that the Least Squares

method does not promote sparsity. In fact, it rather tries

to associate non-zero value to all parameters. However, the

dynamics of a state variable is usually not driven by all the

monomials in ϕ(x), but only a subset of them.

Therefore, we need to have either a constrained param-

eter estimation method, which knowns a priori the zero

coefficients or a parameter estimation method that promotes

sparsity. Among many candidates for the later one, Sparse

Bayesian Learning gained popularity recently, mostly be-

cause of guarantees for convergence and sparsity. However,

evolutionary computation [29] or heuristic based [30] al-

gorithms were also proposed recently to find parsimonious

models from time-series data.

A. Sparse Bayesian Learning

Sparse Bayesian Learning was proposed by Tipping and

was applied to Relevance Vector Machines where the task

is to find a sparse regression or classification [31]. In-

dependently from the Bayesian framework, Candes et al.

developed a framework that uses iterative reweighting of the

L1 norm penalty on the parameters [32]. Candes et al. makes

the connection to MM algorithms, which is a fundamental

way to iteratively solve non-convex optimizations problems.

Recently, Wipf et al., building on the work of Candes

and Tipping developed a framework which uses iterative

reweighting of either L1 or L2 norm to find sparse solution

of broad range of problems, e.g. sparse signal representation

[33], [34], automatic relevance determination [35], source

localization on MRI measurements [36].



Here, we only give a short outline of the Sparse Bayesian

framework, and therefore readers are strongly encouraged to

read [34] and [33] for a thorough treatment of the subject.

The following introduction follows the notations from [33].

Throughout the derivation, we assume that we have the

following process model

y = Φθ + ν (18)

where y ∈ R
N is the measurement vector, Φ ∈ R

N×m is

a dictionary of features, θ ∈ R
m is the parameter vector,

and ν ∼ N (0, λI) is the measurement noise. Our goal is

to estimate the sparsest θ, which then select the sparest

dictionary to describe the measurements.

As first step in the derivation, the Least Squares problem

in (17) can be transformed into a Gaussian likelihood as

p(y|θ) ∝ exp

(

−
1

2
||y − Φθ||22

)

(19)

The prior information about the parameters is expressed

in terms of non-negative latent variables γ ∈ R
m
≥0 as follows

p(θ) ∝
m∏

i=1

p(θi), p(θi) = max
γi≥0

N (θi; 0, γi)ζ(γi) (20)

where ζ(γi) is a non-negative function. This form of the

prior distribution allows us to express wide range of penalty

functions that are needed to promote sparsity in the parameter

vector [37]. This structure already hints that if we can set

the variance of some of the parameters to zero, then the

corresponding parameter value becomes zero. The derivation

of the algorithm can be found in the Appendix.

To find the parameter values for θ and γ, we need to solve

the following iterated optimization problem

• Step 1: initialize each zi = 1, i = 1, . . . ,m

• Step 2: θ̂ = argminθ ||y − Φθ||22 + 2λ
∑

i z
−1/2
i |θi|

• Step 3: compute γ
opt
i = z

−1/2
i |θ̂i|, i = 1, . . . ,m

• Step 4: compute zopt = ∇γ log |Σy|
• Step 5: iterate Step 2, 3 and 4 until γ is converged to

some value.

It should be noted that the first iteration of the above

algorithm is the LASSO optimization, and we try to improve

on that, hence the name iterated reweighted L1 optimization.

IV. CHARACTERIZING NETWORK STRUCTURES

At this point, we can merge the Sparse Bayesian Learning

algorithm and the computational tools developed for CRNs

into a framework which is shown in Figure 1. As a first step,

time-series data are feed to the parameter estimation step

(see, Section III-A), then using the optimization problems

from Section II-C, the uncertain dense realization is com-

puted. From this, all possible graph structures are computed.

Thus, this framework transforms the available information in

the time-series data into possible network structures relying

only on few assumptions.

Both parts of the framework solve optimization problems.

Therefore these optimization problems can be complemented

with constraints enforcing structural or dynamical properties.

Param

estim.

w/ SBL

Comp. the

dense realization

Struc. or dyn.

constraints

Comp. of all

realizations

D

M̄,Σ AD
k

︷ ︸︸ ︷

A
(1)
k , . . . , A

(P )
k

further a priori information

Fig. 1. The figure depicts the overall scheme of the framework developed in
this paper. D denotes the time-series data collected from experiments. Then,
this information is used to estimate the parameter of the model M̄ , along
with the covariance matrix Σ. From these, the uncertain dense realization is
computed by Algorithm 1 in [24]. In the final step, all possible realizations
are computed and this set can be further analyzed. The framework allows us
to complement either the parameter estimation or the structure computation
with constraints, thus the possible network structures can be further reduced.

To visulize our the results, the so-called Feinberg-Horn-

Jackson graph is used, which is a weighted directed graph. In

this graph, the vertices are the complexes, the edges are the

reactions, and the weights are the reaction rate coefficients

(kij).

A. Examples

We illustrate the framework shown in Figure 1 on an
example. This example was presented in [26] as a benchmark
problem for network inference. The network structure is
shown in Figure 2 and its CRN formulation is given as

Y =











1 0 1 0 0

0 2 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1











(21)

and

Ak =











−1.163 0 0 0 0.8492
0.3386 0 0 0 0.4290
0.8244 0 −0.7364 0.5631 0

0 0 0 −0.5631 0

0 0 0.7364 0 −1.2782











,(22)

the CRN has 5 complexes and 6 reactions, the coefficient

matrix is given as M = Y Aκ. The dynamically equivalent

(noiseless case) dense realization has also 6 reactions and

the network has no other dynamically equivalent realization,

i.e. in the noiseless case only one network structure exists.

1) Least Squares Method: In the first part, we test the

performance of the simple Least Squares method assuming

that the zero elements of matrix M are known, i.e. we have

a constrained Least Squares with equality constraints (LSE).

For this part, we generated 50 experiments with different

initial values, sampled with Latin Hypercube sampling be-

tween [0, 1], and simulated the process for T = 10 sec. For

each state variable, we had the following measurement noise

σ2 = 10−4, and the sampling time was h = 0.01.

From the LSE, the covariance matrix is available in

close form. We then set the confidence level at α = 0.05
and computed the dense realization of the uncertain kinetic

system with Algorithm 1 from [24]; the dense realization

is shown in the right panel of Figure 2. This realization
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Fig. 2. Left: this example network is taken from [26]. The parameters of
the network are k1,2 = 0.3386, k1,3 = 0.8244, k5,1 = 0.8496, k5,2 =

0.4290, k3,5 = 0.7364 and k4,3 = 0.5630. Right: the dense realization
computed from data with σ2 = 10−4 and confidence level α = 0.05. The
parameters of the network are k1,2 = 0.2920, k5,2 = 0.2645, k5,1 =

0.9208, k1,3 = 1.2262, k4,3 = 0.6108, k3,5 = 0.6495, k3,1 = 0.3227,
k3,2 = 0.1800 and k4,1 = 0.5714.
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Fig. 3. Number of realizations depending on the variance of the measure-
ment noise. LSE case.

has 9 reactions, thus the extra three reactions open up

the possibility for multiple realizations. After computing all

possible realizations using the algorithm from [18], we got 56

structurally different reaction networks. Clearly, even in this

generous scenario—all state variables are directly measured,

limited measurement noise is added—gave us several differ-

ent network structures within the given uncertainty bounds.

As a next step, we show for this example how the number

of possible structures depend on the measurement noise. For

that reason, we generated 100 different σ2 values between

10−4 and 101. Then, the overall procedure from Figure 1

was done for all the different noise scenarios. The Figure 3

shows the results. As we can see in Figure 3, the number

of realizations saturates above a given noise level. This

is because we have reached the combinatorially possible

number of realizations, which is given by

Rmax =

Rd∑

i=1

(
Rd

i

)

(23)

where Rd is the number of edges in the dense realization.

If we have some prior information on the minimum number

edges in the network, then the index i can start from that

number. Clearly, then we have fewer number of possible

network structures.

If we reach the maximum number of possible realizations
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Fig. 4. Number of realizations depending on the variance of the measure-
ment noise in the SBL case.

for a kinetic system that means that the parameters estimation

provided no restriction on the possible structures. Therefore,

by computing Rλ

Rmax
, where Rλ is the number of realizations

for a given noise level, we have a simple measure which

tells us how much information we gained from the parameter

estimation about the possible network structures.

2) Sparse Bayesian Learning: In the second part, we test

the performance of the SBL algorithm. The example is the

same as before, but this case we did not assume we know

the zero entries of M by using equality constraints; it will be

estimated by the SBL algorithm. We have generated only 10
different initial values and simulated the system for T = 10
sec with sampling time h = 0.1. Thus, we have significantly

less measurement data for all state variables, then in the

previous case.

Again, we generated different measurement noise levels

and executed the overall procedure from Figure 1. The

results of this part is summarized in Figure 4. As we can

see, we have significantly fewer possible realizations in the

investigated range. In this range of noise level the position of

the zero elements in the M matrix was correctly estimated,

outside this range the sparsity pattern was not estimated

correctly. Additional measurements could potentially extend

the range where the sparsity pattern can be restored, but this

falls outside of the scope of the current paper.

At this stage, we completely characterized the possible

network structures. By adding different a priori knowledge,

we can measure the effect of this knowledge on the number

of structures and compare them with each other. From the

dense realization, shown in right panel of Figure 2, we

identify three reactions that are possible reactions given

the data, but the are not part of the original network. By

excluding these reaction one at the time, we can compare

the resulting number of realizations. This is shown in Figure

4, shown with different symbols.

V. CONCLUSIONS AND FUTURE WORKS

We have developed a framework that computes the pos-

sible network structures from time-series data. Assuming

that all state variables are measured and the participating

chemical complexes are known, we have used the Sparse

Bayesian Learning to estimate the parameter of the dynami-

cal model. From the statistics of the parameter estimation all



possible network structures have been computed. We have

given a simple metric to judge the information content of

the time-series data as a ratio of the current number of

network structures and combinatorially possible ones. We

have also shown that we can control the number of network

structures by adding additional a priori information. In fact,

we can compare the effect of different a priori information

on the number of possible structures, since without any

constraints the framework—by construction—provides all

possible network structures. As future work, we would like to

further characterize data and noise dependence of the Sparse

Bayesian Learning algorithm and add further constraints

to limit the possible network structures or automatically

generate the set of constraints needed for a unique network

structure.
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APPENDIX

Derivation of the Sparse Bayesian Learning algorithm

using iterative reweigthed L1 minimalization.

For a fixed γ, we have an approximate prior as

p̂γ(θ) =

m∏

i=1

N (θi; 0, γi)ζ(γi). (24)

Using the Gaussian prior and likelihood, we get an approx-

imate posterior

p̂γ(θ|y) =
p(y|θ)p̂γ(θ)

∫
p(y|θ)p̂γ(θ)dθ

= N (θ;µθ,Σθ) (25)

where

µθ = ΓΦ⊤(λI +ΦΓΦ⊤)−1y (26)

Σθ = Γ− ΓΦ⊤(λI +ΦΓΦ⊤)−1ΦΓ (27)

where Γ = diag[γ]. The next step is estimating γ in a way

the is amenable to the above computation. According to

[34], an estimator for γ can be constructed using variational

representation which involves solving

γ = argmin
γ

∫

p(y|θ)|p(θ) − p̂γ(θ)|dθ (28)

= argmax
γ

∫

p(y|θ)
m∏

i=1

N (θi; 0, γi)ζ(γi)dθi. (29)

The above expression has analytical solution, after applying

−2 log(·), the cost function is

C(γ) = y⊤Σ−1
y y + log |Σy|+

m∑

i=1

f(γi) (30)

where f(γi) = −2 log(ζ(γi)) and Σy = λI +ΦΓΦ⊤.

The above cost function in not convex, but an iterative

optimization can be established mainly using results from

convex analysis. First, the data dependent term in (30) can

be reexpressed as

y⊤Σ−1
y y = min

θ

1

λ
||y − Φθ||22 +

n∑

i=1

θ2i
γi
. (31)

Then, we can create a strict upper bounding function on C(γ)
by

C(γ, θ) =
1

λ
||y − Φθ||22 +

n∑

i=1

θ2i
γi

+ log |Σy|+
∑

i

f(γi).

If we minimize over γ, then

C(θ) = min
γ≥0

C(γ, θ) = ||y − Φθ||22 + λg(θ) (32)

where

g(θ) = min
γ≥0

n∑

i=1

θ2i
γi

+ log |Σy|+
∑

i

f(γi). (33)

In the rest of the paper, we assume that f(γi) = 0, for

i = 1, . . . ,m because we are interested in maximal sparsity.

For further details on f(γi) and comparison of different

regularization terms, see [38].

In the rest of the analysis, we focus on (33). The log | · |
is a concave function on semidefinite matrices [39] and Σy

is a positive semidefinite matrix and an affine function in γ.

Thus log |Σy| is a concave, non-decreasing function in γ and

can be expressed as

log |Σy| = min
z≥0

z⊤γ − h∗(z) (34)

where h∗(z) is the concave conjugate of log |Σy| and given

by

h∗(z) = min
γ≥0

z⊤γ − log |Σy|. (35)

Based on that, we rewrite (33) as

g(θ) = min
γ,z≥0

θ⊤Γ−1θ + z⊤γ − h∗(z). (36)

Fixing θ and z, then optimizing over γ, yields

γ
opt
i = z

−1/2
i |θi|, i = 1, . . . ,m. (37)

Substituting γopt back to (36), we get

g(θ) = min
z≥0

m∑

i=1

2z
−1/2
i |θi| − h∗(z). (38)

Now, we only need to calculate the optimal z. For a fixed

γ, we get

zopt = ∇γ log |Σy| (39)

= diag[Φ⊤Σ−1
y Φ] = diag[Φ⊤(λI +ΦΓΦ⊤)Φ].

Then, we can substitute Γ = diag[γopt] to get a value for

zopt.
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