

D6.3 Report on the implementation
of the Joint Resource Registry
(interim)

AUTHORS: Luca Frosini

Massimiliano Assante
Andrea Dell’Amico
Lucio Lelii
Leonardo Candela
Pasquale Pagano

DATE 27 November 2017

 ii

 PARTHENOS – D6.3

 iii

HORIZON 2020 - INFRADEV-4-2014/2015:

Grant Agreement No. 654119

PARTHENOS

 Pooling Activities, Resources and Tools for Heritage E-research Networking, Optimization

and Synergies

Report on the implementation of the Joint Resource Registry (interim)

Deliverable Number D6.3

Dissemination Level Public

Delivery date 27 November 2017

Status Final

Author(s)

Luca Frosini
Massimiliano Assante
Andrea Dell’Amico
Lucio Lelii
Leonardo Candela
Pasquale Pagano

 iv

Project Acronym PARTHENOS

Project Full title Pooling Activities, Resources and Tools for Heritage E-
research Networking, Optimization and Synergies

Grant Agreement nr. 654119

Deliverable/Document Information

Deliverable nr./title D6.3

Document title Report on the implementation of the Joint Resource Registry
(interim)

Author(s) Luca Frosini
Massimiliano Assante
Andrea Dell’Amico
Lucio Lelii
Leonardo Candela
Pasquale Pagano

Dissemination
level/distribution

Public

Document History

Version/date Changes/approval Author/Approved by

V 0.1 04.10.17 Section 2 and Section 3 Luca Frosini, Massimiliano
Assante

V 0.2 12.10.17 Section 2 Revision, Section 4 Luca Frosini, Lucio Lelii

V 0.3 18.10.17 Section 4 Revision, Section 5.1 and
Section 5.2

Luca Frosini, Lucio Lelii,
Andrea dell’Amico

V 0.4 27.10.17 Section 5, Section 6 Luca Frosini

Final 17.11.17 Revision of all sections Leonardo Candela,
Pasquale Pagano

22/11/2017 Reviewed Sheena Bassett, PIN

This work is licensed under the Creative Commons CC-BY License. To view a copy of the
license, visit https://creativecommons.org/licenses/by/4.0/

 PARTHENOS – D6.3

 v

Table of Contents

1 Executive Summary .. 1

2 Introduction ... 2
2.1 Definition .. 2
2.2 Requirements ... 3

2.2.1 Functional Requirements ... 3
2.2.2 Non-Functional Requirements ... 4

2.3 Architecture ... 5

3 Facet Based Resource Model .. 6
3.1 Information System Model .. 6

3.1.1 Basic Concept .. 6
3.1.2 Entity .. 10
3.1.3 Facet .. 10
3.1.4 Relation .. 10

4 Joint Resource Registry .. 12
4.1 Architecture ... 12

4.1.1 Resource Registry Service... 13
4.1.2 Resource Registry Context Client .. 13
4.1.3 Resource Registry Schema Client ... 13
4.1.4 Resource Registry Publisher.. 14
4.1.5 Resource Registry Client ... 14

5 Interacting with Resource Registry Service ... 15
5.1 Context Management .. 15

5.1.1 Create .. 15
5.1.2 Read .. 17
5.1.3 Rename ... 18
5.1.4 Move .. 19
5.1.5 Delete .. 20

5.2 Schema Management .. 20
5.2.1 Type Definition ... 20
5.2.2 Type Creation .. 22
5.2.3 Read Type Definition ... 24

5.3 Entities and Relations Instances Management ... 26
5.4 Facet Instances APIs ... 26

5.4.1 Create Facet Instance .. 26
5.4.2 Update Facet Instance ... 27
5.4.3 Delete Facet Instance .. 28

5.5 Resource Instances APIs .. 29
5.5.1 Create Resource Instance ... 29
5.5.2 Update Resource Instance... 31
5.5.3 Delete Resource Instance .. 32

5.6 ConsistsOf ... 33
5.6.1 Create ConsistsOf Instance ... 33
5.6.2 Delete ConsistsOf Instance.. 35

5.7 IsRelatedTo .. 35

 vi

5.7.1 Create IsRelatedTo Instance ... 35
5.7.2 Delete IsRelatedTo Instance .. 36

5.8 Query and Access ... 37
5.8.1 Exists ... 37
5.8.2 Get Instance ... 38
5.8.3 Get All Instances of a Specific Type .. 38
5.8.4 Get All Instances in relation with a specific entity instance 40
5.8.5 Get Filtered Resource Instances .. 41
5.8.6 Raw Query ... 42
5.8.7 Read Context ... 45
5.8.8 Read Type Definition ... 45

6 Backend Database (i.e. OrientDB as Graph Database) ... 47

7 The Studio GUI .. 48

 PARTHENOS – D6.3

 vii

List of Tables

Table 1: Basic Property Types .. 8
Table 2: Derived Property Types ... 9
Table 3: Header ... 9
Table 4: Propagation Constraints .. 9
Table 5: Resource Entity .. 10
Table 6: isRelatedTo .. 10
Table 7: consistOf .. 11
Table 8: isIdentifiedBy.. 11
Table 9: Create Request Parameters .. 16
Table 10: Create Response Type .. 16
Table 11: Read Request Parameters... 17
Table 12: Read Response Type .. 17
Table 13: Rename Request Parameters .. 18
Table 14: Rename Response Type ... 18
Table 15: Move Request Parameters .. 19
Table 16: Move Response Type .. 19
Table 17: Delete Request Parameter .. 20
Table 18: Delete Response Type .. 20
Table 19: Property Type Mapping .. 21
Table 20: Create Parameters ... 22
Table 21: Create Response Type .. 22
Table 22 Read Parameters .. 24
Table 23 Read Response .. 24

 PARTHENOS – D6.3

 1

1 Executive Summary

The D6.3 Report on the implementation of the Joint Resource Registry documents the
interim implementation of the Joint Resource Registry (JRR). It complements the D5.2
Report on the design of the Joint Resource Registry deliverable by providing details on
how to interact with and exploit the functionalities it provides.

The JRR hosts the PARTHENOS entities represented according to the PARTHENOS
Entities Model defined in WP5. As such, it represents an information system for the
PARTHENOS community and the PARTHENOS universe of tools and services designed
for and released in the PARTHENOS infrastructure.

This deliverable presents, in Section 2, the principles and guidelines that govern the
implementation of the JRR which has been designed to support the persistence of the
PARTHENOS Entities. The JRR is implemented as a tailored information system capable
of satisfying the evolution of the model itself, the main features of which are described in
section 3 since the facet based resource model is extensively referred to throughout this
report. Entities, Resources, Facets and Relations are described in detail. Section 4
describes the set of technical components comprising the JRR and APIs, covering the
architecture which includes the Resource Registry Service, Context Client, Schema Client,
Publisher and Client. Section 5 provides information regarding how to interact with the
Resource Registry Service by exploiting the Context and Schema Port Types. The REST
APIs are also presented for each functionality. Section 6 covers the backend database,
OrientDB, a Multi-Model Open Source NoSQL DBMS that brings together the power of
graphs and the flexibility of documents into one scalable high-performance operational
database. The final section provides information on the Studio GUI used by the Content
Administrator for searching between the created types and inspection of their schema.

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service

 2

2 Introduction

The Joint Resource Registry (JRR) has been designed to support the persistence of the
PARTHENOS Entities. It is implemented as a tailored information system capable of
satisfying the evolution of the model itself. Moreover, it contributes to the large gCube
open-source framework as presented in the deliverable D6.1 PARTHENOS Cloud
Infrastructure. In this Section, the role of this tailored information system is first clarified
and then the functional and non-functional requirements are illustrated.

2.1 Definition

Several definitions of Information System (IS) exist. Each definition aims to capture either
a specific role or a specific behaviour in systems managing some kind of information.
It is quite common to define an IS as "any organized system for the collection,
organization, storage and communication of information". The Encyclopaedia Britannica
defines an IS as "an integrated set of components for collecting, storing, and
processing data and for providing information, knowledge, and digital products".

All the definitions convey the characteristics of Information. Information consists of data
that:

● is accurate and timely,

● is specific and organized for a purpose,

● is presented within a context that gives it meaning and relevance,

● can increase understanding and decrease uncertainty.

According to the Business Dictionary, an information system is "a combination of
hardware, software, infrastructure and trained personnel organized to facilitate planning,
control, coordination, and decision making in an organization".
In this context, trained personnel are illustrated as:

● human resources

● procedures for using, operating, and maintaining the information system

● set of basic principles and associated guidelines, a.k.a. policies, formulated and

enforced to direct and limit actions in pursuit of long-term goals.

Looking at the MIT Press, an information system is "a software system to capture,
transmit, store, retrieve, and manipulate data produced by software systems to provide
access to information, thereby supporting people, organizations, or other software
systems".
This definition makes it evident that software systems are both producers and consumers
of the Information System making it the core of their business activities.

In the context of the research infrastructures1 and system of systems, we can define an
information system (IS) as:

1
 The term ‘research infrastructures’ refers to facilities, resources and related services

used by the scientific community to conduct top-level research in their respective fields,
ranging from social sciences to astronomy, genomics to nanotechnologies
https://ec.europa.eu/research/infrastructures/index_en.cfm?pg=about

https://ec.europa.eu/research/infrastructures/index_en.cfm?pg=about
https://ec.europa.eu/research/infrastructures/index_en.cfm?pg=about
https://ec.europa.eu/research/infrastructures/index_en.cfm?pg=about

 PARTHENOS – D6.3

 3

A software system

● to capture, transmit, store, retrieve, and manipulate data produced by software

systems

● to provide access to information - organized for a purpose and within a

contextual domain - that are used, accessed, and maintained according to well-

known procedures operated under the limit of the (evolving) organization

policies

● to support people within an organization and other software systems.

2.2 Requirements

The analysis of the requirements of an information system capable of providing support for
a Research Infrastructure led to identification of the functionality the system has to provide
(functional requirements) and the constraints and performances it has to respect (non-
functional requirements).

2.2.1 Functional Requirements

IEEE has defined Functional Requirements as "A requirement that specifies a function
that a system or system component must be able to perform"2

According to this definition, the following requirements have been identified:

● Data Definition Language (DDL) for schemas definition (entities and relations);

● Entity and Relation instances must be:

○ Univocally identifiable;

○ Selective/Partial updatable;

○ Validated against the Schema.

● Referential Integrity is a property of data stating references within it are valid3]. A

referential integrity constraint is defined as part of an association between two entity

types. The purpose of referential integrity constraints is to ensure that valid

associations always exist4;

● Dynamic Query (no pre-defined query): Capabilities of a system allowing clients to

build their own query and submit it to the system with no long-term impact on the

information system. With regard to relational databases, this characteristic seems

obvious (provided by SQL). Unfortunately, especially with the new trend of NoSQL,

this same functionality is not supported by some types of NoSQL databases;

● Standard Abstraction (desiderata) as far as the relational databases respect SQL

standard dialect, it is a desiderata that the information system supports a standard

family of query language;

2
 IEEE (1990). Standard Glossary of Software Engineering Terminology. IEEE Standard

610.12-1990.
3
 https://en.wikipedia.org/wiki/Referential_integrity

4 https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/referential-integrity-
constraint

https://en.wikipedia.org/wiki/Referential_integrity
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/referential-integrity-constraint
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/referential-integrity-constraint

 4

● Subscription Notification support allows "full decoupling of the communicating

entities in time, space, and synchronization" 5 which reflect the nature of loosely

coupled nature of distributed interaction in large-scale applications (such as a

Research Infrastructure). By providing this functionality, the possibility to construct

event-based services and to improve the scalability of the system will be ensured.

2.2.2 Non-Functional Requirements

Commonly Non-Functional Requirements are identified as "requirements that specify
criteria that can be used to judge the operation of a system, rather than specific
behaviours"6. Unfortunately, there is no consensus in the scientific community on a non-
functional requirements definition. Martin Glinz 7 has defined taxonomy to identify non-
functional requirements. In particular, a non-functional requirement can be:

● An attribute: is a performance requirement or a specific quality requirement;

○ A performance requirement is a requirement that pertains to a performance

concern;

○ A specific quality requirement is a requirement that pertains to a quality

concern other than the quality of meeting the functional requirements.

● A constraint: is a requirement that constrains the solution space beyond what is

necessary for meeting the given functional, performance, and specific quality

requirements.

Under the above-mentioned definition and the taxonomy fall:
● High Availability (HA) is a characteristic of a system, which aims to ensure an

agreed level of operational performance, usually uptime, for a higher than normal

period 8;

● Eventual Consistency is a consistency model used in distributed computing to

achieve high availability that informally guarantees that, if no new updates are made

to a given data item, eventually all accesses to that item will return the last updated

value 9 ;

● Horizontal Scalability. Scalability is the capability of a system, network, or process

to handle a growing amount of work, or its potential to be enlarged to accommodate

that growth 10. Horizontally scalability (or scale out/in) means adding more nodes to

5
 Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.

2003. The many faces of publish/subscribe. ACM Comput. Surv. 35, 2 (June 2003), 114-
131. DOI=http://dx.doi.org/10.1145/857076.857078

6
 https://en.wikipedia.org/wiki/Non-functional_requirement

7
 M. Glinz. On non-functional requirements. In Proc. 15th IEEE Int. Requirements Eng.

Conf., 2007.
8
 https://en.wikipedia.org/wiki/High_availability

9
 Werner Vogels. 2009. Eventually consistent. Commun. ACM 52, 1 (January 2009), 40-

44. DOI: https://doi.org/10.1145/1435417.1435432
10

 André B. Bondi. 2000. Characteristics of scalability and their impact on performance. In
Proceedings of the 2nd international workshop on Software and performance (WOSP '00).
ACM, New York, NY, USA, 195-203. DOI=http://dx.doi.org/10.1145/350391.350432

https://wiki.gcube-system.org/gcube/Information_System#cite_note-9
https://wiki.gcube-system.org/gcube/Information_System#cite_note-9
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/High_availability
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
http://dx.doi.org/10.1145/350391.350432

 PARTHENOS – D6.3

 5

(or remove nodes from) a system, such as adding a new computer to a distributed

software application.

● Multi-Tenancy, i.e. a single instance of the technology should be able to serve

many “independent” contexts (between the same Application Domain) 11;

● EUPL license compatibility of all its components.

2.3 Architecture

The architecture of this information system comprises several components. It includes the
software components dealing with the generic and the tailored entities models; the
services components implementing the capabilities to interact with those entities; the
backend database used to persist the entities; and finally the graphical user interface
oriented for human exploitation and visualization of the entities.

The architecture of the information system is, therefore, composed of the following
software components:

● Facet Based Resource Model libraries

○ Information System Model library

○ gCube Model library

○ PARTHENOS Model library

● Joint Resource Registry

○ Resource Registry Service

○ Resource Registry Context Client

○ Resource Registry Schema Client

○ Resource Registry Publisher

○ Resource Registry Client

● Backend Database (i.e. OrientDB as Graph Database)

● Information System Subscription Notification Service

● Graphical User Interface (GUI)

11

 Please note that different Application domain must be managed by completely
separated instances of the whole IS.

https://orientdb.com/

 6

3 Facet Based Resource Model

The PARTHENOS Joint Resource Registry Data Model is extensively presented in Section
6 of the deliverable D5.2 Design of the Joint Resource Registry. In the following sections,
some basic information about the Resource Model is reported since this is largely used in
the remaining part of this document.

3.1 Information System Model

3.1.1 Basic Concept

Two typologies of Entities are envisaged:

● Resources, i.e. entities representing a description of "thing" to be managed;

○ Every Resource is characterized by a number of Facets.

● Facets, i.e. entities contributing to "build" a description of a Resource. Every facet,

once attached to a Resource profile, captures a certain aspect / characterization of

the resource. Every facet is characterized by a number of properties;

Two typologies of Relations are envisaged:

● isRelatedTo, i.e. a relation linking any two Resources.

● consistsOf, i.e. a relation connecting each Resource with one of the Facets

characterizing it;

 PARTHENOS – D6.3

 7

Each Entity and Relation

● has an header automatically generated for the sake of identification and

provenance of the specific information;

● can be specialized

○ A number of specializations are identified below. Such specializations are

managed by the gCube Core services, i.e. Core services builds upon these

specializations to realize its management tasks;

○ Other specializations can be defined by clients, the system make it possible

to store these additional typologies of relations and facets and to discover

them.

Facet and Relation instances can have additional properties which are not defined in the

schema (henceforth schema-mixed mode).

Relation properties:

● Any relation has a direction, i.e. a "source" (out bound of the relation) and a "target"

(in bound of the relation). Anyway, the relation can be also navigated in the

opposite direction;

● It is not permitted to define a Relation having a Facet as "source". In other words:

○ It is not permitted to define a Relation connecting a Facet with another one;

○ It is not permitted to define a Relation connecting a Facet with a Resource

(as target);

● A Facet instance can be linked (by consistsOf or any specialization of it) from

different Resources.

Any Property can be enriched with the following attributes:

● Name: Property Name

● Type: The Type of the Property (e.g. String, Integer, ...). See Property Type

● Description: The description of the Property. Default=null.

● Mandatory (M): Indicates if the Property is mandatory. Default=false.

● ReadOnly (RO): The Property cannot change its value. Default=false.

● NotNull (NN): Whether the property must assume a value diverse from 'null' or not.

Default=false

● Max (Max): Default=null

● Min (Min): Default=null

● Regexpr (Reg)): A Regular Expression to validate the property value, default=null.

https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#consistsOf
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#consistsOf

 8

Table 1: Basic Property Types

Type Java type Description

Boolean java.lang.Boolean or boolean Handles only the values True or False.

Integer java.lang.Integer or int or
java.math.BigInteger

32-bit signed Integers.

Short java.lang.Short or short Small 16-bit signed integers.

Long java.lang.Long or long Big 64-bit signed integers.

Float java.lang.Float or float Decimal numbers.

Double java.lang.Double or double Decimal numbers with high precision.

Date java.util.Date Any date with the precision up to
milliseconds.

String java.lang.String Any string as alphanumeric sequence of
chars.

Embedded ? extends
org.gcube.informationsystem.model.embedd
ed.Embedded

This is an Object contained inside the
owner Entity and has no Header. It is
reachable only by navigating the owner
Entity.

Embedded
list

List<? extends
org.gcube.informationsystem.model.embedd
ed.Embedded>

List of Objects contained inside the
owner Entity and have no Header. They
are reachable only by navigating the
owner Entity.

Embedded
set

Set<? extends
org.gcube.informationsystem.model.embedd
ed.Embedded>

Set (no duplicates) of Objects contained
inside the owner Entity and have no
Header. They are reachable only by
navigating the owner Entity.

Embedded
map

Map<String, ? extends
org.gcube.informationsystem.model.embedd
ed.Embedded>

Map of Objects contained inside the
owner Entity and have no Header. They
are reachable only by navigating the
owner Entity.

Byte java.lang.Byte or byte Single byte. Useful to store small 8-bit
signed integers.

Binary java.lang.Byte[] or byte[] Can contain any value as byte array.

https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#Header

 PARTHENOS – D6.3

 9

Table 2: Derived Property Types

Type Java type Description

Enum java.lang.Enum or
enum

By default, it is represented using the String representation of the Enum
so that the primitive type used will be String. The enumeration is
checked by setting the Regexpr property. The Regular Expression is
auto-generated and it will be something like ^(FIRST-ENUM-
STRING_REPRESENTATION|SECOND-ENUM-
STRING_REPRESENTATION|...|LAST_ENUM_STRING_REPRESENT
ATION)$.
Otherwise (if indicated using an annotation), it can be represented using
the Integer value of the Enum so that the primitive type used will be
Integer. The enumeration is checked using Max and Min properties.

UUID java.util.UUID String representation of the UUID. The check is obtained using the
regular expression ^([a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-
9]{4}-[a-fA-F0-9]{12}){1}$

URL java.net.URL String representation of the URL. No check actually.

URI java.net.URI String representation of the URI. No check actually.

Table 3: Header

Name Type Attributes Description

uuid UUID Mandatory=true
NotNull=true
ReadOnly=true

This uuid can be used to univocally identify the
Entity or the Relation

creator String Mandatory=true
NotNull=true
ReadOnly=true

Filled at creation time. The creator is retrieved
using the authorization token

creationTime Date Mandatory=true
NotNull=true
ReadOnly=true

Creation time in milliseconds. Represent the
difference, measured in milliseconds, between
the creation time and midnight, January 1, 1970
UTC

lastUpdateTime Date Mandatory=true
NotNull=true

Last Update time in milliseconds. Represent the
difference, measured in milliseconds, between
the last update time and midnight, January 1,
1970 UTC

Table 4: Propagation Constraints

Name Type Attributes Description

remove Enum Mandatory=true
NotNull=true
Regex=(cascadeWhenOr
phan|cascade|keep)

Indicate the behaviour to Resource Registry to be
applied to the target Entity when the source Entity is
remove from context or deleted

add Enum Mandatory=true
NotNull=true
Regex=(propagate|unprop
agate)

Indicate the behaviour to Resource Registry to be
applied to the target Entity when the source Entity is
added to Context

 10

Any Relation contains such a property. If the values are not specified at creation time, the
system will initialize it following the following rules:

 IsRelatedTo Relation: remove=keep, add=unpropagate

 ConsistsOf Relation: remove=cascadeWhenOrphan, add=propagate

3.1.2 Entity

The resource entity is conceived to describe every "main thing" to be registered in and
discovered through the Joint Resource Registry.

Table 5: Resource Entity

Scope:

Source Relation Multiplicity Target Description

Facets

Resource isIdentifiedBy 1..n Facet Any Resource has at least one Facet
which in some way allow to identify the
Resource per se.

Resource consistsOf 0..n Facet Any Resource consist of zero or more
Facets which describes the different
aspects of the facet.

Relations

Resource isRelatedTo 0..n Resource Any Resource can be related to any
other resource.

3.1.3 Facet

Facets are collections of attributes conceived to capture a certain feature / aspect of the
resource they are associated with.
Every Facet has:

● A Header automatically generated to capture identification- and provenance-related

aspects of the facet once it is instantiated;

● Zero or more properties. Besides the per-facet envisaged properties, clients can

add new ones.

3.1.4 Relation

Every relation has:
● A Header

● A PropagationConstraint

● Zero or More properties (not necessarily predefined, similarly to Facets).
Table 6: isRelatedTo

Source Relation Multiplicity Target Description

Resource isRelatedTo 0..n Resource A relation linking any two Resources.

Default PropagationConstraint has the following values: remove=keep, add=unpropagate

https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#Relation

 PARTHENOS – D6.3

 11

Table 7: consistOf

Source Relation Multiplicity Target Description

Resource consistsOf 1..n Facet A relation connecting each Resource
with one of the Facet characterizing it.

Default PropagationConstraint has the following values: remove=cascadeWhenOrphan,
add=propagate

Table 8: isIdentifiedBy

Source Relation Multiplicity Target Description

Definition

Resource isIdentifiedBy 1..n Facet A relation connecting each Resource
with one of the Facet which can be
used to identify the Resource.

 12

4 Joint Resource Registry

The Joint Resource Registry is designed to support the following operations:
● To capture, transmit, store, retrieve and manipulate data from any software system

enabled on the infrastructure, including:

○ Location and properties

○ Status, load, exploitation usage, and accounting data

● To provide access to information, organized to enable:

○ Monitoring, validation, and reporting

○ Elasticity and pooling of resources

● To support any software system to:

○ Discover services and infrastructure resources.

The Joint Resource Registry enables:

● a set of resource management functions

○ enabling functions

■ publication, discovery

■ monitoring, deployment

■ contextualization, security, execution

○ data management functions

■ access, store

■ index, search

■ transfer, transform

● a set of applications

○ built around those functions

● an abstract view over functions

○ defined by specifications

○ multiple implementations, over time / concurrently

● secure and consistent entities evolution

○ tailored support for facet and resource definition

○ implementations produce/consume different facets, independently

● dynamic resource semantics

○ no longer predefined in class hierarchies

○ implicitly captured by current facets

○ changes over time / across “similar” resources

4.1 Architecture

The constituent software components are:
● Resource Registry Service

● Resource Registry Context Client

● Resource Registry Schema Client

● Resource Registry Publisher

● Resource Registry Client

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service

 PARTHENOS – D6.3

 13

4.1.1 Resource Registry Service

The Resource Registry Service is a web service running on SmartGears responsible for
storing information, in particular the global and partial view of:

● the resources (e.g. computing, storage, services, software, datasets);

● their current status (e.g. up and running, available);

● their relationships with other resources;

● the policies governing their exploitation.

The Resource Registry is developed only by using the concepts defined in the Information
System Model and it provides the capabilities to enrich its knowledge by creating new
types of entities and relations and their schemas. The Resource Registry is capable of
serving different applications domains (i.e. Context). To achieve this goal the Resource
Registry provides capabilities for managing Contexts (the contexts are hierarchical) and
associating the entities and relations to one or more of the Contexts as requested by the
different clients. The Resource Registry is also responsible for notifying any update to or
creation of any entity or relation to Information System Subscription Notification
Service.

To reach its goals, the Resource Registry offers four port types:

● Context Management: manage hierarchical Context;

● Schema Management: register and define Entities and Relations schema;

● Entities and Relations Instances Management: manage instances of registered

Entity and Relation type;

● Query & Access: query instances and get the schema definition of registered

types.

Every Port type is exposed as REST12 API.
Every REST API is JSON13 based. This means that any content present in an HTTP
request is formatted using the JSON standard.

4.1.2 Resource Registry Context Client

The Resource Registry Context Client is a java library providing RPC facilities to interact
with the Context Management port type. The library hides all the complexity of
marshalling and un-marshalling of requests and results. By using this library, any client
can manage java classes instead of JSON objects.

4.1.3 Resource Registry Schema Client

The Resource Registry Schema Client is a java library providing RPC facilities to interact
with the Schema Management port type. The library hides all the complexity of
marshalling and un-marshalling of requests and results. By using this library, any client
can manage java classes instead of JSON objects.

12

 https://en.wikipedia.org/wiki/Representational_state_transfer
13

 https://en.wikipedia.org/wiki/JSON

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/JSON

 14

4.1.4 Resource Registry Publisher

The Resource Registry Publisher is a java library providing RPC facilities to interact with
the Entities and Relations Instances Management port type. The library hides all the
complexity of marshalling and un-marshalling of requests and result. By using this library
any client can manage java classes instead of JSON objects.

4.1.5 Resource Registry Client

The Resource Registry Client is a java library providing RPC facilities to interact with the
Query & Access port type. The library hides all the complexity of marshalling and un-
marshalling of requests and result. By using this library any client manages java classes
instead of JSON objects.

 PARTHENOS – D6.3

 15

5 Interacting with Resource Registry Service

This section provides information regarding how to interact with the Resource Registry
Service by exploiting the Context and Schema Port Types. The REST APIs are also
presented for each functionality. Please note that the provided examples can intentionally
hide some details in the response to avoid unneeded complexity.

5.1 Context Management

It is responsible for managing Context belonging to the same Application Domain.
The security configuration based on the Authorization Framework makes this port type
accessible only from the Resource Manager. In other words, no others client is allowed to
manage Context other than the Resource Manager. See D6.1 PARTHENOS Cloud
infrastructure for details about the Resource Manager and the Authorization Framework.
Context requirements are:

● No predefined number of levels.

● Possibility to change the name of the Context with no impact for any component.

● Possibility to move a Context from a parent Context to another.

Available Methods:

● Create

● Read

● Rename

● Move

● Delete

Any action made to Contexts succeeds if the following requirements are guaranteed:

● Two Contexts with same name can exist but only if they have different parents. The

operation which will try to obtain a Context with the same name to the same parent

will fail with no effect.

● Any operation made in any Context has an effect on only the Context. In other

words, there will be no effect on the associated Entity and Relations.

At time of writing this document, this port type is only accessible by using REST API. The
Resource Registry Context Client (java client) is under testing and validation.

5.1.1 Create

Create new Context as child of another Context (if any).
PUT /resource-registry/context

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Context_Client
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Context_Client

 16

Table 9: Create Request Parameters

Name Type Required Description

name String true The name of the context.

parentContextId String (UUID) false The UUID of the parent Context if any

Table 10: Create Response Type

Code Type Description

200 String The JSON representation of the Context.

400 String HTTP error code

Example 1
Create a new Context with named gcube with no parent. It is a ROOT Context.
Request URL
PUT /resource-registry/context?name=gcube

Response Body
{
 "@class": "Context",
 "name": "gcube",
 "header": {
 "@class": "Header",
 "uuid": "2705dd32-c857-444b-818a-3ec69e339e5d",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2017-03-1711:47:55",
 "lastUpdateTime": "2017-03-17 11:47:55"
 }
}

Example 2
Create a new Context with named devsec as child of Context with UUID 2705dd32-c857-
444b-818a-3ec69e339e5d (gcube)

Request URL
PUT /resource-registry/context?name=devsec&parentContextId=2705dd32-c857-444b-818a-3ec69e339e5d

Response Body

 "@class": "Context",
 "name": "devsec",
 "header": {
 "@class": "Header",
 "uuid": "30f6254c-c87a-451e-bc0f-7cfcbd94a84a",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2017-03-17 11:47:56",
 "lastUpdateTime": "2017-03-17 11:47:56"
 }
}

 PARTHENOS – D6.3

 17

Example 3
Create a new Context with named devVRE as child of Context with UUID 30f6254c-c87a-
451e-bc0f-7cfcbd94a84a (devsec)
Request URL
PUT /resource-registry/context?name=devVRE&parentContextId=30f6254c-c87a-451e-bc0f-7cfcbd94a84a

Response Body
{
 "@class": "Context",
 "name": "devVRE",
 "header": {
 "@class": "Header",
 "uuid": "9d73d3bd-1873-490c-b0a7-e3c0da11ad52",
 "modifiedBy": "luca.frosini",
 "creator": "luca.frosini",
 "creationTime": "2017-03-17 11:47:57",
 "lastUpdateTime": "2017-03-17 11:47:57"
 }
}

Example 4
If you try to create again a Context named gcube without specifying the parent a 400 Bad
Request HTTP error is reported.
Request URL
PUT /resource-registry/context?name=gcube

Response Body
{
 "@class": "ContextCreationException",
 "message": "A root context with the same name (gcube) already exist"
}

This will also happen anytime a Context with the same name, having the same parent, of
an existing Context is requested to be created.

5.1.2 Read

Return the definition of the Context identified by the UUID provided as path parameter.
Request URL
GET /resource-registry/context/{UUID}

Table 11: Read Request Parameters

Name Type Required Description

UUID String (UUID) true The UUID of the target context.

Table 12: Read Response Type

Code Type Description

200 String The JSON representation of the context.

400 String HTTP error code

 18

Examples
Read the Context having UUID 9d73d3bd-1873-490c-b0a7-e3c0da11ad52
Request URL
GET /resource-registry/context/9d73d3bd-1873-490c-b0a7-e3c0da11ad52

Response Body
{
 "@class": "Context",
 "name": "devVRE",
 "header": {
 "@class": "Header",
 "uuid": "9d73d3bd-1873-490c-b0a7-e3c0da11ad52",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2017-03-17 11:47:56",
 "lastUpdateTime": "2017-03-17 11:52:56"
 }
}

5.1.3 Rename

Rename a Context identified by the UUID provided as path parameter to the new name
provided as query parameter.
Request URL
POST /resource-registry/context/rename/{UUID}

Table 13: Rename Request Parameters

Name Type Required Description

UUID String (UUID) true The UUID of the target context.

name String true The new name of the target context.

Table 14: Rename Response Type

Code Type Description

200 String The JSON representation of the context.

400 String HTTP error code

Example
Rename a Context 9d73d3bd-1873-490c-b0a7-e3c0da11ad52 (was devVRE) to the new
name devNext.

Request URL
POST /resource-registry/context/rename/9d73d3bd-1873-490c-b0a7-e3c0da11ad52?name=devNext

 PARTHENOS – D6.3

 19

Response Body
{
 "@class": "Context",
 "name": "devNext",
 "header": {
 "@class": "Header",
 "uuid": "9d73d3bd-1873-490c-b0a7-e3c0da11ad52",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2017-03-17 11:47:56",
 "lastUpdateTime": "2017-03-17 11:52:56"
 }
}

5.1.4 Move

Move a Context identified by the UUID provided as path parameter as child of the Context
provided as query parameter.

Request URL
POST /resource-registry/context/move/{UUID}
Table 15: Move Request Parameters

Name Type Required Description

UUID String (UUID) true The UUID of the target Context

parentContextId String (UUID) true The parent Context UUID

Table 16: Move Response Type

Code Type Description

200 String The JSON representation of the context.

400 String HTTP error code

Example
Rename a Context 9d73d3bd-1873-490c-b0a7-e3c0da11ad52 as child of the Context
761d9e99-a4dc-4838-9b16-4bf73813b625
Request URL
POST /resource-registry/context/move/9d73d3bd-1873-490c-b0a7-
e3c0da11ad52?parentContextId=761d9e99-a4dc-4838-9b16-4bf73813b625

Response Body
{
 "@class": "Context",
 "name": "devNext"
 "header": {
 "@class": "Header",
 "uuid": "9d73d3bd-1873-490c-b0a7-e3c0da11ad52",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2017-03-17 11:47:56",
 "lastUpdateTime": "2017-03-17 11:52:56"

 20

 }
}

5.1.5 Delete

Delete the Context identified by the UUID provided as path parameter.
Request URL
DELETE /resource-registry/context/{{UUID}}

Table 17: Delete Request Parameter

Name Type Required Description

UUID String (UUID) true The UUID of the target Context

Table 18: Delete Response Type

Code Type Description

200 String Empty content

400 String HTTP error code

Example
Delete the Context having UUID 9d73d3bd-1873-490c-b0a7-e3c0da11ad52
Request URL
DELETE /resource-registry/context/9d73d3bd-1873-490c-b0a7-e3c0da11ad52

5.2 Schema Management

This port type is only accessible by using REST API.

5.2.1 Type Definition

Any Type is described by the following attributes:
● name (String): Type Name

● description (String): The description of the Type. Default=null.

● abstractType (Boolean): Indicate if the type is abstract so that it cannot be

instantiated. In other words, only subtypes of this type can be instantiated.

Default=false.

● superclasses (List<String>): The list of all super types of this type. Multiple

Inheritance is supported.

● Zero or more Properties

Property
Any Property is described by the following attributes:

● name: Property Name

● type: The Type of the Property (e.g. String, Integer, ...). See Property Type

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Schema_Client
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#Property
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#Property
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#Property
https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Property_Type
https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Property_Type

 PARTHENOS – D6.3

 21

● description: The description of the Property. Default=null.

● mandatory: Indicate if the Property is mandatory. Default=false.

● readOnly: The Property cannot change its value. Default=false.

● notNull: Whether the property must assume a value diverse from 'null' or not.

Default=false

● max: Default=null

● min: Default=null

● regexpr: A Regular Expression14 to validate the property value, default=null. A

good online tool for regex is available at https://regex101.com.

Property Type are mapped to and integer to be used in property definition15.
Table 19: Property Type Mapping

Type Integer
Mapping

Java type Description

Boolean 0 java.lang.Boolean or boolean Handles only the values True
or False.

Integer 1 java.lang.Integer or int or
java.math.BigInteger

32-bit signed Integers.

Short 2 java.lang.Short or short Small 16-bit signed integers.

Long 3 java.lang.Long or long Big 64-bit signed integers.

Float 4 java.lang.Float or float Decimal numbers

Double 5 java.lang.Double or double Decimal numbers with high
precision.

Date 6 java.util.Date Any date with the precision up
to milliseconds.

String 7 java.lang.String Any string as alphanumeric
sequence of chars.

Binary 8 java.lang.Byte[] or byte[] Can contain any value as byte
array.

Embedded 9 ? extends
org.gcube.informationsystem.model.emb
edded.Embedded

This is an Object contained
inside the owner Entity and
has no Header. It is reachable
only by navigating the owner
Entity.

Embedded
list

10 List<? extends
org.gcube.informationsystem.model.emb
edded.Embedded>

List of Objects contained inside
the owner Entity and have no
Header. They are reachable
only by navigating the owner
Entity.

Embedded
set

11 Set<? extends
org.gcube.informationsystem.model.emb
edded.Embedded>

Set (no duplicates) of Objects
contained inside the owner
Entity and have no Header.
They are reachable only by
navigating the owner Entity.

14

 https://en.wikipedia.org/wiki/Regular_expression
15

 Type binder is defined in the class Type available at
http://svn.research-infrastructures.eu/public/d4science/gcube/trunk/information-system/information-system-
model/src/main/java/org/gcube/informationsystem/types/Type.java

https://en.wikipedia.org/wiki/Regular_expression
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#Basic_Property_Type
https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Header
https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Header
https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Header
https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Header
https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Header
https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Header
https://en.wikipedia.org/wiki/Regular_expression
http://svn.research-infrastructures.eu/public/d4science/gcube/trunk/information-system/information-system-model/src/main/java/org/gcube/informationsystem/types/Type.java
http://svn.research-infrastructures.eu/public/d4science/gcube/trunk/information-system/information-system-model/src/main/java/org/gcube/informationsystem/types/Type.java

 22

Embedded
map

12 Map<String, ? extends
org.gcube.informationsystem.model.emb
edded.Embedded>

Map of Objects contained
inside the owner Entity and
have no Header. They are
reachable only by navigating
the owner Entity.

Byte 17 java.lang.Byte or byte Single byte. usesful to store
small 8-bit signed integers.

5.2.2 Type Creation

Allow to create new Entity or Relation or Embedded Type.
Request URL
PUT /resource-registry/schema/{TypeName}

Table 20: Create Parameters

Name Type Required Description

TypeName String true The name of the new type to create

Table 21: Create Response Type

Code Type Description

200 String The JSON representation of the newly created type (which is the same of the
request)

400 String HTTP error code

Example: Resource Type Creation
PUT /resource-registry/schema/Actor

Request Body
{
 "name": "Actor",
 "description": "Any entity (human or machine) playing an active role.",
 "abstractType": true, /* If the Resource cannot be instantiated */
 "superclasses": ["Resource"], /* Resource or any registered specialization. */
 "properties": null /* MUST be null. The Resource cannot have any property. */
}

Example: Facet Type Creation
PUT /resource-registry/schema/ContactFacet

Request Body
{
 "name": "ContactFacet",
 "description": "This facet is expected to capture contact information",
 "abstractType": false,

https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Header
https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Header

 PARTHENOS – D6.3

 23

 "superclasses":["Facet"],
 "properties":[
 {
 "name": "name",
 "description": "First Name",
 "mandatory": true,
 "readonly": false,
 "notnull": true,
 "max": null,
 "min": null,
 "regexpr": null,
 "linkedType": null,
 "linkedClass": null,
 "type": 7 /* String*/
 },{
 "name": "eMail",
 "description": "A restricted range of RFC‑822 compliant email address. ... ",
 "mandatory": true,
 "readonly": false,
 "notnull": true,
 "max": null,
 "min": null,
 "regexpr":"^[a-z0-9._%+-]{1,128}@[a-z0-9.-]{1,128}$",
 "linkedType": null,
 "linkedClass": null,
 "type":7 /* String */
 }
]
}

Example: IsRelatedTo Type Creation
PUT /resource-registry/schema/Hosts

Request Body
{
 "name": "Hosts",
 "description": "…",
 "abstractType": false,
 "superclasses": ["IsRelatedTo"],
 "properties": []
}

Example: ConsistsOf Type Creation
PUT /resource-registry/schema/HasContact

Request Body
{
 "name": "HasContact",
 "description":"",
 "abstractType": true,
 "superclasses": ["ConsistsOf"],
 "properties": []
}

Example: Embedded Type Creation
PUT /resource-registry/schema/AccessPolicy

Request Body
{
 "name": "AccessPolicy",
 "description": "",
 "abstractType": false,
 "superclasses": ["Embedded"],
 "properties":[

{
 "name": "policy",
 "description": "",
 "mandatory": false,

 24

 "readonly": false,
 "notnull": false,
 "max": null,
 "min": null,
 "regexpr": null,
 "linkedType": null,
 "linkedClass": "ValueSchema",
 "type": 9 /* Embedded */
},{
 "name": "note",
 "description": "",
 "mandatory": false,
 "readonly": false,
 "notnull": false,
 "max": null,
 "min": null,
 "regexpr": null,
 "linkedType": null,
 "linkedClass": null,
 "type":7 /* String */
}

]
}

5.2.3 Read Type Definition

Allow to read Type Definition
Request URL
GET /resource-registry/schema/{TypeName}

Table 22 Read Parameters

Name Type Required Description

TypeName String true The name of the type you want to retrieve the definition

Table 23 Read Response Type

Code Type Description

200 String The JSON representation of the newly created type

400 String HTTP error code

Example: Resource Type
GET /resource-registry/schema/Actor

Response
{
 "name": "Actor",
 "description": "Any entity (human or machine) playing an active role.",
 "abstractType": true,
 "superclasses": ["Resource"],
 "properties": null
}

 PARTHENOS – D6.3

 25

Example: Facet Type
GET /resource-registry/schema/ContactFacet

Response
{
 "name": "ContactFacet",
 "description": "This facet is expected to capture contact information",
 "abstractType": false,
 "superclasses": ["Facet"],
 "properties":[
 {
 "name": "name",
 "description": "First Name",
 "mandatory": true,
 "readonly": false,
 "notnull": true,
 "max": null,
 "min": null,
 "regexpr": null,
 "linkedType": null,
 "linkedClass": null,
 "type": 7 /* String*/
 },
 {
 "name": "eMail",
 "description": "A restricted range of RFC‑822 compliant email address. ... ",
 "mandatory": true,
 "readonly": false,
 "notnull": true,
 "max": null,
 "min": null,
 "regexpr": "^[a-z0-9._%+-]{1,128}@[a-z0-9.-]{1,128}$",
 "linkedType": null,
 "linkedClass": null,
 "type": 7 /* String */
 }
]
}

Example: IsRelatedTo Type
GET /resource-registry/schema/Hosts

Response
{
 "name": "Hosts",
 "description": "…",
 "abstractType": false,
 "superclasses": ["IsRelatedTo"],
 "properties": []
}

Example: ConsistsOf Type
GET /resource-registry/schema/HasContact

Response
{
 "name": "HasContact",
 "description": "",
 "abstractType": true,
 "superclasses": ["ConsistsOf"],
 "properties": []
}

Example: Embedded Type
GET /resource-registry/schema/AccessPolicy

Response
{
 "name": "AccessPolicy",
 "description": "",
 "abstractType": false,

 26

 "superclasses": ["Embedded"],
 "properties":[{
 "name": "policy",
 "description": "",
 "mandatory": false,
 "readonly": false,
 "notnull": false,
 "max": null,
 "min": null,
 "regexpr": null,
 "linkedType": null,
 "linkedClass": "ValueSchema",
 "type": 9 /* Embedded */
 },{
 "name": "note",
 "description": "",
 "mandatory": false,
 "readonly": false,
 "notnull": false,
 "max": null,
 "min": null,
 "regexpr": null,
 "linkedType": null,
 "linkedClass": null,
 "type": 7 /* String */
 }]
}

5.3 Entities and Relations Instances Management

This section provides information regarding how to interact with Resource Registry Service
for Entities and Relations Management. REST and JAVA API are presented for each
functionality. Please note that the provided examples can intentionally hide some details in
the response to avoid unneeded complexity. Apart from the REST API, this port type can
be used also by using Resource Registry Publisher java client.

Resource Registry Publisher has the following maven coordinates:
<dependency>
 <groupId>org.gcube.information-system</groupId>
 <artifactId>resource-registry-publisher</artifactId>
 <version>[1.0.0-SNAPSHOT, 2.0.0-SNAPSHOT)</version>
</dependency>

To use the client, you need first get a ResourceRegistryPublisher instance.
By using ResourceRegistryPublisherFactory.create() method the library discovers the
correct endpoint to interact with the Resource Registry for the current context.
SecurityTokenProvider.instance.set("Your-Token-Here"); // If not already set
ResourceRegistryPublisher resourceRegistryPublisher = ResourceRegistryPublisherFactory.create();

5.4 Facet Instances APIs

5.4.1 Create Facet Instance

REST API
PUT /resource-registry/er/facet/{FacetType}

Example
PUT /resource-registry/er/facet/CPUFacet

Request Body
{
 "@class": "CPUFacet",
 "header": null,

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Publisher
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Publisher

 PARTHENOS – D6.3

 27

 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "1 GHz"
}

Response Body
{
 "@class": "CPUFacet",
 "header": {
 "uuid": "69f0b376-38d2-4a85-bc63-37f9fa323f82",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2016-10-05 11:16:24",
 "lastUpdateTime": "2016-10-05 11:16:24
 },
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "1 GHz"
}

Java API
public <F extends Facet> F createFacet(F facet) throws FacetAlreadyPresentException,
ResourceRegistryException;

Example
CPUFacet cpuFacet = new CPUFacetImpl();
cpuFacet.setClockSpeed("1 GHz");
cpuFacet.setModel("Opteron");
cpuFacet.setVendor("AMD");

CPUFacet createdCpuFacet = resourceRegistryPublisher.createFacet(cpuFacet);
UUID uuid = createdCpuFacet.getHeader().getUUID(); // 69f0b376-38d2-4a85-bc63-37f9fa323f82

Alternative JAVA API
There are also two other equivalent methods with the following signature:
public String createFacet(String facet) throws FacetAlreadyPresentException, ResourceRegistryException;

public String createFacet(String facetType, String facet) throws FacetAlreadyPresentException,
ResourceRegistryException;

The first method gets the Facet to be created as JSON string instead of as Java class. The
second gets also the facetType as parameter (which has to be specified as PATH
PARAMETER in the request) avoiding to force client to retrieve it from the string. The
second method is more efficient but you have to be sure that the facetType is the same
specified in the header of the serialized facet.

5.4.2 Update Facet Instance

REST API
POST /resource-registry/er/facet/{FacetInstanceUUID}

Example
POST /resource-registry/er/facet/69f0b376-38d2-4a85-bc63-37f9fa323f82

Request Body
{
 "@class": "CPUFacet",
 "header": { "uuid":"69f0b376-38d2-4a85-bc63-37f9fa323f82" }, /* if you pass the header only the
UUID is checked and must be the same of the one provided in the URL*/
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed":"2 GHz"
}

 28

Response Body
{
 "@class": "CPUFacet",
 "header": {
 "uuid": "69f0b376-38d2-4a85-bc63-37f9fa323f82",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2016-10-05 11:16:24",
 "lastUpdateTime": "2016-10-05 11:17:32"
 },
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "2 GHz"
}

Java API
public <F extends Facet> F updateFacet(F facet) throws FacetNotFoundException,
ResourceRegistryException;

Example
createdCpuFacet.setClockSpeed("2 GHz");
CPUFacet updatedCpuFacet = resourceRegistryPublisher.updateFacet(createdCpuFacet);

Alternative JAVA API
There are also two other equivalent methods with the following signature:
public String updateFacet(String facet) throws FacetNotFoundException, ResourceRegistryException;
public String updateFacet(UUID uuid, String facet) throws FacetNotFoundException,
ResourceRegistryException;

The first method gets the Facet to be created as a JSON string instead of as a Java class.
The second get also the uuid as a parameter (which has to be specified as PATH
PARAMETER in the request) avoiding forcing the client to retrieve it from the string. The
second method is more efficient but you have to be sure that the provided uuid is the
same specified in the header of the serialized facet.

5.4.3 Delete Facet Instance

REST API
DELETE /resource-registry/er/facet/{FacetInstanceUUID}

Example
DELETE /resource-registry/er/facet/69f0b376-38d2-4a85-bc63-37f9fa323f82

Java API
public <F extends Facet> boolean deleteFacet(F facet) throws FacetNotFoundException,
ResourceRegistryException;

Example
boolean deleted = resourceRegistryPublisher.deleteFacet(createdCpuFacet);

Alternative JAVA API
There is also another equivalent method with the following signature:
public boolean deleteFacet(UUID uuid) throws FacetNotFoundException, ResourceRegistryException;

The method just requires the UUID of the Facet to be deleted.

 PARTHENOS – D6.3

 29

5.5 Resource Instances APIs

5.5.1 Create Resource Instance

REST API
PUT /resource-registry/er/resource/{ResourceType}

Example
PUT /resource-registry/er/resource/HostingNode

Request Body
{
 "@class": "HostingNode",
 "consistsOf":[
 {
 "@class": "ConsistsOf",
 "target":{
 "@class": "CPUFacet",
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "3 GHz"
 }
 },{
 "@class": "IsIdentifiedBy",
 "target":{
 "@class": "NetworkingFacet",
 "header":{ "uuid":"59617b01-5856-4d8e-b85c-590a42039933" },
/* In this example we suppose that the NetworkingFacet was already created, so the UUID is enough to
attach it by using IsIdentifiedBy relation */
 }
 }
],
 "isRelatedTo":[
 {
 "@class": "Hosts",
 "propagationConstraint": {
 "add": "unpropagate",
 "remove": "cascade"
 },
 "target": {
 "@class":" EService",
 "header": { "uuid":"9bff49c8-c0a7-45de-827c-accb71defbd3" }
/* The EService was already created, so the UUID is enough to attach it by using Hosts relation */
 }
 }
]
}

Response
{
 "@class": "HostingNode",
 "header": { "uuid": "670eeabf-76c7-493f-a449-4e6e139a2e84", ...},
 "consistsOf":[
 {
 "@class": "ConsistsOf",
 "header": { "uuid": "9d0b1b2b-ac4e-40a9-8dea-bec90076e0ca", ...},
 "target":{
 "@class": "CPUFacet",
 "header": { "uuid": "1daef6a8-5ca4-4700-844b-2a2d784e17b0", ...},
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed":"1 GHz"
 }
 },{
 "@class": "IsIdentifiedBy",
 "header": { "uuid": "02a7072c-4f72-4568-945b-9ddccc881e9f", ...},
 "target":{
 "@class": "NetworkingFacet",
 "header":{ "uuid": "59617b01-5856-4d8e-b85c-590a42039933", ...},
 "ipAddress": "146.48.87.183",

 30

 "hostName": "pc-frosini.isti.cnr.it",
 "domainName": "isti.cnr.it",
 "mask": "255.255.248.0",
 "broadcastAddress": "146.48.87.255"
 }
 }
],
 "isRelatedTo":[
 {
 "@class": "Hosts",
 "header": { "uuid": "47494ad0-e606-4630-9def-4c607761ae14", ...},
 "propagationConstraint":{
 "add": "unpropagate",
 "remove": "cascade"
 },
 "target":{
 "@class": "EService",
 "header": { "uuid":"9bff49c8-c0a7-45de-827c-accb71defbd3", ...}
 }
 }
]
}

Java API
public <R extends Resource> R createResource(R resource) throws ResourceAlreadyPresentException,
ResourceRegistryException;

Example
NetworkingFacet networkingFacet = new NetworkingFacetImpl();
networkingFacet.setIPAddress("146.48.87.183");
networkingFacet.setHostName("pc-frosini.isti.cnr.it");
networkingFacet.setDomainName("isti.cnr.it");
networkingFacet.setMask("255.255.248.0");
networkingFacet.setBroadcastAddress("146.48.87.255");

networkingFacet = resourceRegistryPublisher.createFacet(networkingFacet);

HostingNode hostingNode = new HostingNodeImpl();

CPUFacet cpuFacet = new CPUFacetImpl();
cpuFacet.setClockSpeed("1 GHz");
cpuFacet.setModel("Opteron");
cpuFacet.setVendor("AMD");
hostingNode.addFacet(cpuFacet);

isIdentifiedBy = new IsIdentifiedByImpl<Resource, Facet>(hostingNode, networkingFacet, null);
hostingNode.attachFacet(isIdentifiedBy);

PropagationConstraint propagationConstraint = new PropagationConstraintImpl();
propagationConstraint.setRemoveConstraint(RemoveConstraint.cascade);
propagationConstraint.setAddConstraint(AddConstraint.unpropagate);

Hosts<HostingNode, EService> hosts = new HostsImpl<HostingNode, EService>(hostingNode, eService,
propagationConstraint);
hostingNode.attachResource(hosts);

hostingNode = resourceRegistryPublisher.createResource(hostingNode);

Alternative JAVA API
There are also two other equivalent methods with the following signature:
public String createResource(String resource) throws ResourceAlreadyPresentException,
ResourceRegistryException;

public String createResource(String resourceType, String resource) throws
ResourceAlreadyPresentException, ResourceRegistryException;

The first method gets the Resource to be created as a JSON string instead of as a Java
class. The second method gets also the resourceType as a parameter (which has to be

 PARTHENOS – D6.3

 31

specified as PATH PARAMETER in the request) avoiding forcing the client to retrieve it
from the string. The second method is more efficient but you have to be sure that the
resourceType is the same specified in the header of the serialized resource.

5.5.2 Update Resource Instance

REST API
POST /resource-registry/er/resource/{Resource Instance UUID}

Example
POST /resource-registry/er/resource/670eeabf-76c7-493f-a449-4e6e139a2e84

Request Body
{
 "@class": "HostingNode",
 "header": { "uuid": "670eeabf-76c7-493f-a449-4e6e139a2e84", ...},
 "consistsOf": [
 {
 "@class": "ConsistsOf",
 "header": { "uuid": "9d0b1b2b-ac4e-40a9-8dea-bec90076e0ca", ...},
 "target": {
 "@class": "CPUFacet",
 "header": { "uuid": "1daef6a8-5ca4-4700-844b-2a2d784e17b0", ...},
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "1 GHz"
 }
 },{
 "@class": "IsIdentifiedBy",
 "header": { "uuid": "02a7072c-4f72-4568-945b-9ddccc881e9f", ...},
 "target": {
 "@class": "NetworkingFacet",
 "header": { "uuid": "59617b01-5856-4d8e-b85c-590a42039933", ...},
 "ipAddress": "146.48.87.183",
 "hostName": "pc-frosini.isti.cnr.it",
 "domainName": "isti.cnr.it",
 "mask": "255.255.248.0",
 "broadcastAddress": "146.48.87.255",
 "username": "luca.frosini" /* Added this property */
 }
 }
]
}

Response
{
 "@class": "HostingNode",
 "header": { "uuid": "670eeabf-76c7-493f-a449-4e6e139a2e84", ...},
 "consistsOf": [
 {
 "@class": "ConsistsOf",
 "header": { "uuid": "9d0b1b2b-ac4e-40a9-8dea-bec90076e0ca", ...},
 "target": {
 "@class": "CPUFacet",
 "header": { "uuid": "1daef6a8-5ca4-4700-844b-2a2d784e17b0", ...},
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "1 GHz"
 }
 },{
 "@class": "IsIdentifiedBy",
 "header": { "uuid": "02a7072c-4f72-4568-945b-9ddccc881e9f", ...},
 "target": {
 "@class": "NetworkingFacet",
 "header": { "uuid": "59617b01-5856-4d8e-b85c-590a42039933", ...},
 "ipAddress": "146.48.87.183",
 "hostName": "pc-frosini.isti.cnr.it",
 "domainName": "isti.cnr.it",
 "mask": "255.255.248.0",

 32

 "broadcastAddress": "146.48.87.255",
 "username": "luca.frosini"
 }
 }
]
}

Java API
public <R extends Resource> R updateResource(R resource) throws ResourceNotFoundException,
ResourceRegistryException;

Example
/* This is just a code example, here we suppose that there is only one identification Facet of the type
(NetworkingFacet). This could not be true in real scenario*/
networkingFacet = (NetworkingFacet) hostingNode.getIdentificationFacets().get(0);
networkingFacet.setAdditionalProperty("username", "luca.frosini");

hostingNode = resourceRegistryPublisher.updateResource(hostingNode);

Alternative JAVA API
There are also two other equivalent methods with the following signature:
public String updateResource(String resource) throws ResourceNotFoundException,
ResourceRegistryException;
public String updateResource(UUID uuid, String resource) throws ResourceNotFoundException,
ResourceRegistryException;

The first method gets the Resource to be created as a JSON string instead of as a Java
class. The second get also the uuid as a parameter (which has to be specified as PATH
PARAMETER in the request) avoiding forcing the client to retrieve it from the string. The
second method is more efficient but you have to be sure that the uuid is the same
specified in the header of the serialized resource.

5.5.3 Delete Resource Instance

REST API
DELETE /resource-registry/er/resource/{Resource Instance UUID}

Example
DELETE /resource-registry/er/resource/670eeabf-76c7-493f-a449-4e6e139a2e84

Java API
public <R extends Resource> boolean deleteResource(R resource) throws ResourceNotFoundException,
ResourceRegistryException;

Example
boolean deleted = resourceRegistryPublisher.deleteResource(hostingNode);

Alternative JAVA API
There is also another equivalent method with the following signature:
public boolean deleteResource(UUID uuid) throws ResourceNotFoundException,
ResourceRegistryException;

The method just requires the UUID of the Resource to be deleted.

 PARTHENOS – D6.3

 33

5.6 ConsistsOf

5.6.1 Create ConsistsOf Instance

REST API
PUT /resource-registry/er/consistsOf/{ConsistOfType}

Example 1
PUT /resource-registry/er/consistsOf/IsIdentifiedBy

In this example the target Facet already exists. The Service set automatically the
Facet_Based_Resource_Model#PropagationConstraint Propagation Constraint to default
values (i.e. remove=cascadeWhenOrphan, add=propagate)
Request Body
{
 "@class": "IsIdentifiedBy",
 "source": {
 "@class": "HostingNode",
 "header": {"uuid": "670eeabf-76c7-493f-a449-4e6e139a2e84" } // The HostingNode must be
already created. The header with UUID is enough.
 }
 "target": {
 "@class": "NetworkingFacet",
 "header": { "uuid": "59617b01-5856-4d8e-b85c-590a42039933" },
 /* In this example we suppose that the NetworkingFacet already exists, so the UUID is
enough to attach it by using IsIdentifiedBy relation */
 }
}

Response
{
 "@class": "IsIdentifiedBy",
 "propagationConstraint": {
 "add": "propagate",
 "remove": "cascadeWhenOrphan"
 },
 "header": { "uuid": "02a7072c-4f72-4568-945b-9ddccc881e9f", ...},
 "target":{
 "@class": "NetworkingFacet",
 "header": { "uuid": "59617b01-5856-4d8e-b85c-590a42039933", ...},
 "ipAddress": "146.48.87.183",
 "hostName": "pc-frosini.isti.cnr.it",
 "domainName": "isti.cnr.it",
 "mask": "255.255.248.0",
 "broadcastAddress": "146.48.87.255"
 }
}

Example 2
PUT /resource-registry/er/consistsOf/ConsistsOf

In this example the target Facet is created contextually with the ConsistsOf relation.
Moreover, the Facet_Based_Resource_Model#PropagationConstraint Propagation
Constraint are explicitly set (i.e. remove=cascade, add=propagate).
Request Body
{
 "@class": "ConsistsOf",
 "propagationConstraint": {
 "add": "propagate",
 "remove": "cascade"
 },
 "source": {
 "@class": "HostingNode",
 "header": { "uuid": "670eeabf-76c7-493f-a449-4e6e139a2e84" } // The HostingNode must be

https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#PropagationConstraint_Propagation_Constraint
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#PropagationConstraint_Propagation_Constraint
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#PropagationConstraint_Propagation_Constraint
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#PropagationConstraint_Propagation_Constraint
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#PropagationConstraint_Propagation_Constraint
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#PropagationConstraint_Propagation_Constraint

 34

already created. The header with UUID is enough.
 }
 "target": {
 "@class": "CPUFacet",
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "3 GHz"
 }
}

Response
{
 "@class": "ConsistsOf",
 "header": { "uuid": "9bff49c8-c0a7-45de-827c-accb71defbd3", ...},
 "propagationConstraint": {
 "add": "propagate",
 "remove": "cascade"
 },
 "target": {
 "@class": "CPUFacet",
 "header": { "uuid": "1daef6a8-5ca4-4700-844b-2a2d784e17b0", ...},
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "1 GHz"
 }
}

Java API
public <C extends ConsistsOf<? extends Resource, ? extends Facet>> C createConsistsOf(C consistsOf)
throws FacetNotFoundException, ResourceNotFoundException, ResourceRegistryException;

Example 1
IsIdentifiedBy isIdentifiedBy = new IsIdentifiedByImpl<Resource, Facet>(hostingNode, networkingFacet,
null);
resourceRegistryPublisher.createConsistsOf(isIdentifiedBy);

Example 2
CPUFacet cpuFacet = new CPUFacetImpl();
cpuFacet.setClockSpeed("1 GHz");
cpuFacet.setModel("Opteron");
cpuFacet.setVendor("AMD");

PropagationConstraint propagationConstraint = new PropagationConstraintImpl();
propagationConstraint.setRemoveConstraint(RemoveConstraint.cascade);
propagationConstraint.setAddConstraint(AddConstraint.propagate);

ConsistsOf consistsOf = new ConsistsOfImpl<Resource, Facet>(hostingNode, cpuFacet,
propagationConstraint);
consistsOf = resourceRegistryPublisher.createConsistsOf(consistsOf);

Alternative JAVA API
There are also two other equivalent methods with the following signature:
public String createConsistsOf(String consistsOfType, String consistsOf) throws FacetNotFoundException,
ResourceNotFoundException, ResourceRegistryException;

public String createConsistsOf(String consistsOf) throws FacetNotFoundException,
ResourceNotFoundException, ResourceRegistryException;

The first method gets the consistsOfType to be created as a JSON string instead of as a
Java class. The second get also the consistsOfType as a parameter (which has to be
specified as PATH PARAMETER in the request) avoiding forcing the client to retrieve it
from the string. The second method is more efficient but you have to be sure that the
consistsOfType is the same specified in the header of the serialized resource.

 PARTHENOS – D6.3

 35

5.6.2 Delete ConsistsOf Instance

REST API
DELETE /resource-registry/er/consistsOf/{ConsistsOf Instance UUID}

Example 1
DELETE /resource-registry/er/consistsOf/02a7072c-4f72-4568-945b-9ddccc881e9f

Example 2
DELETE /resource-registry/er/consistsOf/9bff49c8-c0a7-45de-827c-accb71defbd3

Java API
public <C extends ConsistsOf<? extends Resource, ? extends Facet>> boolean deleteConsistsOf(C
consistsOf) throws ResourceRegistryException;

Example 1
boolean deleted = resourceRegistryPublisher.deleteConsistsOf(isIdentifiedBy);

Example 2
boolean deleted = resourceRegistryPublisher.deleteConsistsOf(consistsOf);

Alternative JAVA API
There is also another equivalent method with the following signature:
public boolean deleteConsistsOf(UUID uuid) throws ResourceRegistryException;

The method just requires the UUID of the ConsistsOf relation to be deleted.

Example 1
UUID uuid = UUID.fromString("02a7072c-4f72-4568-945b-9ddccc881e9f")
boolean deleted = resourceRegistryPublisher.deleteConsistsOf(uuid);

Example 2
UUID uuid = UUID.fromString("9bff49c8-c0a7-45de-827c-accb71defbd3")
boolean deleted = resourceRegistryPublisher.deleteConsistsOf(uuid);

5.7 IsRelatedTo

5.7.1 Create IsRelatedTo Instance

REST API
PUT /resource-registry/er/isRelatedTo/{IsRelatedToType}

Example
PUT /resource-registry/er/isRelatedTo/Hosts

In this example, the target Resource already exists. The Propagation Constraints are
explicitly set. Please note that otherwise the service set the Propagation Constraint to
default values (i.e. remove=keep, add=unpropagate)
Request Body
{
 "@class": "Hosts",
 "propagationConstraint": {
 "add": "unpropagate",
 "remove": "cascade"
 },
 "target": {
 "@class": "EService",

https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#PropagationConstraint_Propagation_Constraint
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#PropagationConstraint_Propagation_Constraint
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#PropagationConstraint_Propagation_Constraint

 36

 "header": { "uuid": "9bff49c8-c0a7-45de-827c-accb71defbd3" }
/* The EService was already created, so the UUID is enough to attach it by using Hosts relation */
 }
}

Response
{
 "@class":"Hosts",
 "header":{"uuid":"47494ad0-e606-4630-9def-4c607761ae14", ...},
 "propagationConstraint":{
 "add":"unpropagate",
 "remove": "cascade"
 },
 "target":{
 "@class":"EService",
 "header":{"uuid":"9bff49c8-c0a7-45de-827c-accb71defbd3", ...}
 }
}

Java API
public <I extends IsRelatedTo<? extends Resource, ? extends Resource>> I createIsRelatedTo(I
isRelatedTo) throws ResourceNotFoundException, ResourceRegistryException;

Example
PropagationConstraint propagationConstraint = new PropagationConstraintImpl();
propagationConstraint.setRemoveConstraint(RemoveConstraint.cascade);
propagationConstraint.setAddConstraint(AddConstraint.propagate);

Hosts<HostingNode, EService> hosts = new HostsImpl<>(hostingNode, eService, propagationConstraint);
hosts = resourceRegistryPublisher.createIsRelatedTo(hosts);

Alternative Java API
There are also two other equivalent methods with the following signature:
public String createIsRelatedTo(String isRelatedToType, String isRelatedTo) throws
ResourceNotFoundException, ResourceRegistryException;

public String createIsRelatedTo(String isRelatedTo) throws ResourceNotFoundException,
ResourceRegistryException;

The first method gets the isRelatedTo to be created as a JSON string instead of as a Java
class. The second get also the isRelatedTo as a parameter (which has to be specified as
PATH PARAMETER in the request) avoiding forcing the client to retrieve it from the string.
The second method is more efficient but you have to be sure that the isRelatedToType is
the same specified in the header of the serialized resource.

5.7.2 Delete IsRelatedTo Instance

REST API
DELETE /resource-registry/er/isRelatedTo/{IsRelatedToInstanceUUID}

Example
DELETE /resource-registry/er/isRelatedTo/47494ad0-e606-4630-9def-4c607761ae14

Java API
public <I extends IsRelatedTo<? extends Resource, ? extends Resource>> boolean deleteIsRelatedTo(I
isRelatedTo) throws ResourceRegistryException;

Example
boolean deleted = resourceRegistryPublisher.deleteIsRelatedTo(hosts);

 PARTHENOS – D6.3

 37

Alternative Java API
There is also another equivalent methods with the following signature:
public boolean deleteIsRelatedTo(UUID uuid) throws ResourceRegistryException;

Example
The method just requires the UUID of the ConsistsOf relation to be deleted.
UUID uuid = UUID.fromString("47494ad0-e606-4630-9def-4c607761ae14")
boolean deleted = resourceRegistryPublisher.deleteIsRelatedTo(uuid);

5.8 Query and Access

This sections provide information regarding on how to interact with Resource Registry
Service for Query and Access. The REST and JAVA API are presented for each
functionality. Please note that the provided examples can intentionally hide some details in
the response to avoid unneeded complexity. Apart from the REST API, this port type can
be used also by using Resource Registry Client java client.

The Resource Registry Client has the following maven coordinates
<dependency>
 <groupId>org.gcube.information-system</groupId>
 <artifactId>resource-registry-client</artifactId>
 <version>[1.0.0-SNAPSHOT, 2.0.0-SNAPSHOT)</version>
</dependency>

To use the client you need first to get a ResourceRegistryClient instance.
By using the ResourceRegistryClientFactory.create() method the library discovers the
correct endpoint to interact with the Resource Registry for the current context.
SecurityTokenProvider.instance.set("Your-Token-Here"); //If not already set
ResourceRegistryClient resourceRegistryClient = ResourceRegistryClientFactory.create();

5.8.1 Exists

REST API
HEAD /resource-registry/access/instance/{ERType}/{InstanceUUID}

Example
HEAD /resource-registry/access/instance/ContactFacet/4d28077b-566d-4132-b073-f4edaf61dcb9

Java API
public <ERType extends ER> boolean exists(Class<ERType> clazz, UUID uuid) throws
ERNotFoundException, ERAvailableInAnotherContextException, ResourceRegistryException;

Example
UUID uuid = UUID.fromString("4d28077b-566d-4132-b073-f4edaf61dcb9");
resourceRegistryClient.exists(ContactFacet.class, uuid);

Alternative Java API
public boolean exists(String type, UUID uuid) throws ERNotFoundException,
ERAvailableInAnotherContextException, ResourceRegistryException;

Example
UUID uuid = UUID.fromString("4d28077b-566d-4132-b073-f4edaf61dcb9");
resourceRegistryClient.exists("ContactFacet", uuid);

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Client
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Client
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Client

 38

5.8.2 Get Instance

REST API
GET /resource-registry/access/instance/{ER Type}/{Instance UUID}

Example
GET /resource-registry/access/instance/CPUFacet/69f0b376-38d2-4a85-bc63-37f9fa323f82

Response Body
{
 "@class": "CPUFacet",
 "header": {
 "uuid": "69f0b376-38d2-4a85-bc63-37f9fa323f82",
 "creator": "luca.frosini",
 "lastUpdater": "luca.frosini",
 "creationTime": "2016-10-05 11:16:24",
 "lastUpdateTime": "2016-10-05 11:16:24
 },
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "1 GHz"
}

Java API
public <ERType extends ER> ERType getInstance(Class<ERType> clazz, UUID uuid) throws
ERNotFoundException, ERAvailableInAnotherContextException, ResourceRegistryException;

Example
UUID uuid = UUID.fromString("69f0b376-38d2-4a85-bc63-37f9fa323f82");
CPUFacet cpuFacet = resourceRegistryClient.getInstance(CPUFacet.class, uuid);

Alternative Java API
public String getInstance(String type, UUID uuid) throws ERNotFoundException,
ERAvailableInAnotherContextException, ResourceRegistryException;

Example
UUID uuid = UUID.fromString("69f0b376-38d2-4a85-bc63-37f9fa323f82");
String cpuFacetJsonString = resourceRegistryClient.getInstance("CPUFacet" uuid);

5.8.3 Get All Instances of a Specific Type

REST API
GET /resource-registry/access/instances/{ERType}?[polymorphic=(true|false)]

Default: polymorphic=false

Example 1
GET /resource-registry/access/instances/EService

Response
[
 {
 "@class": "EService",
 "header": { "uuid": "0717b450-a698-11e2-900a-a46c6ff57f05", ...},
 "consistsOf": [
 {
 "@class": "IsIdentifiedBy",
 "header": { "uuid": "aa1340d3-2229-497f-9eeb-cc7db93950fe", ...},
 "target":{
 "@class": "SoftwareFacet",
 "header": { "uuid": "187bee6d-6742-49a7-be89-68bdb0f2f221", ...},
 "group": "DataStorage",
 "name": "StorageManager",
 "version": "2.3.0-0",
 }
 },{

 PARTHENOS – D6.3

 39

 "@class": "ConsistsOf",
 "header": { "uuid": "1f5b5608-4a91-4fe3-a7c2-edf3aeb5dbd7", ...},
 "target": {
 "@class": "AccessPointFacet",
 "header": { "uuid": "3b6061f9-e2ab-4c01-b3b2-48b470a5b8a ", ...},
 "endpoint": "mongo3-p-d4s.d4science.org",
 "description": "MongoDB server",
 "authorization": {
 "@class": "ValueSchema",
 "value": "d4sUser:Nxae6MegJrITUD6wyBTimw==",
 "schema": "USERNAME:PASSWORD"
 }
 }
 }
]
 },

]

Example 2
GET /resource-registry/access/instances/EService?polymorphic=true

Response
[
 {
 "@class": "RunningPlugin",
 "header": { "uuid": "66d69dab-203e-45ff-b49e-a8fa4126a392"},
 "consistsOf": [
 {
 "@class": "IsIdentifiedBy",
 "header": { "uuid": "5e8cf3e3-8c75-49d4-98db-95d4d08d61f9", ...},
 "target": {
 "@class": "SoftwareFacet",
 "header": { "uuid": "3715696d-796f-4e92-98a3-f9a38a2f8d5e", ...},
 "group": "Accounting",
 "name": "accounting-aggregator-se-plugin",
 "version": "1.3.0",
 }
 },
 ...
]
 },
 {
 "@class": "EService",
 "header": { "uuid": "0717b450-a698-11e2-900a-a46c6ff57f05", ...},
 "consistsOf": [
 {
 "@class": "IsIdentifiedBy",
 "header": { "uuid": "aa1340d3-2229-497f-9eeb-cc7db93950fe", ...},
 "target": {
 "@class": "SoftwareFacet",
 "header": { "uuid": "187bee6d-6742-49a7-be89-68bdb0f2f221", ...},
 "group": "DataStorage",
 "name": "StorageManager",
 "version": "2.3.0-0",
 }
 },{
 "@class": "ConsistsOf",
 "header": { "uuid": "1f5b5608-4a91-4fe3-a7c2-edf3aeb5dbd7", ...},
 "target": {
 "@class": "AccessPointFacet",
 "header": { "uuid": "3b6061f9-e2ab-4c01-b3b2-48b470a5b8a ", ...},
 "endpoint": "mongo3-p-d4s.d4science.org"
 "description": "MongoDB server"
 "authorization": {
 "@class" "ValueSchema"
 "value": "d4sUser:Nxae6MegJrITUD6wyBTimw=="
 "schema": "USERNAME:PASSWORD“
 }
 }
 },

 40

]
 },

]

Java API
public <ERType extends ER, R extends Resource> List<R> getInstances(Class<ERType> clazz, Boolean
polymorphic) throws ResourceRegistryException;

Example 1
List<EService> eServices = resourceRegistryClient.getInstances(EService.class, false);

Example 2
List<EService> eServices = resourceRegistryClient.getInstances(EService.class, true);

Alternative Java API
public String getInstances(String type, Boolean polymorphic) throws ResourceRegistryException;

Example 1
String eServicesJsonString = resourceRegistryClient.getInstances("EService", false);

Example 2
String eServicesJsonString = resourceRegistryClient.getInstances("EService", true);

5.8.4 Get All Instances in relation with a specific entity instance

REST API
GET /resource-registry/access/instances/{Entity Type}?[polymorphic=(true|false)]&reference={Entity
Instance UUID}&direction=(in|out|both)

Default: polymorphic: false, direction: both
Example
GET /resource-registry/access/instances/EService?polymorphic=true&reference=b0d15e45-62af-4221-
b785-7d014f10e631&direction=out

In this example, we retrieve all EServices that are the target of a relation starting from the
Entity identified by b0d15e45-62af-4221-b785-7d014f10e631

● HostingNode(b0d15e45-62af-4221-b785-7d014f10e631) -> Hosts ->

EService(4a7daacb-f13b-4685-b5c1-040c86806c16)

● HostingNode(b0d15e45-62af-4221-b785-7d014f10e631) -> Hosts ->

Eservice(6e6442b9-37f1-479d-92eb-f935a983caba))

Response
[
 {
 "@class": "EService",
 "header": { "uuid": "4a7daacb-f13b-4685-b5c1-040c86806c16", ...},
 "consistsOf": [
 {
 "@class": "IsIdentifiedBy",
 "header": { "uuid": "6c6e7deb-a911-4612-989d-d770f30c0d69", ...},
 "target": {
 "@class": "SoftwareFacet",
 "header": { "uuid": "92f30e88-eff1-4282-b773-f3884b179d8d", ...},
 "group": "VREManagement",
 "name": "SmartExecutor",
 "version": "1.7.0",
 }
 },

]

 PARTHENOS – D6.3

 41

 },
 {
 "@class": "EService",
 "header": { "uuid": "6e6442b9-37f1-479d-92eb-f935a983caba", ...},
 "consistsOf": [
 {
 "@class": "IsIdentifiedBy",
 "header": { "uuid": "068f8d72-9495-4bd4-85b9-0ee234e99af6", ...},
 "target": {
 "@class": "SoftwareFacet",
 "header": { "uuid": "35546e56-6e76-4cc9-8c83-7320fd923597", ...},
 "group": "VREManagement",
 "name": "WhnManager",
 "version": "2.0.0",
 }
 },

]
 },

]

Java API
public <ERType extends ER, E extends Entity, R extends Resource> List<R>
getInstancesFromEntity(Class<ERType> clazz, Boolean polymorphic, E reference, Direction direction)
throws ResourceRegistryException;

Example
UUID uuid = UUID.fromString("b0d15e45-62af-4221-b785-7d014f10e631");
HostingNode hostingNode = resourceRegistryClient.getInstance(HostingNode.class, uuid);
List<EService> eServices = resourceRegistryClient.getInstancesFromEntity(EService.class, true,
hostingNode, Direction.out);

Alternative Java API
public <ERType extends ER, R extends Resource> List<R> getInstancesFromEntity(Class<ERType> clazz,
Boolean polymorphic, UUID reference, Direction direction) throws ResourceRegistryException;

public String getInstancesFromEntity(String type, Boolean polymorphic, UUID reference, Direction direction)
throws ResourceRegistryException;

Example
UUID uuid = UUID.fromString("b0d15e45-62af-4221-b785-7d014f10e631");
List<EService> eServices = resourceRegistryClient.getInstancesFromEntity(EService.class, true, uuid,
Direction.out);

UUID uuid = UUID.fromString("b0d15e45-62af-4221-b785-7d014f10e631");
String eServicesJsonString = resourceRegistryClient.getInstancesFromEntity(EService.NAME, true, uuid,
Direction.out);

5.8.5 Get Filtered Resource Instances

This API allows retrieval of all resource of a given Resource Type described by a Facet
Type having certain keys and values. The relation between the Resource and the Facet
must be of the specified ConsistsOf Type (polymorphism is always used, use ConsistsOf
to be more generic).
REST API
GET /resource-registry/access/resourceInstances/{Resource Type}/{ConsistsOf Type}/{Facet
Type}?[polymorphic=(true|false)]&key1=value1&key2=value2&...

Default: polymorphic: false
Example
GET /resource-
registry/access/resourceInstances/EService/IsIdentifiedBy/SoftwareFacet?polymorphic=true&group=DataAc
cess&name=HomeLibraryWebapp

Response

 42

{
 "@class": "EService",
 "header": { "uuid": "38823ddc-0713-4e83-9670-79e472408b0c", ...},
 "consistsOf": [
 {
 "@class": "IsIdentifiedBy",
 "header": { "uuid": "8829279d-70c1-4327-a817-169ed9a52467", ...},
 "target": {
 "@class": "SoftwareFacet",
 "header": { "uuid": "747713c0-fcbf-42d9-8709-c782c2121f9d", ...},
 "name": "HomeLibraryWebapp",
 "group": "DataAccess",
 "version": "1.5.0-SNAPSHOT",
 "description": "home library webapp",
 "qualifier": null,
 "optional": false
 }
 },
 ...
]
}

Java API
public <R extends Resource> List<R> getFilteredResources(Class<R> resourceClass, Class<? extends
ConsistsOf> consistsOfClass, Class<? extends Facet> facetClass,boolean polymorphic, Map<String,
Object> map) throws ResourceRegistryException

Example
Map<String, Object> map = new HashMap<>();
map.put("group", "DataAccess");
map.put("name", "HomeLibraryWebapp");

List<EService> eServices = resourceRegistryClient.getFilteredResources(EService.class,
IsIdentifiedBy.class, SoftwareFacet.class, true, map);

Alternative Java API
public List<Resource> getFilteredResources(String resourceType, String consistsOfType, String facetType,
boolean polymorphic, Map<String, Object> map) throws ResourceRegistryException;

Example
Map<String, Object> map = new HashMap<>();
map.put("group", "DataAccess");
map.put("name", "HomeLibraryWebapp");

String eServiceJsonString = resourceRegistryClient.getFilteredResources(EService.NAME,
IsIdentifiedBy.NAME, SoftwareFacet.NAME, true, map);

5.8.6 Raw Query

This API provides a way to query the underlying database persistence by using the
persistence query language dialect. This API does not provide any consistency with the
Information System Model concepts. The result is related to how the service decides to
represent the Information System Model concepts on persistence data model. At the time
of writing, the underlying database persistence is OrientDB. It should be used only for
development purposes because the way to represent the Information System Model
concepts can change at any time or can change the database persistence. At time of
writing the query language supported is OrientDB SQL Dialect16
GET /resource-registry/access?query=SELECT FROM Facet

REST API
GET /resource-registry/access?query={Query}

16

 http://orientdb.com/docs/last/SQL.html

https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#IS_Model
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#IS_Model
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#IS_Model
http://orientdb.com/docs/last/
http://orientdb.com/docs/last/
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#IS_Model
http://orientdb.com/docs/last/SQL.html
http://orientdb.com/docs/last/SQL.html

 PARTHENOS – D6.3

 43

Example 1
GET /resource-registry/access?query=SELECT FROM SoftwareFacet LIMIT 2

Response Body
{
 "result": [
 {
 "@type": "d",
 "@rid": "#99:5",
 "@version": 12,
 "@class": "SoftwareFacet",
 "header": {
 "@type": "d",
 "@version": 0,
 "@class": "Header",
 "uuid": "6b724a7c-9f51-4a4e-8e8e-1636ca2e9d29",
 "creator": "VREManagement:WhnManager:pc-frosini.isti.cnr.it_8080",
 "creationTime": "2017-10-05 16:09:02.618 +0200",
 "lastUpdateTime": "2017-10-05 17:23:44.191 +0200",
 "@fieldTypes": "creationTime=t,lastUpdateTime=t"
 },
 "name": "WhnManager",
 "description": "Web Hosting Node Service",
 "optional": false,
 "version": "2.0.0-SNAPSHOT",
 "group": "VREManagement",
 "_allow": [
 "#4:12",
 "#5:13",
 "#4:14"
],
 "_allowRead": [
 "#4:13",
 "#4:11"
],
 "in_IsIdentifiedBy": [
 "#168:5"
],
 "@fieldTypes": "_allow=n,_allowRead=n,in_IsIdentifiedBy=g"
 },
 {
 "@type": "d",
 "@rid": "#99:6",
 "@version": 5,
 "@class": "SoftwareFacet",
 "header": {
 "@type": "d",
 "@version": 0,
 "@class": "Header",
 "uuid": "bc98eec4-4365-49fd-83b3-2cacaf17f8bf",
 "creator": "VREManagement:SmartExecutor:pc-frosini.isti.cnr.it_8080",
 "creationTime": "2017-10-05 17:22:06.351 +0200",
 "lastUpdateTime": "2017-10-05 17:23:44.206 +0200",
 "@fieldTypes": "creationTime=t,lastUpdateTime=t"
 },
 "name": "SmartExecutor",
 "description": "Smart Executor Service",
 "optional": false,
 "version": "1.7.0-SNAPSHOT",
 "group": "VREManagement",
 "_allow": [
 "#4:12",
 "#5:15",
 "#4:14"
],
 "_allowRead": [
 "#4:13",
 "#4:11"

 44

],
 "in_IsIdentifiedBy": [
 "#168:6"
],
 "@fieldTypes": "_allow=n,_allowRead=n,in_IsIdentifiedBy=g"
 }
],
 "notification": "Query executed in 0.147 sec. Returned 2 record(s)"
}

It is apparent that a lot of database specific information is returned but cannot be used or
relied on to interact with registry.

Example 2
GET /resource-registry/access?query=SELECT FROM EService LIMIT 2

Response Body
{
 "result": [
 {
 "@type": "d",
 "@rid": "#138:2",
 "@version": 12,
 "@class": "EService",
 "header": {
 "@type": "d",
 "@version": 0,
 "@class": "Header",
 "uuid": "077a389f-6676-49bb-a925-16bea54c5f5d",
 "creator": "VREManagement:WhnManager:pc-frosini.isti.cnr.it_8080",
 "creationTime": "2017-10-05 16:09:02.604 +0200",
 "lastUpdateTime": "2017-10-05 17:23:44.191 +0200",
 "@fieldTypes": "creationTime=t,lastUpdateTime=t"
 },
 "_allow": [
 "#4:12",
 "#5:13",
 "#4:14"
],
 "_allowRead": [
 "#4:13",
 "#4:11"
],
 "out_IsIdentifiedBy": [
 "#168:5"
],
 "out_ConsistsOf": [
 "#165:32",
 "#166:32",
 "#164:33"
],
 "in_Hosts": [
 "#230:2"
],
 "@fieldTypes": "_allow=n,_allowRead=n,out_IsIdentifiedBy=g,out_ConsistsOf=g,in_Hosts=g"
 },
 {
 "@type": "d",
 "@rid": "#138:3",
 "@version": 5,
 "@class": "EService",
 "header": {
 "@type": "d",
 "@version": 0,
 "@class": "Header",
 "uuid": "cabca29a-59e4-463d-9932-02c6d68c8ce0",
 "creator": "VREManagement:SmartExecutor:pc-frosini.isti.cnr.it_8080",
 "creationTime": "2017-10-05 17:22:06.340 +0200",
 "lastUpdateTime": "2017-10-05 17:23:44.206 +0200",

 PARTHENOS – D6.3

 45

 "@fieldTypes": "creationTime=t,lastUpdateTime=t"
 },
 "_allow": [
 "#4:12",
 "#5:15",
 "#4:14"
],
 "_allowRead": [
 "#4:13",
 "#4:11"
],
 "out_IsIdentifiedBy": [
 "#168:6"
],
 "out_ConsistsOf": [
 "#164:36",
 "#165:36",
 "#166:36"
],
 "in_Hosts": [
 "#230:3"
],
 "@fieldTypes": "_allow=n,_allowRead=n,out_IsIdentifiedBy=g,out_ConsistsOf=g,in_Hosts=g"
 }
],
 "notification": "Query executed in 0.197 sec. Returned 2 record(s)"
}

It should be noticed that only the Vertexes of EServices are returned which don’t contain
the facets.

5.8.7 Read Context

Allow to read the definition of a Context.
REST API
This API is also exposed in Context Port Type
GET /resource-registry/access/context/{Context UUID}

Example
Read the Context having UUID 9d73d3bd-1873-490c-b0a7-e3c0da11ad52

Request URL
GET /resource-registry/context/9d73d3bd-1873-490c-b0a7-e3c0da11ad52

Response Body
{
 "@class": "Context",
 "name": "devVRE",
 "header": {
 "@class": "Header",
 "uuid": "9d73d3bd-1873-490c-b0a7-e3c0da11ad52",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2017-03-17 11:47:56",
 "lastUpdateTime": "2017-03-17 11:52:56"
 }
}

5.8.8 Read Type Definition

Allow to read Type Definition. This API is also exposed in Access Port Type.
REST API
GET /resource-registry/access/schema/{TypeName}

https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Read
https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Read_Type_Definition

 46

Example
GET /resource-registry/schema/ContactFacet

Response
{
 "name":"ContactFacet",
 "description":"This facet is expected to capture contact information",
 "abstractType": false,
 "superclasses":["Facet"],
 "properties":[
 {
 "name":"name",
 "description":"First Name",
 "mandatory":true,
 "readonly":false,
 "notnull":true,
 "max":null,
 "min":null,
 "regexpr":null,
 "linkedType":null,
 "linkedClass":null,
 "type":7 /* String*/
 },{
 "name":"eMail",
 "description": "A restricted range of RFC‑822 compliant email address. ... ",
 "mandatory":true,
 "readonly":false,
 "notnull":true,
 "max":null,
 "min":null,
 "regexpr":"^[a-z0-9._%+-]{1,128}@[a-z0-9.-]{1,128}$",
 "linkedType":null,
 "linkedClass":null,
 "type":7 /* String */
 }
]
}

 PARTHENOS – D6.3

 47

6 Backend Database (i.e. OrientDB as Graph Database)

OrientDB is a Multi-Model Open Source NoSQL DBMS that brings together the power of
graphs and the flexibility of documents into one scalable high-performance operational
database17. OrientDB engine supports Graph, Document, Key/Value, and Object
models. A graph represents a network-like structure consisting of Vertices (also known as
Nodes) interconnected by Edges (also known as Arcs).

OrientDB's graph model is represented by the concept of a property graph, which defines
the following:

 Vertex - an entity that can be linked with other Vertices and has the following
mandatory properties:

o unique identifier
o set of incoming Edges
o set of outgoing Edges

 Edge - an entity that links two Vertices and has the following mandatory properties:
o unique identifier
o link to an incoming Vertex (also known as head)
o link to an outgoing Vertex (also known as tail)

In addition to mandatory properties, each vertex or edge can also hold a set of custom
properties. These properties can be defined by users, which can make vertices and edges
appear similar to documents.18 Given that, we can say that OrientDB, used as graph
database, is de-facto a graph-document database. This peculiarity provides an excellent
support for the Information System model which has been mapped on OrientDB concepts
as following:

 Entities are modelled as Vertexes

 Relations are modelled as Edges

In both cases, the OrientDB internal ID has been hidden and, instead, the header property
(embedded) is created which provides, among others, the ID to uniquely identify the Entity
or Relation.

Another important characteristic is the native support of embedded properties. Embedded
properties are structured properties inside a vertex or an edge. The Header is the only
properties of resources.

OrientDB provides a simple referential integrity support guaranteeing that if a vertex is
deleted then every attached edge (incoming or outgoing) is also deleted. The Resource
Registry provides additional referential integrity support by using directives contained in
each PropagationConstraint property attached to edges. It is responsibility of the Resource
Registry to provide support for this.

17

 http://orientdb.com/docs/2.2.x/
18

 http://orientdb.com/docs/2.2.x/Tutorial-Introduction-to-the-NoSQL-world.html

http://orientdb.com/docs/2.2.x/
http://orientdb.com/docs/2.2.x/Tutorial-Introduction-to-the-NoSQL-world.html

 48

7 The Studio GUI

The Content administrator is allowed to use the Web Graphical User Interface (GUI)
provided with OrientDB called Studio.

Figure 1 shows the interface allowing browsing and searching of the content of the Joint
Resource Registry. It also allows the inspection of the schema of the resources defined in
the PARTHENOS Entity Model. At the top of the page the search bar is presented. The
browsing is paginated and the types are divided into vertex and edge types.

Figure 1: Schema Manager

Moreover, two different interfaces to get the results of a query are provided. The first one,
see Figure 2, provides textual results, while the second one, see Figures 3 and 4, provides
a graphical representation of the graph results of the query.

The interface providing textual results also allows editing of any of the presented instances
by clicking on the resulting row.

 PARTHENOS – D6.3

 49

Figure 2: Textual Query Inspector

The interface providing the representation of the graph instead allows inspection of the
content of the vertexes and edges by clicking on any one of them. The information is
provided in the side panel on the left. The side panel has two tabs: the first shows the
properties of the selected element; the second tab is used to change the presentation
information of the element such as the colour of the circle for vertexes, and the attached
label for edges and vertexes. The label can be either one of the attributes of the element
or OrientDB internal information such as the internal id.

 50

Figure 3: Graph Query Inspector

The Graph Query Inspector interface also allows iterative inspection by navigating the
relations (edges) created between the entities (vertexes). By clicking on the element an
overlay menu is presented. The menu directs the user to the valid options available for the
navigation.

Figure 4: Graph Editor

The Content administrator graphical user interface will be complemented by an additional
interface designed for end-users. This additional tool will present the content of the Joint
Resource Registry as a catalogue of resources. The catalogue will be searchable and

 PARTHENOS – D6.3

 51

browsable while faceted search will allow interactive inspections of the PARTHENOS
entities.

The end-user graphical user interface is currently under testing and validation and its
description will be added to the D6.5 Report on the Implementation of the Joint Resource
Registry (final) deliverable due at month 48. A preliminary screenshot of this interface is
shown in Figures 5 and 6. Figure 5 shows the welcome page allowing browsing between
the types and the research infrastructures (i.e. groups), Figure 6 shows an example of a
resource details

 52

Figure 5: End-user Graphical User Interface welcome page

 PARTHENOS – D6.3

 53

Figure 6: End-user Graphical User Interface resource details

.

