
0

X-CLEaVER: Learning Ranking Ensembles by Growing and
Pruning Trees

CLAUDIO LUCCHESE, Ca’ Foscari University of Venice
FRANCO MARIA NARDINI, ISTI-CNR
SALVATORE ORLANDO, Ca’ Foscari University of Venice
RAFFAELE PEREGO, ISTI-CNR
FABRIZIO SILVESTRI, Facebook Search
SALVATORE TRANI, ISTI-CNR

Learning-to-Rank (LtR) solutions are commonly used in large-scale information retrieval systems such as Web
search engines, which have to return highly relevant documents in response to user query within fractions of
seconds. The most e�ective LtR algorithms adopt a gradient boosting approach to build additive ensembles of
weighted regression trees. Since the required ranking e�ectiveness is achieved with very large ensembles,
the impact on response time and query throughput of these solutions is not negligible. In this paper we
propose X-CLEaVER, an iterative meta-algorithm able to build more e�cient and e�ective ranking ensembles.
X-CLEaVER interleaves the iterations of a given gradient boosting learning algorithm with pruning and
re-weighting phases. First, redundant trees are removed from the given ensemble, then the weights of the
remaining trees are �ne-tuned by optimizing the desired ranking quality metric. We propose and analyse
several pruning strategies and we assess their bene�ts showing that interleaving pruning and re-weighting
phases during learning is more e�ective than applying a single post-learning optimization step. Experiments
conducted using two publicly available LtR datasets show that X-CLEaVER can be successfully exploited on
top of several LtR algorithms as it is e�ective in optimizing the e�ectiveness of the learnt ensembles thus
obtaining more compact forests that hence are much more e�cient at scoring time.

CCS Concepts: • Information systems → Learning to rank; Retrieval e�ciency; • Computing method-

ologies → Learning to rank; Boosting; Regularization;

Additional Key Words and Phrases: Learning to rank, E�ciency, Pruning.

ACM Reference format:

Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Ra�aele Perego, Fabrizio Silvestri, and Salvatore
Trani. 2018. X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees. ACM Trans. Intell.
Syst. Technol. 0, 0, Article 0 (2018), 26 pages.
DOI: 0000001.0000001

This paper is supported by the MASTER (grant agreement No
¯777695), BIGDATAGRAPES (grant agreement No

¯780751),
SOBIGDATA (grant agreement No

¯654024) and ECOMOBILITY (project ID No
¯10043082) projects that received funding from

the European Union’s Horizon 2020 research and innovation programme under the Marie-Slodowska Curie, Information
and Communication Technologies, and Interreg Italy-Croatia CBC work programmes.
Author’s addresses: F.M. Nardini, R. Perego, S. Trani are with the “Istituto di Scienza e Tecnologie dell’Informazione” (ISTI)
of the National Research Council of Italy (CNR), Via Moruzzi 1, 56124 Pisa, Italy. e-mail: {�rstname.lastname}@isti.cnr.it.
C. Lucchese and S. Orlando are with the “University Ca’ Foscari” of Venice, Italy. e-mail: claudio.lucchese@unive.it,
orlando@unive.it. F. Silvestri is with “Facebook Search”, London, UK. e-mail: fabrizio.silvestri@gmail.com. This work was
done while Fabrizio Silvestri was an ISTI-CNR employee.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM. 2157-6904/2018/0-ART0 $15.00
DOI: 0000001.0000001

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:2 C. Lucchese et al.

1 INTRODUCTION
The problem of ranking items in response to a given query is of paramount importance for infor-
mation retrieval systems. As exemplary case of how challenging that is, consider the processing of
queries submitted to a Web Search Engine (WSE), where a small and relevant set of documents
must be retrieved in a fraction of a second from a huge collection. The state of the art in ranking
exploits supervised machine learning techniques based on Learning-to-Rank (LtR) algorithms [16].
Ranking models are in this case learnt from ground truth datasets composed of labeled training
examples. The ranking function obtained assigns a relevance score to each candidate document
with respect to the user query, where scores allow ranking and selecting the best documents that
are eventually returned to the user.

While e�ectiveness of LtR methods has been always considered of primary importance, only
recently e�ciency of learnt models attracted the interest of the scienti�c community [1–3, 6, 19, 33].
Ranking models deployed in large-scale information retrieval systems must in fact feature very
low latency as well as high throughput, due to the high rate of incoming user queries.

In this paper we tackle the problem of improving both e�ciency and e�ectiveness of LtR
models based on ensembles of additive regression trees, such as the ones learnt by gradient
boosting algorithms, e.g., the state-of-the-art λ-MART [34]. We move from the simple observation
that the cost of applying such ensemble models is linear in the number of their trees, and that
ensembles composed of thousands of trees, despite being accurate, are very expensive when
exploited for ranking large sets of candidate documents [20]. We thus propose a meta-algorithm,
named X-CLEaVER (eXtended-CLEaVER) , which interleaves two novel steps of tree pruning
and re-weighting within the usual iterative ensemble learning process: the pruning step aims at
reducing the number of trees in the ensemble to improve its e�ciency at scoring time, while tree
re-weighting is an optimization process that aims to maximize the ranking quality of the pruned
ensemble by tuning the weights associated with each tree. Any gradient boosting algorithm that
produces a weighted ensemble of predictors can be used in conjunction with the X-CLEaVER
meta-algorithm to grow the tree forest.

X-CLEaVER stems from and extends the CLEaVER algorithm [17], which applies similar opti-
mizations after the completion of the learning phase to reduce the size of a given ensemble without
a�ecting its quality. While CLEaVER is a single-pass algorithm applied once to the learnt ensemble,
X-CLEaVER employs an iterative strategy where pruning and re-weighting optimizations are
repeatedly applied during the learning process. Indeed, X-CLEaVER improves some of the pruning
strategies proposed in [17] and, more importantly, it shows that embedding such steps within the
boosting LtR algorithm is a pro�table strategy to achieve more compact and e�ective ranking
models. It is worth remarking that other approaches were proposed to produce simpler and faster
tree-based ensembles [1, 33]. However, these proposals aimed at �nding a trade-o� between e�-
ciency and e�ectiveness during the learning phase, while X-CLEaVER aims at improving ranking
quality and decreasing scoring cost at the same time. This twofold opportunity is justi�ed by two
observations that we illustrate below.

The �rst observation is that regression/classi�cation ensembles are known to encompass a high
level of redundancy, and that some of their trees can be removed without harming signi�cantly the
e�ectiveness of the resulting ensemble [15, 21]. We aim at designing e�cient pruning strategies
able to deal with large LtR ensembles and to remove a portion of their trees without a�ecting
ranking accuracy. Pruning the ensemble obviously impacts the scores predicted by the ranking
model. We thus propose to optimize the accuracy of the trees survived to the pruning step by
�ne-tuning their weights with an optimization heuristic driven by a ranking quality metrics.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees 0:3

A second observation makes this weight optimization step particularly interesting. It is related to
the measure we use to evaluate the quality of a ranker, namely Normalized Discounted Cumulative
Gain (NDCG) [13], and in particular NDCG@10. This quality measure is suitable in presence of
documents associated with multiple levels of relevance, like the datasets commonly used in LtR
experiments, where the judgments, labeling each candidate document for a given query, range
from 0 (irrelevant) to 4 (perfectly relevant). Roughly speaking, NDCG@10 considers the ranks of
the top-10 results, and penalizes highly relevant documents appearing lower in the result list, as
the graded relevance value is reduced logarithmically proportional to the position of the result.
Note that LtR gradient boosting algorithms either optimize the root mean squared error (RMSE)
with respect to document relevance labels (e.g., the point-wise GBRT [10]), or optimize a proxy
function of NDCG@10 (e.g., the list-wise λ-MART [34]). The λ-MART algorithm resort to this proxy
since NDCG@10 is a non-di�erentiable function, and thus gradient descent cannot be applied.
Speci�cally, λ-MART casts the ranking problem into a regression problem solved through gradient
boosting that use the λ ranks as proxies of the gradient of NDCG@10 [7].

The proposed X-CLEaVER meta-algorithm is able to improve the e�ectiveness of the base LtR
solutions adopted thanks to the optimization directly performed on the target objective function,
e.g., NDCG@10, achieved by re-weighting the given ensemble predictors. This local optimization is
especially pro�table after the pruning step, which may potentially perturb the ensemble and drift
the learning process away from the optimal solution.

By pushing the pruning and tree re-weighting phases within the learning process of the gradient
boosting algorithm exploited, X-CLEaVER builds smaller models that outperforms the ones obtained
by the original LtR algorithms in terms of both e�ciency and e�ectiveness.

In summary, the main contributions of this work are the following:
• we propose X-CLEaVER, a novel LtR meta-algorithm aimed at optimizing state-of-the-art

LtR algorithms generating forests of weighted regression trees by interleaving tree pruning
and re-weighting within the iterative learning process;
• we propose several tree pruning strategies aimed at obtaining a faster ranking model (in

terms of scoring time) and a heuristic optimization, driven by NDCG@10 (or any other
ranking quality metric), for tuning tree weights. Experiments show that the proposed
strategies allow us to prune up to 80% of trees in a λ-MART ensemble, without impacting
its e�ectiveness;
• we conduct a comprehensive evaluation of X-CLEaVER on two publicly available datasets

using di�erent base gradient boosting algorithms. Experiments show that the models
generated by X-CLEaVER remarkably outperform, in both ranking quality and scoring
e�ciency, the ones learnt by the respective base algorithms.

The paper is organized as follows. In Section 2 we discuss the research works that are related to
LtR models optimization. In Section 3 we detail the proposed LtR algorithm showing the proposed
pruning strategies and the greedy optimization process used to re-weight the trees in the ensemble.
In Section 4 we �rst separately investigate the impact of the pruning and optimization processes,
then we assess the performance of the novel X-CLEaVER algorithm as a whole. Finally, in Section 5
we draw the �nal conclusions and show some ideas we plan to investigate in the future.

2 RELATED WORK
Ranging from large-scale to company-wide search systems, LtR-based techniques are currently
exploityed to improve the quality of the results delivered to search users. Herbrich et al. [12]
presented the seminal work from which the area of LtR stemmed. Authors presented a new problem
formulation, aiming at learning a ranking model by minimizing a loss function acting on pairs

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:4 C. Lucchese et al.

of elements, rather than on single labeled training instances as it is common in regression and
classi�cation tasks. Since then, a huge amount of works were published with the goal of improving
the quality of the generated models. An excellent survey on models and techniques speci�cally
tailored to Information Retrieval (and Search in particular) is that of Tie-Yan Liu [16].

E�ciency in LtR-based ranking models was investigated by following two di�erent research
directions. The �rst research line considered low-level optimizations to the inference phase by
speeding-up the traversal of a given tree ensemble. Asadi et al. [2] proposed to re-arrange the
code to traverse each tree of an ensemble, by transforming control hazards into less expensive data
hazards, i.e., data dependencies introduced when one instruction requires the result of another.
Moreover, to reduce data hazards the same work proposed to vectorize the scoring algorithm by
interweaving the evaluation of a small set of candidate documents. Lucchese et al. [9, 18, 19]
proposed QuickScorer, a scoring algorithm that adopts a new representation of the tree ensemble
based on bit-vectors. The tree traversal, aimed to detect the leaves contributing to the �nal scoring
of a document, is performed feature by feature, over the whole tree ensemble, through e�cient
logical bitwise operations.

The second research line concerning e�ciency in LtR includes solutions that trade e�ciency
o� for e�ectiveness as a post-learning phase. This direction was addressed mostly with model
pruning and feature selection. Research in tree pruning dates back to 80’s [26], and most of the
recent contributions focus on pruning trees in an ensemble. One of the most in�uential work in
this area is the one by Mehta et al. [22], where the minimum description length (MDL) principle
was used to devise a novel tree pruning strategy. This strategy, instead of minimizing the length of
the class sequence in the training sample together with the length of the decision tree, introduces a
new length criterion to capture the intuitive idea of reducing the rate of misclassi�cation.

Friedman and Popescu [11] proposed the Importance Sampled Learning Ensemble (ISLE) method-
ology. Given a set of weak learners, ISLE �ts their weights by means of Lasso [32] regularized
linear regression. Lasso is known to lead to sparse solutions, i.e., with few non-zero weights, thus
allowing ISLE to prune trees. According to the authors, ISLE performs well with bagging models,
but is not able to optimize boosting models (such as GBRT) which are at the base of state-of-the-art
LtR solutions.

Two other relevant approaches were proposed by Margineantu et al. [21] and Li et al. [15]. In [15],
weak learners are sorted on the basis of their classi�cation con�dence and then, after re-weighting,
a subset is selected on the basis of the resulting classi�cation accuracy. In [21], the best performing
method, named reduced-error pruning with back�tting, grows a pruned set of weak classi�ers by i)
greedily adding a new element at each iteration, and, within each iteration, ii) replacing already
selected elements with other elements until convergence. As both methods deal with classi�cation
ensembles, we cannot directly exploit them in an tr scenario. Moreover, since LtR training datasets
employ hundreds of features and millions of documents, the exploitation of step ii) within an LtR
scenario is not computationally feasible. In this work, we propose and evaluate a pruning strategy,
named �ality-Loss, inspired by these two works, but targeting accuracy measured by a speci�c
ranking metric. Instead of exploiting classi�cation accuracy, ranking quality is used to sort the
weak learners and to choose the less important to be pruned. Recursively, the accuracy of the
remaining weak learners is re-evaluated and a new one is pruned.

Ren et al. [27] recently presented a work on pruning a random forest of decision trees. Authors
proposed two techniques that exploit the global knowledge derived by having the whole model
already trained and available. Global re�nement jointly re-learns the leaf nodes of all trees under
a global objective function, so that the complementary information between multiple trees is
well exploited. Global pruning has the double goal of reducing the model size and, at the same

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees 0:5

time, of reducing the over�tting risk. Experiments conducted on real-world data showed that the
model obtained by the pruning method has a smaller footprint and higher e�ectiveness. The main
di�erence between this work and ours is that their main tasks are regression and classi�cation, rather
than ranking. In particular, our main goal is to improve the NDCG metrics, which is considerably
di�erent from minimizing other metrics such as those used in regression and classi�cation.

Another recent development in ensembles pruning is the work of Qian et al. [25] where authors,
unlike previous ones, address the trade-o� between e�ectiveness (maximizing the generalization
performance) and e�ciency (minimizing the number of weak learners), by using a bi-objective
problem formulation whose solution is found through an evolutionary Pareto optimization method
combined with a local search step. Empirical results showed that this method is e�ective in reducing
the size of the ensemble, and in increasing the e�ectiveness of the method. The goal of our method
is di�erent, as we aim at reducing the size of the ensemble up to an apriori �xed number of weak
learners, while keeping the same quality level, thus resulting in an improved e�ciency. In addition,
our method is speci�cally tailored to LtR methods. From the same group of researchers, a Pareto
optimization method was also used but with a di�erent goal, i.e., to reduce the number of features
used while keeping the quality as high as possible [24]. Again, as in the case of ensemble of trees,
the goal was reached through optimizing two objectives at the same time.

Finally, Nan et al. [23] proposed to prune a random forest as a 0-1 integer program with linear
constraints, which encourages feature re-use. They aim at reducing the size of a random forest,
while also trying to reduce the number of variables used in the ensemble. It can be considered as a
sort of pruning and feature selection mechanism. The method was empirically tested, and provided
good performance improvements with respect to the state of the art. The main di�erences between
this work and ours is that the method is not explicitly targeting ranking problems, and it is not
clear if and how it could be extended to other ensemble methods, such as λ-MART or GBRT.

All these works, as our preliminary proposal in [17], share the common characteristic of being
designed as post-processing solutions aimed at optimizing a fully learnt ensemble. Di�erently,
X-CLEaVER learns, re-weights, and prunes trees in an interleaved manner.

A similar solution that adopts pruning during the model building phase is the one proposed by
Asadi and Lin [1], where authors observed that compact, shallow, and balanced trees yield faster
predictions. They thus suggested to incorporate a notion of execution cost during the training,
to encourage trees with these topological characteristics. Authors proposed two strategies for
accomplishing this: i) by directly modifying the node splitting criterion during tree induction, and
ii) by stage-wise tree pruning. This approach is actually orthogonal to the one we are proposing
in this paper, as it prunes each tree immediately after it is built and independently of the others,
while we propose to prune subsets of trees of the ensemble. We use this strategy as a baseline to
evaluate the X-CLEaVER ability in generating e�cient models.

3 GROWING AND PRUNING TREE ENSEMBLES
Gradient boosting is an iterative technique used for regression or classi�cation problems that learns
from a training set an additive ensemble E of weighted weak learners minimizing a given loss
function. In this work we focus on ensemble-based ranking models where the weak learners are
decision trees. Large ensembles encompassing thousands of trees are usually required to achieve
the high ranking quality required by WSEs [6, 28]. Since the cost of scoring a document with an
ensemble E is linear in its size |E |, the ability of learning compact and e�ective ensembles is a very
desirable property. Reducing document scoring time allows in fact to better cope with time budget
constraints and improves the overall throughput of large search infrastructures [3, 8].

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:6 C. Lucchese et al.

In the LtR scenario, the model E is learnt from a ground truth dataset containing query-document
pairs (q,d) labeled with multi-graded relevance levels. The goal of an LtR algorithm is to learn a
model able to produce a document ranking that agrees with the relevance ordering in the ground
truth. Let E = {(t1,w1), . . . , (t |E |,w |E |)} be an additive ensemble of decision trees learnt by a
gradient boosting LtR algorithm, where each tree ti is weighted by wi , wi ∈ R. Given a query q and
a document d , we denote si (q,d) the score contribution predicted by tree ti . The global ensemble
prediction S(q,d) is computed as:

S(q,d) =

|E |∑
i=1

wi · si (q,d) (1)

Gradient boosting algorithms learn trees and weights iteratively. A new pair (ti ,wi) is generated
at iteration i to improve the predictions of the ensemble built so far. Indeed, each new tree ti
approximates the gradient of a loss function with respect to the model parameters. The exploitation
of gradient boosting in the context of LtR is not trivial since the rank-based metrics adopted are
either �at or discontinuous everywhere.

The proposed X-CLEaVER meta-algorithm can run on top of any base gradient boosting LtR
algorithm A by providing a framework for the direct optimization of a given rank-based metric M .
Speci�cally, X-CLEaVER interleaves three phases during the learning:

i) a growing phase, during which the base algorithm A is used to learn a set of additional
trees, named delta model;

ii) a pruning phase, which removes the less relevant trees from the delta model, thus improving
the model e�ciency;

iii) a re-weighting phase, during which the weights associated with the remaining trees of the
delta model are �ne-tuned, by directly optimizing rank-based metric M thus improving the
model e�ectiveness.

These three phases are iterated until the desired �nal ensemble size is obtained.
Without loss of generality, we use NDCG as the reference quality measure to be maximized.

Speci�cally, we use NDCG@10 as commonly done for a Web search scenario. Given a ranked
document list, NDCG@10 is a normalized measure that only weights the top-10 ranked documents
according to their predicted relevance S(q,d) and discounts their contribution according to their
rank position. A basic approach to maximize NDCG is that of GBRT, where gradient boosting is
driven by the Root Mean Squared Error (RMSE) loss, i.e., the root mean squared loss between the
ensemble predictions and the relevance levels. Unfortunately, unless we have perfect predictions,
minimizing RMSE does not provide any guarantee of optimizing NDCG. The λ-MART algorithm,
which is considered the state-of-the-art in LtR, exploits approximations of the gradients of the
target rank-based metric, named λ-ranks. At each iteration i , λ-MART trains a new tree ti so as to
best approximate such λ-ranks in place of the non-di�erentiable rank-based metric. Thus, λ-MART
employs a proxy loss function, which may generate sub-optimal ranking choices.

In this work, we show how gradient boosting LtR algorithms, e.g., GBRT and λ-MART, can be
used as base algorithms of X-CLEaVER, to build ranking models achieving a signi�cant advantage
in e�ectiveness and e�ciency.

3.1 The X-CLEaVER Algorithm
The pseudocode of X-CLEaVER is illustrated in Algorithm 1. During its �rst phase, X-CLEaVER
exploits the base algorithm A to grow E, the (initially empty) current model (line 10). At each

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees 0:7

Algorithm 1 X-CLEaVER.
1: function X-CLEaVER(N ,n,p,A,M)

input:

2: N : ensemble size
3: n : number of regression trees trained per iteration
4: p : ratio of pruned trees per iteration
5: A : base learning algorithm
6: M : rank-based metric

output:

7: E : trained ensemble
8: E ← ∅ . the current ensemble model
9: while |E | < N do

10: Ê ← A.GrowModel(E,n) . build delta model
11: ÊP ← Prune(Ê,M,p)
12: ÊW ← ReWeight(ÊP ,M)
13: if M(E ∪ ÊW) ≤ M(E) then . no gain condition
14: break
15: E ← E ∪ ÊW

16: return E

iteration the base algorithm A is used to train, on the basis of the current model E, a new set of n
weak learners, denoted with Ê.

Before adding Ê to the current model E, X-CLEaVER applies the pruning and re-weighting phases.
During the pruning phase (line 11), a fraction p of trees in Ê is removed. Pruning aims to reduce the
scoring time, by shrinking the ensemble size. It exploits the fact that some weak learners are highly
correlated, and therefore they can be removed from the model without impacting signi�cantly its
accuracy. In Section 3.2 we explore di�erent pruning strategies aimed at identifying the set of trees
that less impact the overall model prediction power. We denote by ÊP the set of weak learners in Ê
that survive after the application of the pruning strategy.

As the pruning phase impacts predictions, X-CLEaVER re-weights the trees survived in ÊP
(line 12). To this end, it exploits a local optimization strategy based on line search. As discussed
in Section 3.3, the weights associated with the weak learners of ÊP are �ne-tuned by directly
optimizing the given rank-based metric M . The �nal pruned and re-weighted delta model is denoted
by ÊW . If ÊW is not able to improve the quality of the current model E as measured by M , then
X-CLEaVER terminates (line 13). Otherwise, ÊW is added to E and the above three phases iterated
until the desired ensemble size N is achieved.

3.2 Pruning Phase

The pruning phase of X-CLEaVER identi�es a fraction p of trees to be removed from delta model Ê.
Note that similar pruning strategies were preliminarly investigated in CLEaVER [17]. We improve
some of them as discussed below.

• Last: this trivial strategy prunes the last trees added to Ê. The motivation is that trees are
progressively built and added to the ensemble to re�ne the quality of the overall extracted
model. The last trees are thus expected to provide a smaller contribution.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:8 C. Lucchese et al.

• Random: this technique prunes uniformly at random a fraction p of trees from Ê. The best
set out of r di�erent pruning rounds is selected, where quality is measured according to
metric M . Note that CLEaVER adopted a single pruning round, while X-CLEaVER exploits
M in choosing the best random-generated subset, thus providing more stable and reliable
results. In our tests, we set r = 100.
• Skip: this strategy removes trees that are uniformly scattered along the sequence of trees

in Ê. One tree every 1/p is removed, i.e., trees at position di/pe with i = 1, . . . , dnpe. The
rationale is that trees learnt in close iterations are similar, and potentially redundant.
• Low-Weights: this strategy removes from Ê the fraction p of trees with the lowest weights
wi . The assumption here is that, due to the low weights, they are less relevant for the �nal
document scoring. For those learning algorithmsA that associate uniform weights with all
the trees, a preliminary re-weigthing phase is applied to Ê (see Sec. 3.3) in order to obtain
the weights to which this pruning strategy is applied.
• �ality-Loss: this strategy considers the actual impact of a tree in Ê to the optimization

of rank-based metric M . The impact of a tree is measured as the loss variation of the metric
M caused by its removal. The tree with the smallest impact is removed, and the impact of
the remaining trees in the pruned ensemble is recomputed before pruning the next tree.
The procedure is repeated until a fraction p of trees is removed from Ê. Although the
greedy choice of which tree to prune is locally optimal, there is no guarantee about the
global optimality of the pruned ensemble ÊP . A simpli�ed version of the same strategy,
presented in CLEaVER [17], measures the trees’ impact only once, and then selects the
trees to discard according to this impact-based ranking. Despite being less demanding in
terms of computational complexity, it does not take into account trees’ dependencies, i.e.,
two highly redundant trees risk to be kept both. This enhanced pruning strategy achieves
a signi�cant improvement over the basic variant in [17].
• Score-Loss: this strategy considers the normalized contribution provided by each tree to

the �nal score S(q,d). The contribution is measured as
wi · si (q,d)

S(q,d)

and it is averaged over all query-document pairs of the training dataset. Then, the fraction
p of trees in Ê with the lowest average contribution is pruned.

Eventually, the pruning phase produces the pruned ensemble ÊP ⊆ Ê (line 11).

3.3 Re-weighting phase

The re-weighting phase of X-CLEaVER �ne-tunes the pruned model ÊP in order to create a new
ensemble ÊW having the same trees of ÊP and a new set of weights such that M(E ∪ ÊW) is
maximized.

Let Γ = {γ1,γ2, . . . ,γ | ÊW |} be the weights vector of ÊW . Our goal is to solve the following
optimization problem:

Γ = argmax
Γ∈R|ÊW |

M(E ∪ ÊW).

Finding the optimal Γ is not feasible because i) M is not di�erentiable, and ii) Γ can have a
high number of dimensions. However, local-search heuristics have proven to e�ectively address
such optimization problem [30, 31]. Instead of relying on an approximation of the gradient of a
target non-di�erentiable ranking metric, they evaluate the actual ranking measure after small

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees 0:9

0 1 2 3 40

1

2

3

4

γ1

γ2

0.0

0.2

0.4

0.6

0.8

1.0

M (E ∪ ÊW)

Γk d1
(best along γ1)

d2
(best along γ2)

Γk+1

D

Fig. 1. Example of the Line Search strategy on a 2D search space.

modi�cations of current weight values. In [30], each weight is optimized independently of the
others by computing the variation in the ranking measure occurring at the jumping points, that are
the weight’s values a�ecting the documents ranking. This process is applied to each of the weights
and iterated until convergence. Analogously to [31], we adopt a less computationally expensive
approach that does not require to compute all the possible jumping points. In particular, X-CLEaVER
exploits an iterative two-step procedure based on line search as follows.

Let Γk be the vector of weights found at iteration k of our line search procedure. During the
�rst step, a descent direction originating in Γk is identi�ed. Then, in the second step, a new weight
vector Γk+1 that improves the loss function L is searched along such direction. Starting from Γ0

being the weights of ÊP , the two steps detailed below are iterated until L, measured on a separate
validation set, does not change for a �xed number of iterations:

(1) Given the solution Γk at iteration k , a line search along each axis of the weight vector is
performed independently. For each dimension, the weight γi is replaced with a candidate
weight computed by testing σ equi-spaced samples in the interval [γi − ω,γi + ω], while
keeping all other γj �xed. The parameters σ and ω a�ect the granularity of the local search.
The value ofω is also reduced by a shrinking factor η at each iteration to favor a �ne-grained
optimization when the algorithm approaches a local maximum. The best among the σ
samples, denoted bydi , is selected by evaluatingM(E∪ÊW)with the modi�ed set of weights.
Eventually, the independent line searches lead to a new point D = {d1,d2, . . . ,d | ÊW |}. Fig. 1
exempli�es the line search algorithm on a two-dimensional search space: along each axis,
σ = 9 samples (horizontal and vertical red dots) are evaluated independently in order to
choose the best weight updates (circled in blue) along the directions γ0 and γ1.

(2) An additional line search is conducted along the promising descent direction identi�ed at
the previous step, i.e., along the segment connecting Γk to D. Again σ equi-spaced samples
are evaluated and the best is chosen so as to maximize M(E ∪ ÊW). The best weight vector
found, denoted by Γk+1, is used as the starting point for the next iteration. In Fig. 1, the
best among the σ samples is exactly point D.

To reduce the overall computational cost of the above search process, we exploit the following
optimizations. First, thread-level parallelism is used in order to explore the di�erent search directions
during the �rst step, i.e., to �nd the various di , and to evaluate the σ samples during the second step.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:10 C. Lucchese et al.

Table 1. Properties of the MSLR-WEB30K-F1 and Istella-S datasets.

Dataset MSLR-WEB30K-F1 Istella-S

queries 31,351 33,018
query-doc pairs 3,771,125 3,408,630
features 136 220
avg. # docs/query 120 103
pos. query-doc pairs 1,830,173 (48.53%) 388,224 (11.39%)
neg. query-doc pairs 1,940,952 (51.47%) 3,020,406 (88.61%)

Table 2. Distribution of positive labels in the MSLR-WEB30K-F1 and Istella-S datasets.

pos. query-doc pairs per label MSLR-WEB30K-F1 Istella-S

1s (low relevance) 1,225,770 (66.98%) 83,167 (21.42%)
2s (medium relevance) 504,958 (27.59%) 135,989 (35.03%)
3s (high relevance) 69,010 (3.77%) 93,957 (24.20%)
4s (perfect relevance) 30,435 (1.66%) 75,111 (19.35%)
Total # pos. examples 1,830,173 388,224

Second, we avoid visiting the whole tree ensemble for scoring documents after each weight update.
The ensemble of trees is in fact visited only once and tree predictions si (q,d) for all the documents
of the training dataset are stored in memory, thus allowing a fast access to these predictions when
the single weight γi is updated.

4 EXPERIMENTAL EVALUATION
We conduct experiments by employing two public LtR datasets: i) the MSLR-WEB30K-F1

1 (Fold
1) dataset and ii) the Istella-S

2 dataset [17]. The MSLR-WEB30K-F1 dataset contains 3,771,125
query-document pairs referred to 31,351 queries, while the Istella-S dataset includes 33,018 queries
and 3,408,630 query-document pairs. Query-document pairs are represented in the two datasets
with 136 and 220 features, respectively. The characteristics of the datasets are listed in Table 1.

The query-document pairs in both datasets are labeled by relevance judgments that are natural
numbers ranging from 0 (irrelevant) to 4 (perfectly relevant). While the size of the two datasets is
comparable, they show a di�erent proportion between positive (label > 0) and negative (label = 0)
examples. Indeed, the Istella-S dataset contains a lower number of positive query-doc pairs than
MSLR-WEB30K-F1 (11.39% versus 48.53% of the examples). Moreover, as reported in Table 2, the
distributions of positive labels in the two datasets are di�erent with MSLR-WEB30K-F1 showing a
skewed distribution that is not observable in Istella-S. MSLR-WEB30K-F1 comes with a number of
low relevance labels of 66.98% of the total set of positive examples. In the Istella-S dataset the low
relevance class accounts instead for only 21.42%, while the medium and the high relevance classes
account for 35.03% and 24.20%, respectively. MSLR-WEB30K-F1 shows a small number of perfectly
relevant query-document pairs (i.e., 1.66% of the total), while in the Istella-S dataset the same class
accounts for 19.35%. This di�erences are probably due to the diverse annotation processes followed
in the respective companies.

1http://research.microsoft.com/en-us/projects/mslr/
2http://blog.istella.it/istella-learning-to-rank-dataset/

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

http://research.microsoft.com/en-us/projects/mslr/
http://blog.istella.it/istella-learning-to-rank-dataset/

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees 0:11

We split each dataset in training, validation and test sets according to a 60%-20%-20% schema.
Then, we use training and validation datasets to train models according to several state-of-the-art
LtR learning algorithms, namely Gradient Boosting Regression Trees (GBRT) [10], Lambda-MART
(λ-MART) [34] and Oblivious Lambda-Mart (Ωλ-MART) [28]. GBRT is a point-wise algorithm
that uses Mean Squared Error (MSE) as loss function to learn a predictor of the relevance labels.
λ-MART is a list-wise LtR algorithm using NDCG in its loss function and trying to learn the ranking
function induced by the examples in the training set. Ωλ-MART is a variation of λ-MART where
oblivious regression trees [14] are learnt in place of standard, possibly unbalanced, regression trees.
In oblivious regression trees the same splitting criterion, i.e., the same test “feature fi is less than
threshold tj ”, is used for all the nodes lying on the same level of a tree. As a consequence, the
resulting trees are balanced. The goal of reducing the degrees of freedom of the algorithm when
growing trees at training time is twofold: �rst, to reduce the risk of over�tting; second, to allow
for an improved e�ciency at scoring time, since less tests have to be made when traversing each
tree and most importantly they can also be easily evaluated in parallel, disregarding the path of
each instance. λ-MART and Ωλ-MART resulted to be the most e�ective LtR algorithms among
those participating to the Yahoo! Learning to Rank Challenge [4]. We exploit the open-source
implementation of these algorithms provided by QuickRank [5]. We �ne-tune the hyper parameters
of these algorithms by sweeping them to maximize NDCG@10 (tests conducted using di�erent
cut-o� values did not show appreciable di�erences).

We vary the maximum number of leaves in each tree for GBRT and λ-MART in the set {5, 10, 25, 50},
while for Ωλ-MART we vary the maximum depth of each tree in the set {4, 5, 6}. Moreover, we
vary the learning rate in {0.05, 0.1, 0.5, 1.0}. To avoid over�tting, we allow each algorithm to train
up to 1,500 trees unless there is no improvement in NDCG@10 on the validation set during the last
100 iterations. For GBRT and λ-MART we obtained the best results in terms of NDCG@10 for both
datasets using trees with a maximum number of 50 leaves, and a learning rate equal to 0.05 (the
same settings were reported as optimal in [6]), while for Ωλ-MART we obtained the best results by
using trees with a maximum depth of 5 and a learning rate of 0, 1.

Di�erent settings for the greedy line search step were tested. The parameter σ entails a cost-
quality trade-o�: larger values provide higher quality at a larger cost. The parameter ω drives the
extension of the search process. Experimentally, we found a good trade-o� by using the following
settings: σ = 20,ω = 2,η = 0.95, independently of the base algorithms adopted in X-CLEaVER.

Finally, λ-MART resulted to outperform GBRT and Ωλ-MART in all the tests conducted. Therefore,
in the following we employ λ-MART as reference base algorithm for the evaluation of X-CLEaVER,
while we use GBRT and Ωλ-MART to provide experimental evidence of the generality of our
framework, i.e., the capability of X-CLEaVER to improve the performance of di�erent LtR ensemble-
based algorithms.

The tests were performed on a machine equipped with a dual CPU AMD Opteron 6276, a 16
cores NUMA processor clocked at 2.30GHz, with 16 MB of cache L3 and 32GB of DDR3 RAM. To
facilitate the reproducibility of the results, we release our implementation of X-CLEaVER as part of
the QuickRank C++ library for Learning to Rank [5]3.

4.1 E�ectiveness of pruning strategies
We �rst investigate the e�ectiveness of X-CLEaVER pruning strategies when applied to ranking
models of varying sizes previously trained with the reference λ-MART algorithm. This corresponds
to run a single iteration of our X-CLEaVER meta-algorithm. A similar analysis is reported in
[17]. However, the experiments discussed here are novel as two pruning strategies (Random and
3The source code of QuickRank is available at: http://quickrank.isti.cnr.it.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

http://quickrank.isti.cnr.it

0:12 C. Lucchese et al.

�ality-Loss) have been improved, while the QuickRank library was further optimized for both
e�ectiveness and e�ciency.

Tables 3, 4, and 5 report the values of NDCG@10 measured on the test sets for the original
λ-MART models and the ones obtained by applying a single iteration of X-CLEaVER. Speci�cally,
the three tables report the results obtained on both datasets starting from models consisting of
100, 500, and 1,000 trees, respectively. The cell reporting the NDCG@10 achieved by the reference
λ-MART model is highlighted in each table using a dark-gray background. In the same row of each
table we report the performance of the intermediate λ-MART models (trained by the same learning
process) having a number of trees ranging from 90% to 10% of the reference one.

We are interested here in comparing the performance of the reference λ-MART models with
those obtained with X-CLEaVER for di�erent pruning levels. In particular we want to assess if our
pruning and optimization strategies together are able to produce ranking models that are smaller
and at least as e�ective as the reference model. As an example, the λ-MART reference model of 100
trees reaches on MSLR-WEB30K-F1 a NDCG@10 of 0.4540. The intermediate λ-MART model with
50 trees scores only 0.4333. The X-CLEaVER model of 50 trees, obtained from the MSLR-WEB30K-F1

100-tree model using the �ality-Loss strategy, achieves instead a NDCG@10 of 0.4643. Note that
Last achieves better results than λ-MART thanks to the re-weighting procedure.

For each pruning strategy assessed in a di�erent row of the tables, light-gray cells highlight
where we achieved performances greater than or equals to those obtained using the reference
λ-MART model. The values in bold highlight instead the most aggressive pruning rate preserving
the ranking quality of the reference model. Moreover, values labeled with ∗ identify the performance
of the smallest models which proved to be statistically equivalent to the reference λ-MART model.
Randomization test with 10,000 permutations and p-value ≤ 0.05 is performed to assess if the
NDCG@10 di�erences between the reference and the pruned models are statistically signi�cant or
not [29].

The reported results con�rm the validity of the proposed strategies. Table 3, referred to ensembles
generated from a reference model of 100 trees, shows that X-CLEaVER is able to improve the
reference model by using any pruning strategies. For the least aggressive pruning rates, we can
observe also remarkable gains in terms of NDCG@10. On the MSLR-WEB30K-F1 dataset, Random
and �ality-Loss perform the best in granting equivalent ranking quality with very aggressive
pruning rate. In these cases X-CLEaVER is able to prune up to 80% of the original ensemble without
loosing quality. On the Istella-S dataset, Random, Skip, �ality-Loss, and Score Loss strategies
can prune up to 80% of the trees and obtain NDCG@10 �gures greater or equal to that of the
reference 100-tree model.

When the size of the reference λ-MART model is increased to 500 trees (Table 4), the best
performing pruning strategy results to be �ality-Loss. This strategy is able to prune up to 70%
of the trees and provide models with accuracy equivalent or higher than the reference ensemble.
The superiority of �ality-Loss in pruning the ensemble is even more evident when models of
1, 000 trees are considered (Table 5). Here, �ality-Loss is the only pruning strategy allowing to
improve the performance of the reference λ-MART ensemble with pruning rates of up to 60% on
MSLR-WEB30K-F1 and to 50% on Istella-S.

From the three tables we can observe that the number of light-gray cells decreases as the size of
the reference model increases. The possible explanation of this phenomenon is twofold. First, large
models are more e�ective than small ones and the space left for improvements is thus very little.
Second, our line search optimization process is not particularly e�ective on ensembles having a
large number of trees since it is more likely to converge to a local optimum. We lean towards this
second hypothesis that will be supported by some of the experiments discussed in the following.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees 0:13

Table 3. Values of NDCG@10 measured for λ-MART reference models of 100 trees and X-CLEaVER ones

obtained at various pruning levels with the di�erent pruning strategies. The
∗

symbol labels the most

aggressive pruning rate for each strategy resulting in a model statistically equivalent to the reference one.

MSLR-WEB30K-F1

Pruned Model Size
Strategy 100 90 80 70 60 50 40 30 20 10
λ-MART .4540 .4507 .4477 .4432 .4386 .4333 .4260 .4179 .4085 .3983

Last .4648 .4620 .4605 .4573
∗ .4516 .4482 .4407 .4300 .4107 .4003

Random - .4644 .4635 .4629 .4624 .4606 .4602 .4599 .4553
∗ .4455

Skip - .4645 .4646 .4630 .4632 .4611 .4597 .4596 .4523∗ .4465
Low-Weights - .4646 .4647 .4653 .4633 .4622 .4544

∗ .4411 .4188 .3888
�ality-Loss - .4646 .4651 .4648 .4644 .4643 .4641 .4630 .4580

∗ .4486
Score-Loss - .4645 .4630 .4627 .4616 .4609 .4586 .4554

∗ .4472 .4330

Istella-S

Pruned Model Size
Strategy 100 90 80 70 60 50 40 30 20 10
λ-MART .6988 .6946 .6897 .6835 .6766 .6671 .6571 .6441 .6266 .6137

Last .7121 .7094 .7052 .7001
∗ .6906 .6833 .6727 .6629 .6454 .6201

Random - .7131 .7129 .7118 .7086 .7122 .7089 .7053 .7015
∗ .6893

Skip - .7124 .7117 .7111 .7104 .7086 .7076 .7041 .7012
∗ .6906

Low-Weights - .7122 .7120 .7115 .7104 .7054
∗ .6919 .6674 .6404 .6204

�ality-Loss - .7128 .7127 .7126 .7127 .7130 .7132 .7116 .7098 .6979∗
Score-Loss - .7104 .7091 .7108 .7110 .7068 .7052 .6937 .7003

∗ .6852

Table 4. Values of NDCG@10 measured for λ-MART reference models of 500 trees and X-CLEaVER ones

obtained at various pruning levels with the di�erent pruning strategies. The
∗

symbol labels the most

aggressive pruning rate for each strategy resulting in a model statistically equivalent to the reference one.

MSLR-WEB30K-F1

Pruned Model Size
Strategy 500 450 400 250 300 250 200 150 100 50
λ-MART .4766 .4758 .4752 .4752 .4745 .4722 .4694 .4644 .4540 .4333

Last .4783 .4780 .4776 .4765 .4765∗ .4751 .4730 .4708 .4648 .4482
Random - .4772 .4760∗ .4744 .4748 .4743 .4741 .4698 .4679 .4615

Skip - .4773 .4759 .4769 .4758∗ .4746 .4741 .4724 .4698 .4622
Low-Weights - .4759 .4754∗ .4367 .4281 .4129 .4065 .3981 .3923 .3554
�ality-Loss - .4781 .4781 .4777 .4780 .4787 .4760 .4774

∗ .4740 .4686
Score-Loss - .4753 .4758 .4753 .4750 .4753∗ .4734 .4736 .4696 .4546

Istella-S

Pruned Model Size
Strategy 500 450 400 250 300 250 200 150 100 50
λ-MART .7433 .7419 .7397 .7379 .7343 .7302 .7239 .7146 .6988 .6671

Last .7473 .7460 .7454 .7439
∗ .7417 .7379 .7342 .7247 .7121 .6833

Random - .7469 .7468 .7459 .7459 .7450 .7420∗ .7374 .7348 .7249
Skip - .7463 .7473 .7459 .7452 .7448 .7430∗ .7396 .7367 .7255

Low-Weights - .7470 .7438
∗ .7390 .7147 .7022 .5963 .5789 .5551 .4969

�ality-Loss - .7475 .7470 .7464 .7457 .7449 .7447 .7433
∗ .7390 .7309

Score-Loss - .7461 .7458 .7455 .7435 .7423∗ .7376 .7320 .7248 .6999

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:14 C. Lucchese et al.

Table 5. Values of NDCG@10 measured for λ-MART reference models of 1000 trees and X-CLEaVER ones

obtained at various pruning levels with the di�erent pruning strategies. The
∗

symbol labels the most

aggressive pruning rate for each strategy resulting in a model statistically equivalent to the reference one.

MSLR-WEB30K-F1

Pruned Model Size
Strategy 1000 900 800 700 600 500 400 300 200 100
λ-MART .4789 .4785 .4784 .4779 .4774 .4766 .4752 .4745 .4694 .4540

Last .4789 .4785 .4776 .4790 .4789 .4783∗ .4776 .4765 .4730 .4648
Random - .4788 .4764 .4783∗ .4754 .4768 .4720 .4721 .4670 .4580

Skip - .4784 .4778 .4782∗ .4771 .4771 .4754 .4734 .4700 .4620
Low-Weights - .4788 .4780 .4788 .4788 .4783∗ .4738 .4605 .4337 .4304
�ality-Loss - .4793 .4797 .4798 .4797 .4795 .4804 .4783∗ .4758 .4722

Score-Loss - .4768 .4761 .4751 .4709 .4760 .4765 .4753 .4732 .4688

Istella-S

Pruned Model Size
Strategy 1000 900 800 700 600 500 400 300 200 100
λ-MART .7495 .7491 .7478 .7467 .7451 .7433 .7397 .7343 .7239 .6988

Last .7509 .7510 .7499 .7498 .7485∗ .7473 .7454 .7417 .7342 .7121
Random - .7505 .7502 .7506 .7490∗ .7464 .7446 .7430 .7387 .7297

Skip - .7506 .7495 .7500 .7485 .7493∗ .7459 .7422 .7384 .7259
Low-Weights - .7489∗ .7359 .6507 .6362 .6222 .5995 .5831 .5452 .5031
�ality-Loss - .7514 .7509 .7514 .7519 .7507 .7488∗ .7462 .7431 .7371

Score-Loss - .7509 .7493 .7498 .7486∗ .7479 .7460 .7453 .7365 .7196

We conclude that �ality-Loss is the best performing pruning strategy among the proposed
ones, as it provides the smallest models in all experiments conducted. Indeed, it is the only strategy
that exploits the ranking metric being optimized. The overall bene�t of our proposal is remarkable
since on both the datasets X-CLEaVER can exploit �ality-Loss to remove from 50% to 90% of the
trees in the reference ensemble without hindering ranking quality.

4.2 �alitative analysis of pruning strategies
We analyze here the behavior of the pruning strategies embedded in X-CLEaVER by evaluating
the distribution of the trees removed from the ensemble. The analysis is conducted by applying a
pruning rate p = 50% to a λ-MART model with 1, 000 trees trained on the Istella-S dataset.

The histograms reported in Figure 2 show the percentage of pruned trees across buckets of 100
consecutive trees of the input ensemble. As an example, the Last strategy (Fig. 2 upper-center)
straightforwardly remove all the trees in the last �ve buckets, for a total of 500 trees out of 1, 000.
Not surprisingly, the Skip strategy performs a uniform pruning as it removes equidistant trees from
the input forest, and Random behaves similarly, despite in this case the pruning is not perfectly
uniform due to the smart selection of the best performing pruned ensemble subset.

Interestingly, the Low-Weights strategy removes most of the trees from the �rst buckets of the
ensemble. A possible explanation is that initial trees are the most redundant, while the last ones try
to �ne-tune document scores. The Score-Loss strategy, which considers the relative contribution
of each tree to document score, behaves symmetrically to Low-Weights and tends to prune trees
from the last buckets of the ensemble. Boosting learning algorithms in fact assigns larger scores
to the leaves of the initial trees which accounts for the largest part of the �nal score, and smaller
scores to the last trees which are responsible for �ne-tuning.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees 0:15

0 200 400 600 800 1000
0

20

40

60

80

100

T
re

e
s

p
e
r

b
u
ck

e
t

RANDOM

0 200 400 600 800 1000
0

20

40

60

80

100
LAST

0 200 400 600 800 1000
0

20

40

60

80

100
SKIP

Uniform pruning

Pruned Trees

0 200 400 600 800 1000

Ensemble

0

20

40

60

80

100

T
re

e
s

p
e
r

b
u
ck

e
t

LOW WEIGHTS

0 200 400 600 800 1000

Ensemble

0

20

40

60

80

100
QUALITY LOSS

0 200 400 600 800 1000

Ensemble

0

20

40

60

80

100
SCORE LOSS

Distribution of Trees pruned by each pruning strategy

Fig. 2. Distributions of removed trees for each pruning strategy (with p = 50%) applied to a λ-MART model

with 1,000 trees trained on Istella-S. Values are averaged over buckets of 100 consecutive trees.

�ality-Loss, the best performing strategy, shows a smoother pruning behavior. Pruned trees
are distributed almost uniformly, except for those in the range 100 to 500 where the pruning is
more aggressive. This suggests that evaluating the contribution of each tree to the given metric
function (as opposed to the �nal document score) leads to a more balanced pruning, which in turn
results in a more accurate model.

Finally, we analyze how tree weights are modi�ed by our ReWeight phase aimed at optimizing
the NDCG score. To this end we measure the variations to per-bucket average weights after the
�ality-Loss pruning strategy halved the size of a λ-MART model of 1,000 trees trained on Istella-S.
Figure 3 shows the results of this analysis where the dashed horizontal line represents the uniform
weights of the reference model, rescaled to the unit. Interestingly, the average weights in the �rst
two buckets result to be lower than in the original model, while the weights in the last buckets
are boosted. Moreover, the weights increase monotonically, suggesting that the last trees of the
ensemble are very important, and that the original learning algorithm tends to underestimate their
importance. The analysis reveals that, while the pruning step removes redundancy, the line search
algorithm �ne-tunes the weights by giving more importance to the last part of the forest.

4.3 X-CLEaVER analysis
In this section we discuss the experiments aimed at assessing if X-CLEaVER can train smaller and
more accurate models than the reference LtR algorithm. We use as a reference the models trained
with λ-MART by using the best training parameters discussed before (50 leaves and a learning
rate equal to 0.05). The resulting ensembles have 1,199 and 1,497 trees for MSLR-WEB30K-F1 and
Istella-S, respectively. Given the previous experimental results and to make the discussion clearer,
we limit the analysis to the best performing pruning strategy, i.e., �ality-Loss.

As shown in Table 6, the reference λ-MART models achieve 0.4791 and 0.7530 in terms of
NDCG@10 on MSLR-WEB30K-F1 and Istella-S, respectively. To provide a consistent baseline for
each pruned X-CLEaVER model, we also report NDCG@10 values of the incremental λ-MART
models generated every 100 iterations. As in the previous table, light-gray cells highlight perfor-
mance greater or equals than the ones of the reference λ-MART model, while bold results evidence
the best performing model for each ensemble size. Finally, values labeled with symbol ∗ identify
the performance of the smallest models which proved to be statistically equivalent to the reference
one.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:16 C. Lucchese et al.

0 200 400 600 800 1000

Ensemble

0.0

0.5

1.0

1.5

2.0

W
e
ig

h
ts

48% 54% 57% 59% 56% 47% 43% 45% 45% 46%

Weights optimization

Original Weights

Optimized Weights

Fig. 3. Average per-bucket weights of the optimized model. The dashed line corresponds to the uniform

weight used in the reference model. The value reported inside each bar measures the percentage of pruned

trees in the bucket.

To �rst investigate the contribution of line search, we apply the re-weighting strategy to the
incremental λ-MART models produced during the learning of the reference model (see line λ-MART
+ LS). On both datasets, the larger bene�t is achieved on small models. On the MSLR-WEB30K-

F1 dataset line search boosts the 600-trees model to the same performance of the 1,000-trees
λ-MART. Similarly, on Istella-S, the 700-trees models after line search provides a better NDCG
than the original 1,000-trees λ-MART. With larger models, line search results to be less bene�cial.
For example on the tests conducted with the MSLR-WEB30K-F1 dataset it does not provide any
improvement from models with 800 and more trees.

To show that, even when applied only once, our optimization strategies still works well, we run
a single iteration of the X-CLEaVER algorithm and report the results of the tests conducted in the
row labeled X-CLEaVERi=1. In this case we set X-CLEaVER to apply a p = 50% pruning rate to a
λ-MART model being double in size than the �nal one. We �rst observe that X-CLEaVERi=1 always
achieves better results than line search only, for every model size tested. Second, we highlight that
X-CLEaVERi=1 is able to generate models statistically equivalent to the reference λ-MART one,
having a much smaller number of trees: 300 trees (-75%) for MSLR-WEB30K-F1 and 800 trees (-47%)
for Istella-S. This means that learning a larger number of trees and then pruning them with our
�ality-Loss strategy provide the subsequent line search procedure with a set of e�ective trees to
be optimized. Pruning and re-weighting are thus able to boost each other in building compact and
e�ective ranking models.

Finally, we address the main research question of this work, i.e., whether it is e�ective to
embed pruning and re-weighting strategies within an ensemble learning algorithm. To answer this
question we measure the performance of di�erent X-CLEaVER models obtained by varying its
hyper-parameters, i.e., the step size n, ranging in {100, 200, 400}, and the pruning rate, ranging in
{50%, 75%}. To provide some additional insights, we also evaluate X-CLEaVER with n = 100 and
no pruning.

When no pruning is performed and line search applied after the generation of every bunch of
100 trees, no signi�cant improvement is observed. In particular, for larger models, it is better to
learn a λ-MART model and eventually apply line search just once. This again con�rms the bene�t
of blending pruning and re-weighting altogether. When pruning is applied with a larger step size,

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees 0:17

Table 6. Comparison in terms of NDCG@10 among λ-MART and the di�erent X-CLEaVER models, by varying

p, n and N . Values in bold highlight the best performing model for each ensemble size, while light-gray cells

highlight models performing equivalently or be�er than the reference λ-MART model. The
∗

symbol labels

the smallest model for each X-CLEaVER se�ing resulting to be statistically equivalent to the reference one.

MSLR-WEB30K-F1

Model Size (N)Strategy n p 100 200 300 400 500 600 700 800 900 1000 1199 Time

λ-MART - - .4540 .4694 .4745 .4752 .4766 .4774 .4779 .4784 .4785 .4789 .4791 18h 12m
λ-MART + LS - - .4648 .4730 .4765 .4776 .4783∗ .4789 .4790 .4776 .4785 .4789 -

X-CLEaVERi=1 2N 50% .4733 .4767 .4792∗ .4786 .4795 .4798 - - - - -

X-CLEaVER

100 0% .4643 .4734 .4750 .4770 .4775 .4777∗ .4782 .4784 .4785 .4785 - 17h 42m
200 50% .4741 .4783∗ .4797 .4801 .4807 .4803 .4807 .4810 .4809 .4810 - 34h 45m
200 75% .4762 .4781∗ .4799 .4808 .4815 .4825 .4829 .4828 .4830 .4830 - 66h 57m
400 50% - .4770 - .4809 - .4818 - .4822 - .4828 - 31h 01m
400 75% .4745 .4790

∗
.4809 .4810 .4822 .4823 .4828 .4831 .4834 .4841 - 62h 23m

X-CLEaVERG 400 75% .4745 .4773 .4798∗ .4799 .4804 .4801 .4811 .4818 .4829 .4816 - 69h 55m

Istella-S

Model Size (N)Strategy n p 100 200 300 400 500 600 700 800 900 1000 1497 Time

λ-MART - - .6988 .7239 .7343 .7397 .7433 .7451 .7467 .7478 .7491 .7495 .7530 8h 21m
λ-MART + LS - - .7121 .7342 .7417 .7454 .7473 .7485 .7498 .7499 .7510 .7509 -

X-CLEaVERi=1 2N 50% .7332 .7439 .7469 .7480 .7507 .7514 .7515 .7533∗ - - -

X-CLEaVER

100 0% .7123 .7371 .7403 .7464 .7463 .7474 .7479 .7491 .7491 .7493 - 8h 47m
200 50% .7340 .7418 .7493 .7512 .7523∗ .7545 .7545 .7551 .7550 .7551 - 16h 06m
200 75% .7375 .7464 .7513 .7542

∗
.7553 .7549 .7544 .7550 .7552 .7551 - 37h 10m

400 50% - .7438 - .7504 - .7545 - .7556 - .7575 - 13h 20m
400 75% .7399 .7469 .7497 .7514 .7530∗ .7541 .7546 .7557 .7566 .7577 - 26h 11m

X-CLEaVERG 400 75% .7399 .7455 .7480 .7504 .7527∗ .7545 .7548 .7563 - - - 31h 26m

results improve dramatically. X-CLEaVER always outperforms λ-MART models of the same size,
even after line search, and it is able to provide better models than the reference λ-MART model
for several pruning rates highlighted in the table by light-gray cells. In particular, X-CLEaVER
achieves a NDCG@10 of 0.4790 on MSLR-WEB30K-F1 with only 200 trees, 83% less than the full
reference model, and of 0.7542 on Istella-S with 400 trees, 73% less then the reference model. The
best performing models are usually obtained with a pruning rate p = 75%. This is in accordance
with the experiments shown in Section 4.1, where �ality-Loss is able to prune up to 70% of the
original ensemble made up of 500 trees without loosing e�ectiveness. Using this pruning rate, the
X-CLEaVER best models outperform the λ-MART ones with a NDCG@10 of 0.4841 (compared to
0.4791) on MSLR-WEB30K-F1 and 0.07577 (compared to 0.7530) on Istella-S.

Finally, we also test a variant of X-CLEaVER, employing the weight optimization step in a
global fashion. We call it X-CLEaVERG . Unlike the original X-CLEaVER, which applies line search
and pruning only to the new trees trained at each iteration, X-CLEaVERG works by pruning and
re-weighting the entire model at each iteration. Results show that this strategy achieve worse
results than X-CLEaVER on both MSLR-WEB30K-F1 and Istella-S, proving the bene�ts of the local
optimization strategy over a global one.

In summary, Figure 4 reports the NDCG@10 performance of the best performing X-CLEaVER
model on the Istella-S dataset (i.e., N = 1000, p = 75% and n = 400), compared to that of the

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:18 C. Lucchese et al.

0 200 400 600 800 1000 1200 1400
Ensemble

0.720

0.725

0.730

0.735

0.740

0.745

0.750

0.755

0.760

N
D

C
G

@
1

0

X-CLEaVER Testing Performance

X-CLEaVER
λ-MART

Fig. 4. Comparison of X-CLEaVER and λ-MART e�ectiveness in terms of NDCG@10 on the Istella-S dataset.

The hyper-parameters adopted are p = 75% and n = 400 .

Table 7. Per document scoring time of λ-MART and X-CLEaVER (n = 400,p = 75%) models. The
∗

symbol

labels model resulting to be statistically be�er to the λ-MART one.

MSLR-WEB30K-F1

Algorithm # Trees NDCG@10 Time (µs.) Speed-up
λ-MART 1,199 0.4791 22.33 –

X-CLEaVER 1,000 0.4841∗ 20.35 1.1x
200 0.4790 4.92 4.1x

Asady and Lin 1,172 0.4737 26.86 –

Istella-S

Algorithm # Trees NDCG@10 Time (µs.) Speed-up
λ-MART 1,497 0.7530 48.33 –

X-CLEaVER 1,000 0.7577∗ 31.87 1.5x
500 0.7530 15.64 3.1x

Asady and Lin 1,956 0.7430 11.14 –

reference λ-MART model. The NDCG@10 values achieved by the two models is measured at every
100 trees. X-CLEaVER outperforms λ-MART for every ensemble size and the results indicate that
the gap between the two models is considerable. Despite providing an increased e�ectiveness with
respect to the reference model, the e�ciency is as well increased, since X-CLEaVER is able to
achieve the same performance of λ-MART with a reduced number of trees.

To conclude, Table 7 compares the actual per-document scoring time of di�erent X-CLEaVER
and λ-MART models. The scoring time is measured by exploiting �ickScorer which is the
state-of-the-art algorithm for the evaluation of regression tree forests [9, 19]. As expected, the
speed-up provided by X-CLEaVER compact models is proportional to the reduction in their size.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees 0:19

On the MSLR-WEB30K-F1 dataset, the reference λ-MART models has 1,199 trees and requires
about 22.33 µs to score a document, while X-CLEaVER can produce a model of only 200 trees with
the same e�ectiveness but being four times faster at scoring time. Similar results are achieved on
the Istella-S dataset with a 3.1 speed-up. When considering the X-CLEaVER model of 1, 000 trees,
despite showing a higher e�ectiveness in terms of NDCG with respect to the reference model,
it proves to be also more e�cient by a speed-up factor of 1.1 and 1.5 on MSLR-WEB30K-F1 and
Istella-S, respectively.

We also compare X-CLEaVER with another solution described in literature, aiming at �nding an
e�ciency/e�ectiveness trade-o�. In particular, we consider the stage-wise tree pruning technique,
proposed by Asady and Lin [1], which was proved to perform best in their experiments. As discussed
in the related work section, this approach prunes the leaves of each tree immediately after it is built
and independently of the others, with the goal of learning more compact, shallow, and balanced
trees, thus yielding faster predictions. We train an λ-MART model adopting this pruning strategy,
by learning up to 2,000 trees per dataset. To avoid over�tting, however, the algorithm stops adding
additional trees when there is no improvement in NDCG@10 on the validation set during the last
100 iterations. The algorithm has also a hyper-parameter α that de�nes a maximum unbalance
tolerance threshold, and it thus drives the amount of pruning applied. We set this value to 0.2,
according to the experimental results observed by the authors in their paper. By using these settings,
the resulting forests are composed of 1,172 trees on MSLR-WEB30K-F1 and 1,956 trees on Istella-S.
Results on MSLR-WEB30K-F1 show that the Asady and Lin algorithm is not able to provide any
improvement, neither in terms of e�ectiveness nor in terms of e�ciency. The behavior is di�erent
on the Istella-S dataset, where it obtains a signi�cant speed-up with respect to λ-MART, at the cost
of a signi�cantly reduced accuracy. However, X-CLEaVER has a lightly slower scoring time (≈ 15
vs ≈ 11 µs), without any loss in terms of NDCG@10.

4.4 Training behavior
We further analyze the training behavior of X-CLEaVER across multiple iterations thus investigating
the impact of the pruning and re-weighting strategies. In Figure 5 we report the NDCG@10 achieved
by X-CLEaVER on the training set as a function of the number of trees generated. In detail, the
solid lines show the performance of λ-MART in performing the GrowModel phase devoted at
learning a delta model Ê, composed of n weak rankers. This phase ends at the blue circles, when the
learning of a given delta model Ê ends, annotated by blue numbers that identify the X-CLEaVER
iteration number. Then, X-CLEaVER executes the Prune and ReWeight phases, which lead to
a model ÊW , corresponding to square red squares labeled with the same iteration number. For
instance, during the �rst iteration, X-CLEaVER uses λ-MART to train 400 trees from scratch, and
achieves a NDCG@10 of 0.7724. This point is identi�ed by the blue number 1. Then, the pruning
strategy discards 300 out of the 400 trees, and line search re-weights the remaining ones, leading to
a NDCG@10 of 0.7821 identi�ed by the red number 1. The gaps between the corresponding blue
and red numbers (0.01 in this example) highlights the ability of X-CLEaVER to remove the less
relevant trees and optimize the metric measure NDCG@10. Red numbers identify the performance
of the X-CLEaVER model at the end of every iteration, thus describing the performance of the
intermediate models. Each subsequent iteration starts from the pruned and re-weighted model
obtained at the end of the previous iteration, i.e., E = E ∪ ÊW , shown as a new solid line of a
di�erent color. Lastly, the dashed black line identi�es the performance achieved by the reference
λ-MART algorithm. Since both X-CLEaVER and λ-MART start from scratch at the beginning,
they initially train the same 400 trees. The horizontal dashed black line, instead, represents the
performance of the reference λ-MART model on the training set.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:20 C. Lucchese et al.

0 200 400 600 800 1000 1200 1400
Ensemble

0.74

0.76

0.78

0.80

0.82
N

D
C

G
@

1
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8
9

9
10

10

X-CLEaVER Training Behavior

λ-MART

1st Iter

2nd Iter

3rd Iter

4th Iter

5th Iter

6th Iter

7th Iter

8th Iter

9th Iter

10th Iter

Fig. 5. Values of NDCG@10 measured on the training dataset (Istella-S) across multiple iterations of X-
CLEaVER. The hyper-parameters adopted are p = 75% and n = 400.

An interesting e�ect deserving attention is the performance of the λ-MART algorithm when it
restarts the training of a previously optimized model to produce a new delta model Ê. Indeed, the
�rst trees of the delta model, added to the optimized model E learnt so far, cause a signi�cant drop
of the performance on the training set. This is re�ected by the descending direction of the training
curve, at the beginning of each iteration (except the �rst one). The reason of this unexpected
behavior can be explained by one of the motivation behind this work, i.e., λ-MART does not directly
optimize the given ranking measure, e.g., NDCG, but can only indirectly optimize it by using the
proxy λ-ranks. Apparently, the models produced at the end of each X-CLEaVER iteration contrast
with the learning direction of λ-MART.

However, the performance drop never falls under the training performance of the previous X-
CLEaVER iteration when considering same-sized models. In fact, each X-CLEaVER iteration brings
signi�cant improvements both before and after the local optimizations. This behavior deserves
future investigations as it may shed light on novel optimization strategies for rank-based loss
functions. As preliminary conclusion, we believe that the X-CLEaVER local optimizations have
the e�ect of “teleporting” λ-MART on a di�erent region of the gradient boosting search space that
would not be explored otherwise. This allows to generate novel trees, some of them apparently
introducing a performance drop and some of them providing a signi�cant improvement with
respect to the reference λ-MART. Eventually, the local optimizations of X-CLEaVER select the
most relevant trees and re-weight them properly. We thus believe that X-CLEaVER bene�ts from a
wider exploration of the search space.

4.5 Training cost analysis
The last column of Table 6 reports the training times of the various strategies, referred to the largest
model trained. We recall that the training time is an o�-line cost: it is worthwhile to pay an extra
cost at training time if better or more e�cient models can be exploited at prediction time. Overall,
the best performing model of X-CLEaVER shows a training time up to 3.5 times slower than the

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees 0:21

λ - M A R T

64%

Re-Weighting

8%

Pruning

13%

Scoring

15%

X-CLEaVER Training Time Breakdown

λ-MART

Re-Weighting

Pruning

Scoring

Fig. 6. X-CLEaVER computational cost breakdown. The hyper-parameters adopted are p = 75% and n = 400
on the Istella-S dataset.

reference λ-MART model, i.e., 62 hours against 18 for MSLR-WEB30K-F1, and 26 hours against 8
for Istella-S. The X-CLEaVER cost is mainly due to the larger number of trees trained: in order to
build a model of N = 1, 000 trees with a pruning rate of p = 75%, the number of trees that we have
to actually generate is 4,000. However, X-CLEaVER rewards this additional training cost with more
accurate ranking predictions and more faster models.

We further investigate the training time of X-CLEaVER by considering the four main phases of the
algorithm: i) training a new delta model Ê ofn weak rankers using the λ-MART model; ii) computing
score predictions si (q,d) for every document in the training dataset and for every weak ranker in
Ê, thus allowing a more e�cient implementation of the pruning and re-weighting processes; iii)
pruning a fraction p of weak rankers according to the �ality-Loss strategy; iv) re-weighting the
remaining trees via line search. We measure the fraction time spent by X-CLEaVER across those
phases in order to train the best performing model on the Istella-S dataset (i.e., N = 1, 000, p = 75%,
and n = 400).

As shown in Figure 6, the λ-MART training accounts for about 2/3 of the total time. Learning
the weak learners is the most demanding phase. Recall that in order to train 1,000 trees, a total of
4,000 trees are generated across the 10 iterations of the algorithm. The scoring phase has a non-
trivial cost of about 15%. This is due to the large number of documents and trees generated during
each iteration. Note that X-CLEaVER exploits λ-MART as a black box algorithm, and therefore
every generated tree is re-evaluated. Otherwise, the process could be optimized by storing the tree
predictions as they are learnt. Pruning has a similar cost of about 13%. Note that �ality-Loss is
the most expensive pruning strategy proposed. Nevertheless, the overall cost is relatively small and
well balances the higher quality provided in comparison to the other pruning strategies. Finally,
the cost of line search optimization is limited to about 8%. Such limited cost is achieved thanks to
several optimizations, including multi-threading exploitation.

The additional cost introduced by X-CLEaVER is not small. The local optimizations cover 1/3 of
the total cost, and a much larger number of trees is generated to build the �nal model.

However, if we focus on models with similar ranking quality, we observe that the total training
time of X-CLEaVER is comparable to that of λ-MART. When considering the X-CLEaVER algorithm

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:22 C. Lucchese et al.

with parameters p = 75% and n = 400, it is su�cient to train 200 trees on MSLR-WEB30K-F1 to
achieve similar performance to the reference λ-MART model with 1,199 trees, and 500 trees are
su�cient on Istella-S to equal the reference λ-MART model with 1,497 trees. In these cases, the
training times of X-CLEaVER are of about 11 hours on both datasets, while λ-MART requires 18
hours on MSLR-WEB30K-F1 and 8 on Istella-S.

We thus conclude that X-CLEaVER has a training cost comparable with the state-of-the-art
λ-MART algorithm. In addition, it is able to i) create much more compact models providing the
same ranking quality, and ii) learn models with better ranking quality at the cost of some additional
computation at training time.

4.6 Generalization to di�erent LtR algorithms
We �nally explore the use of X-CLEaVER with two additional LtR algorithms, GBRT and Ωλ-MART,
with the goal of understanding whether X-CLEaVER is able to improve e�ciency and e�ectiveness
of ranking ensembles independently of the base algorithm adopted. Recall that GBRT exploits MSE
as a loss function, while Ωλ-MART is a variant of λ-MART, but it generates balanced oblivious
trees to reduce over-specialization and improve scoring e�ciency.

Table 8 reports the values of NDCG@10 on the test sets of MSLR-WEB30K-F1 and Istella-S

datasets for each of these LtR base algorithms, namely the algorithm A used by the GrowModel
phase of X-CLEaVER. To give insights on the performance of the models with a growing number
of trees, we also report NDCG@10 values every 100 learnt trees. As in the previous table, light-gray
cells highlight models performing equivalently or better than the full base model (regarding the
base algorithm adopted), while bold results evidence the best performing model for each ensemble
size. Finally, values labeled with symbol ∗ identify the performance of the smallest models which
proved to be statistically equivalent to the full base one. The X-CLEaVER hyper-parameters adopted
are those that lead λ-MART to the best performing model in previous analysis (i.e., N = 1,000,
p = 75% and n = 400).

We �rst highlight that λ-MART is the best performing among the three LtR base algorithms on
both the datasets, with a higher margin on Istella-S than on MSLR-WEB30K-F1 dataset. Indeed, on
the Istella-S dataset λ-MART obtains the same e�ectiveness as a GBRT model made of 1,499 trees
by using less than 300 trees, and less than 500 trees when compared to the full Ωλ-MART model
composed of 1,500 trees.

Regarding the adaptability of X-CLEaVER to di�erent base learning algorithm A, the �gures
reported in Table 8 show that X-CLEaVER boosts e�ectiveness independently of the base algorithm
used, showing equivalently or better performance by using much less trees (highlighted in light-
gray). In particular, X-CLEaVERA=GBRT trains a model that is statistically equivalent to GBRT
in terms of NDCG@10 by using only 200 trees on both the datasets, compared to the 1,041 and
1,499 trees of the full base model. Therefore, this saves up to 87% in the number of the trees
composing the forests. X-CLEaVERA=Ωλ -MART, on the other hand, obtains the same e�ectiveness
with only 300 trees on both the datasets, out of the 1,500 trees of the full base model, by thus
saving 80% of the number of trees. Overall, given the speci�c di�erences among the base algorithms
tested, X-CLEaVER achieves a signi�cant boost independently o f the learning strategy and the
shape of the trees learnt by the LtR algorithm. We conclude this analysis by highlighting that,
among the base algorithms tested, λ-MART is the one allowing X-CLEaVER to achieve the best
performance, thus con�rming the advantage in using a stronger LtR method as the base algorithm
of our meta-algorithm.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees 0:23

Table 8. NDCG@10 obtained with GBRT, λ-MART and Ωλ -MART state-of-the-art LtR algorithms and the X-
CLEaVER models trained using these base algorithms for the GrowModel phase. Values in bold highlight the

best performing model for each ensemble size, while light-gray cells highlight models performing equivalently

or be�er than the full base model. The
∗

symbol labels the smallest model for each X-CLEaVER se�ing

resulting to be statistically equivalent to the full base one.

MSLR-WEB30K-F1

Model Size (N)Strategy
100 200 300 400 500 600 700 800 900 1000 Full

λ-MART .4540 .4694 .4745 .4752 .4766 .4774 .4779 .4784 .4785 .4789 .4791
GBRT .4591 .4673 .4711 .4730 .4749 .4758 .4764 .4768 .4772 .4777 .4777

Ωλ -MART .4436 .4573 .4631 .4667 .4693 .4713 .4724 .4739 .4748 .4754 .4778
X-CLEaVERA=λ-MART .4745 .4790

∗
.4809 .4810 .4822 .4823 .4828 .4831 .4834 .4841 -

X-CLEaVERA=GBRT .4743 .4786∗ .4809 .4817 .4821 .4829 .4838 .4836 .4835 - -
X-CLEaVERA=Ωλ -MART .4722 .4757 .4790∗ .4792 .4805 .4804 .4810 .4809 .4813 .4815 -

Istella-S

Model Size (N)Strategy
100 200 300 400 500 600 700 800 900 1000 Full

λ-MART .6988 .7239 .7343 .7397 .7433 .7451 .7467 .7478 .7491 .7495 .7530
GBRT .7037 .7151 .7199 .7227 .7242 .7249 .7254 .7261 .7266 .7273 .7297

Ωλ -MART .6735 .7008 .7147 .7214 .7255 .7283 .7315 .7333 .7357 .7370 .7417
X-CLEaVERA=λ-MART .7399 .7469 .7497 .7514 .7530

∗
.7541 .7546 .7557 .7566 .7577 -

X-CLEaVERA=GBRT .7262 .7316∗ .7353 .7374 .7382 .7393 .7404 .7400 .7402 .7403 -
X-CLEaVERA=Ωλ -MART .7335 .7388 .7405∗ .7442 .7446 .7464 .7472 .7488 .7493 .7516 -

4.7 Hyper-Parameters guidelines
We conclude the presentation of X-CLEaVER by detailing some “best practices” to achieve the best
performance by properly setting the additional hyper-parameters introduced by the meta-algorithm.
This discussion is based on the experience we made while performing the experiments presented
in this section.

First, we discuss the pruning rate p and the step size n, assuming that the pruning strategy
adopted is �ality-Loss given its superior performance over the other proposed strategies. To this
regard, we suggest to adopt a pruning rate p equals to 75%, because it leads to the best performance
disregarding the step size n. Indeed, pruning rates close to 75% allow X-CLEaVER to achieve the
best e�ectiveness on both its single-iteration (Tables 3, 4, and 5) and multiple-iterations (Table 6)
variants. On the other hand, we observed that the step size n does not in�uence too much the
e�ectiveness of the �nal models. For example, no signi�cant e�ectiveness were observed by setting
n = 200 or 400.

Finally, we highlight that p a�ects the training time of X-CLEaVER much more than n. First, a
strong pruning rate p in�uences the number of meta iterations needed to reach the desired ensemble
size, because less trees are kept in the additive model at the end of each meta iteration. Second,
a smaller step size n also results in an increased number of meta iterations, despite each of them
costs less in terms of training time, given the reduced number of trees to be learnt per step, and the
reduced number of weights to optimize.

To summarize, the two hyper-parameters impact both training time and e�ectiveness of the
learnt model. If the former aspect is more important than the latter, we suggest to decrease at �rst
the pruning rate, and then to increase the step size.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:24 C. Lucchese et al.

Similar considerations can be made for the hyper-parameters driving the greedy line search used
in the re-weighting phase. The parameters σ and ω control the granularity of the local search. The
extension ω of the local search is also reduced by a shrinking factor η at each iteration, to favor a
�ne-grained optimization when the algorithm approaches a local maximum. Larger values of σ
entail higher quality but at a larger cost. The parameter ω instead, together with η, mainly a�ects
the number of iterations needed until convergence. We experimentally found a good trade-o� by
using the following settings: σ = 20,ω = 2,η = 0.95. However, to reduce the time spent in the
re-weighting phase, σ can be lowered to half this value without hindering so much the e�ectiveness
of the �nal model, and η can be increased so as to reach convergence with less iterations.

Finally, since hyper-parameters are usually dataset-dependent, for their setting we suggest to
test their possible con�gurations in a single iteration of X-CLEaVER, thus reducing the tuning time.
This hint comes from the experimental concordance of the results observed in both single-iteration
and multiple-iterations variants of X-CLEaVER.

5 CONCLUSION
We focused on the problem of improving e�ciency and e�ectiveness of ranking models based on
additive ensembles of weighted regression trees.By analysing these models, we observed that the
trees in the ensemble have some degree of similarity and that the list-wise metrics used to measure
ranking quality, e.g., NDCG, di�er from the loss functions minimized during the learning process.
We thus proposed X-CLEaVER, a novel meta-learning algorithm that embeds local optimizations,
i.e., iterated pruning and tree re-weighting steps, within the base LtR algorithm used to grow the
tree forest. While pruning aims at reducing the redundancy present in the model, tree re-weighting
counterbalances the negative e�ects of pruning on the model quality, by actually optimizing a
rank-based quality measure like NDCG.

We analyzed several pruning strategies having the goal of identifying the redundant trees to be
removed from the portion of ensemble generated at each iteration of X-CLEaVER, and we formalized
a greedy optimization process to optimize the weights associated with the trees survived to the
pruning phase. The experiments conducted on two public LtR datasets showed that the pruning
and re-weighting phases successfully achieve their goals: pruning is able to remove up to 80% of the
given ensemble, and re-weighting provides a boosts in performance well beyond the e�ectiveness of
the base LtR algorithm. As a result, the models generated with X-CLEaVER remarkably outperforms
those generated with the reference LtR algorithm. For example we showed that the NDCG@10
achieved on MSLR-WEB30K-F1 by a X-CLEaVER model of 200 trees is statistically equivalent to
that measured with a λ-MART model of 1, 199 trees. Similar �gures were achieved on the Istella-S

dataset, where a X-CLEaVER model of 400 trees resulted to provide the same ranking quality of
a λ-MART model using 1, 497 trees. From an opposite perspective, when the number of trees to
include in the �nal model is �xed, the models trained with X-CLEaVER resulted to consistently
outperform those generated with λ-MART in terms of NDCG@10. Analogous improvements were
measured for X-CLEaVER models trained by using GBRT and Ωλ-MART as base LtR algorithms,
thus showing the generality of X-CLEaVER and its independence from the speci�c LtR solution
adopted. As future work it would be interesting to investigate the application of the proposed
methodology to ensembles of weighted regression trees trained to address other regression and
classi�cation problems.

REFERENCES
[1] Nima Asadi and Jimmy Lin. 2013. Training E�cient Tree-Based Models for Document Ranking. In Proc. ECIR 2013,

Moscow, Russia, March 24-27, 2013. Proceedings. 146–157.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees 0:25

[2] Nima Asadi, Jimmy Lin, and Arjen P. de Vries. 2014. Runtime Optimizations for Tree-Based Machine Learning Models.
IEEE Transactions on Knowledge and Data Engineering 26, 9 (2014), 2281–2292.

[3] Berkant Barla Cambazoglu and Ricardo A. Baeza-Yates. 2015. Scalability Challenges in Web Search Engines. Morgan &
Claypool Publishers.

[4] B Barla Cambazoglu, Hugo Zaragoza, Olivier Chapelle, Jiang Chen, Ciya Liao, Zhaohui Zheng, and Jon Degenhardt. 2010.
Early exit optimizations for additive machine learned ranking systems. In Proceedings of the third ACM international
conference on Web search and data mining. ACM, 411–420.

[5] Gabriele Capannini, Domenico Dato, Claudio Lucchese, Monica Mori, Franco Maria Nardini, Salvatore Or-
lando, Ra�aele Perego, and Nicola Tonellotto. 2015. QuickRank: a C++ Suite of Learning to Rank Algorithms
(http://quickrank.isti.cnr.it/). IIR ’15: 6th Italian Information Retrieval Workshop (2015).

[6] Gabriele Capannini, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Ra�aele Perego, and Nicola Tonel-
lotto. 2016. Quality versus e�ciency in document scoring with learning-to-rank models. Information Processing &
Management 52, 6 (2016).

[7] Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhiming Ma, and Hang Li. 2009. Ranking Measures and Loss Functions in Learning
to Rank. In Proceedings of the 22Nd International Conference on Neural Information Processing Systems (NIPS’09). 315–323.

[8] Van Dang, Michael Bendersky, and W Bruce Croft. 2013. Two-Stage learning to rank for information retrieval. In
Advances in Information Retrieval. Springer, 423–434.

[9] Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Ra�aele Perego, Nicola Tonellotto, and
Rossano Venturini. 2016. Fast Ranking with Additive Ensembles of Oblivious and Non-Oblivious Regression Trees.
ACM Transactions on Information Systems 35 (2016). To appear.

[10] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting machine. Annals of Statistics (2001),
1189–1232.

[11] Jerome H Friedman, Bogdan E Popescu, and others. 2003. Importance sampled learning ensembles. Journal of Machine
Learning Research 94305 (2003).

[12] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. 1999. Large margin rank boundaries for ordinal regression.
Advances in neural information processing systems (1999), 115–132.

[13] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-based Evaluation of IR Techniques. ACM Trans. Inf.
Syst. 20, 4 (2002), 422–446.

[14] Ron Kohavi. 1994. Bottom-up induction of oblivious read-once decision graphs. In European Conference on Machine
Learning. Springer, 154–169.

[15] Leijun Li, Qinghua Hu, Xiangqian Wu, and Daren Yu. 2014. Exploration of classi�cation con�dence in ensemble
learning. Pattern recognition 47, 9 (2014), 3120–3131.

[16] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval 3, 3
(2009), 225–331.

[17] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Ra�aele Perego, Fabrizio Silvestri, and Salvatore Trani.
Post-Learning Optimization of Tree Ensembles for E�cient Ranking. In Proc. SIGIR 2016. ACM, 949–952.

[18] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Ra�aele Perego, Nicola Tonellotto, and Rossano Venturini.
Exploiting CPU SIMD Extensions to Speed-up Document Scoring with Tree Ensembles. In In Proc. ACM SIGIR 2016.
ACM, New York, NY, USA.

[19] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Ra�aele Perego, Nicola Tonellotto, and Rossano Venturini.
2015. QuickScorer: A Fast Algorithm to Rank Documents with Additive Ensembles of Regression Trees. In Proc. SIGIR
2015. ACM, 73–82.

[20] Craig Macdonald, Rodrygo LT Santos, and Iadh Ounis. 2013. The whens and hows of learning to rank for web search.
Information Retrieval 16, 5 (2013), 584–628.

[21] Dragos D Margineantu and Thomas G Dietterich. 1997. Pruning adaptive boosting. In ICML, Vol. 97. 211–218.
[22] Manish Mehta, Jorma Rissanen, and Rakesh Agrawal. 1995. MDL-based Decision Tree Pruning. In Proceedings of the

First International Conference on Knowledge Discovery and Data Mining (KDD’95). AAAI Press, 216–221.
[23] Feng Nan, Joseph Wang, and Venkatesh Saligrama. 2016. Pruning Random Forests for Prediction on a Budget. Advances

in neural information processing systems (2016).
[24] Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, and Zhi-Hua Zhou. 2016. Parallel Pareto Optimization for Subset

Selection. In Proceedings of the Twenty-Fifth International Joint Conference on Arti�cial Intelligence, IJCAI 2016, New
York, USA. 1939–1945.

[25] Chao Qian, Yang Yu, and Zhi-Hua Zhou. 2015. Pareto Ensemble Pruning. In Proceedings of the Twenty-Ninth AAAI
Conference on Arti�cial Intelligence (AAAI’15). AAAI Press, 2935–2941.

[26] J. R. Quinlan. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (March 1986), 81–106.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

0:26 C. Lucchese et al.

[27] Shaoqing Ren, Xudong Cao, Yichen Wei, and Jian Sun. 2015. Global Re�nement of Random Forest. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[28] Ilya Segalovich. 2010. Machine learning in search quality at Yandex. Presentation at the industry track of the 33rd
Annual ACM SIGIR Conference. https://goo.gl/xUAq3r. (2010).

[29] Mark D. Smucker, James Allan, and Ben Carterette. 2007. A Comparison of Statistical Signi�cance Tests for Information
Retrieval Evaluation. In Proc. CIKM ’07. ACM.

[30] Ming Tan, Tian Xia, Lily Guo, and Shaojun Wang. 2013. Direct optimization of ranking measures for learning to rank
models. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 856–864.

[31] Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris Burges. 2006. Optimisation methods for
ranking functions with multiple parameters. In Proc. CIKM 2006. ACM, 585–593.

[32] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series
B (Methodological) (1996), 267–288.

[33] Lidan Wang, Jimmy Lin, and Donald Metzler. 2010. Learning to E�ciently Rank. In Proc. SIGIR 2010. ACM, 138–145.
[34] Q. Wu, C.J.C. Burges, K.M. Svore, and J. Gao. 2010. Adapting boosting for information retrieval measures. Information

Retrieval (2010).

Received October 2017; revised March 2018; accepted April 2018.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0. Publication date: 2018.

https://goo.gl/xUAq3r

	Abstract
	1 Introduction
	2 Related Work
	3 Growing and Pruning Tree Ensembles
	3.1 The X-CLEaVER Algorithm
	3.2 Pruning Phase
	3.3 Re-weighting phase

	4 Experimental Evaluation
	4.1 Effectiveness of pruning strategies
	4.2 Qualitative analysis of pruning strategies
	4.3 X-CLEaVER analysis
	4.4 Training behavior
	4.5 Training cost analysis
	4.6 Generalization to different LtR algorithms
	4.7 Hyper-Parameters guidelines

	5 Conclusion
	References

