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ABSTRACT
Learning an effective ranking function from a large number of
query-document examples is a challenging task. Indeed, training
sets where queries are associated with a few relevant documents
and a large number of irrelevant ones are required to model real
scenarios of Web search production systems, where a query can
possibly retrieve thousands of matching documents, but only a
few of them are actually relevant. In this paper, we propose Selec-
tive Gradient Boosting (SelGB), an algorithm addressing the
Learning-to-Rank task by focusing on those irrelevant documents
that are most likely to be mis-ranked, thus severely hindering the
quality of the learned model. SelGB exploits a novel technique min-
imizing the mis-ranking risk, i.e., the probability that two randomly
drawn instances are ranked incorrectly, within a gradient boosting
process that iteratively generates an additive ensemble of decision
trees. Specifically, at every iteration and on a per query basis, SelGB
selectively chooses among the training instances a small sample
of negative examples enhancing the discriminative power of the
learned model. Reproducible and comprehensive experiments con-
ducted on a publicly available dataset show that SelGB exploits the
diversity and variety of the negative examples selected to train tree
ensembles that outperform models generated by state-of-the-art
algorithms by achieving improvements of NDCG@10 up to 3.2%.

CCS CONCEPTS
• Information systems→ Learning to rank; Retrieval effective-
ness;

KEYWORDS
Learning to Rank, Multiple Additive Regression Trees, Boosting
ACM Reference Format:
Claudio Lucchese, Franco Maria Nardini, Raffaele Perego, Salvatore Or-
lando, and Salvatore Trani. 2018. Selective Gradient Boosting for Effec-
tive Learning to Rank. In SIGIR ’18: The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, July 8–
12, 2018, Ann Arbor, MI, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3209978.3210048

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5657-2/18/07. . . $15.00
https://doi.org/10.1145/3209978.3210048

1 INTRODUCTION
In the last ten years several effective machine learning solutions
explicitly tailored for ranking problems have been designed, giving
rise to a new research field called Learning-to-Rank (LtR). Web
search is one of the most important applications of these tech-
niques, as complex ranking models learned from huge gold stan-
dard datasets are necessarily adopted to effectively identify the
documents that are relevant for a given user query among the bil-
lions of documents indexed. Given a gold standard dataset where
each query-document example is modeled by hundreds of features
and a label assessing the relevance of the document for the query,
a LtR algorithm learns how to exploit the features to provide a
query-document scoring model that optimizes a metric of ranking
effectiveness, such as NDCG, MAP, ERR, etc. [19].

In a large-scale Web search system a user query can match thou-
sands or millions of documents, but only a few of them are actually
relevant for the user [23]. Therefore, learning effective ranking func-
tions in this scenario requires large gold standard datasets where
each training query is associated with a few relevant documents
(positive examples) and a large amount of irrelevant ones (nega-
tive examples). Indeed, several studies confirm that a number of
examples in the order of thousands per query is required [4, 5, 18].

Research in this field has focused on designing efficient [6] and
effective algorithms that improve the state of the art, or on engineer-
ing new classes of features allowing to better model the relevance of
a document to a query. Less effort has been spent in understanding
how to deal with the unbalanced classes of positive and negative
examples in the gold standard so as to maximize the effectiveness
and robustness of the learned ranking model. This aspect has not
been fully investigated mainly because publicly available datasets
contain a relatively low number of negative examples per query,
thus preventing in-depth studies on the impact of class imbalance
on LtR algorithms.

To investigate the issue of class imbalance in real-world LtR
datasets, in this paper we contribute and study a new dataset with
about 2.7K examples per query on average. We first investigate how
the volume of negative examples impacts on a state-of-the-art LtR
algorithm such as λ-Mart [21]. Experimental results confirm that
a large number of negative examples is required to train effective
models. We also show that λ-Mart reaches a plateau, where in-
creasing class imbalance neither harms or improves the accuracy
achieved. However we observe that not all the negative examples
are equally important for the training process, and that it is hard for
an algorithm do properly identify and exploit the most informative
negative instances. We thus present a novel LtR algorithm, named
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Selective Gradient Boosting (SelGB) focusing during learning
on the negative examples that are likely to be the most useful to
improve the model learned so far. To this purpose, we introduce a
novel negative selection phase within a gradient boosting learning
process. Specifically, SelGB is designed as a variant of the λ-Mart
algorithm that at each iteration limits the training set used to grow
the tree ensemble to all the positive examples and to a sample of
negative ones. The negative examples chosen at each step are the
most informative ones, those that are most useful to reduce the mis-
ranking risk, i.e., the probability that a method ranks two randomly
drawn instances incorrectly. Results of the exhaustive experimental
assessment conducted confirm that SelGB is able to train models
that significantly improve NDCG@10 over the ones generated by
the reference λ-Mart algorithm.

In summary, we improve the state of the art in the LtR field with
the following contributions:
• we propose SelGB, a new gradient boosting algorithm designed
as a variant of λ-Mart that iteratively selects the most “infor-
mative” negative examples from the golden standard dataset.
The proposed technique allows the SelGB algorithms to focus
during training on those negative examples that are likely to be
the most useful to reduce the ranking risk of the scoring model
learned so far and adjust the model correspondingly. We provide
a comprehensive experimental comparison showing that SelGB
outperforms the reference λ-Mart algorithm by up to +3.2% in
terms of NDCG@10.
• we release the SelGB source code and a new public LtR dataset to
foster the research in this field and to allow the reproducibility of
our results. The dataset is made up of 26,791,447 query-document
pairs, produced starting from 10,000 queries sampled from a
query log of a real-world search engine. On average, the dataset
contains 2,679 documents per query. To the best of our knowledge
this is the largest public LtR dataset ever released, in terms of
number of documents per query.
The rest of the paper is structured as follow: Section 2 discusses

the related work while Section 3 introduces the notation and the
preliminaries needed to present the Selective Gradient Boost-
ing algorithm in Section 4. We provide a comprehensive evaluation
of Selective Gradient Boosting against state-of-the-art competi-
tors in Section 5. Finally, Section 6 concludes the work and outlines
future work.

2 RELATEDWORK
Research in the LtR field in the last years mainly focused on de-
veloping effective LtR algorithms [3, 14–16] and on extracting and
engineering relevant features from query-document pairs. A rela-
tively lower attention was reserved to study how to choose queries
and documents to include in LtR gold standard datasets, or the
effect of these choices on the ability of LtR algorithms to learn ef-
fective and efficient scoring models. Yilmaz and Robertson observe
that the number of judgments in the training set directly affects the
quality of the learned system [22]. Given that collecting relevance
judgments from human assessors to build gold standard datasets is
expensive, the main problem is how to well distribute this judgment
effort. Authors thus investigate the trade-off between the number
of queries and the number of judgments per query when building

training sets. In particular, they show that training sets with more
queries but less judgments per query are more cost effective than
training sets with less queries but more judgments per query.

Aslam et al. investigate different document selection methodolo-
gies, i.e., depth-k pooling, sampling (infAP, statAP), active-learning
(MTC), and on-line heuristics (hedge) [1]. The proposed techniques
result in gold standard datasets characterized by different proper-
ties. They show that infAP, statAP and depth-k pooling are better
than hedge and the LETOR method (depth-k pooling using BM25)
for building efficient and effective LtR collections. The study con-
ducted deals with both i) the proportion of positive and negative
examples, and ii) the similarity between positive and negative ex-
amples in the datasets. Results confirm that both characteristics
highly affect the quality of the LtR collections, with the latter hav-
ing more impact. As a side result, the authors observe that some LtR
algorithms, RankNet and λ-Mart, are more robust to document
selection methodologies than other, i.e., Regression, RankBoost,
and Ranking SVM.

In this paper we focus on selecting dynamically, i.e., at training
time, samples of negative examples improving the accuracy of
the scoring model learned. Conversely, the work by Aslam et al.
investigate a priori document selection methodologies that do not
consider the document class. Moreover, Aslam et al. apply document
selection methodologies on depth-100 pools from TREC 6,7, and 8
adhoc tracks, i.e., a collection of 150 queries in total. In this paper,
we evaluate our proposal on a new dataset with 10, 000 queries
and about 27M examples specifically built for investigating this
problem.

In a later contribution, Kanoulas et al. propose a large-scale
study on the effect of label distribution in gold standard datasets
across the different grades of relevance [11]. The authors propose a
methodology to generate a large number of datasets with different
label distributions. The datasets are then used to fit different ranking
models learned by using three LtR algorithms. The study concludes
that the distribution in the training set of relevance grades is an
important factor for the effectiveness of LtR models. Qualitative
advises are provided regarding the construction of a gold standard:
distributions with a balance between the number of documents
in the extreme grades should be favored, as the middle relevance
grades play less important role than the extreme ones.

Ibrahim and Carman investigate the imbalanced nature of LtR
training sets. They observe that these datasets contain very few
positive examples as compared to the number of negative ones
[9]. The authors study how many negative examples are needed
in order to learn effective ranking functions. They exploits ran-
dom and deterministic under-sampling techniques to reduce the
number of negative documents. The reduction of the size of the
dataset decreases the training time, which is an important factor
in large scale search environments. The study shows that under-
sampling techniques can be successfully exploited for large-scale
LtR tasks to reduce training time with negligible effect on effec-
tiveness. Lucchese et al. also contribute in the same direction, by
investigating a new technique to sample documents so to improve
both efficiency and effectiveness of LtR models [17]. The improved
efficiency comes from a reduced size of the sampled dataset, as
the ranking algorithm is trained on a smaller number of query-
document pairs. Experiments on a real-world LtR dataset show that
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an effective sampling technique improves the effectiveness of the
resulting model by also filtering out noise and reducing redundancy
of training examples.

Our proposal is different from the work by Ibrahim and Carman
as we do not study sampling techniques aimed at reducing the
number of examples without hindering effectiveness. Conversely,
our SelGB algorithm focuses the learning process on the “most
informative” negative examples to maximize the effectiveness of
the learned model. Moreover, the selection of negative examples
is performed dynamically, i.e., during the iterative growing of the
scoringmodel and not a priori, (i.e., once, before the learning process
starts) as described in both the works.

Long et al. address the selection of the examples which minimize
the expected DCG loss over a training set in an Active Learning
framework [13]. Authors motivate the task with the need to reduce
the cost associated with manual labeling of documents. Some other
works, such as Yu [24] and Donmez et al. [7], also try to find the
examples which can improve ranking accuracy if added to the
training set. These papers aims at improving the quality of the
training set while keeping its size small and do not distinguish
between positive and negative examples. Differently, we explicitly
deal with dataset imbalance and we exploit the “most informative”
negative examples in a large-scale LtR scenario.

Another approach that is related to our proposal is the Gradient-
based One-Sided Sampling (GOSS) technique employed within
LightGBM [12]. At each iteration of the boosting process, GOSS
considers only a subset of the training examples: those with the
largest gradient and a random sample of the remaining instances,
representative of the whole dataset. This strategy is howewer final-
ized at reducing the computational cost of the training. Indeed, the
authors report that GOSS provides also a negligible improvement
of ≈ 0.003 in NDCG@10. Since GOSS does not provide any statisti-
cally significant improvement over the reference algorithm we do
not include it among the baselines in the experimental analysis of
this work.

Another important related contribution is Stochastic Gradient
Boosting by Friedman [8]. Friedman observes that a randomization
step within gradient boosting allows to increase robustness against
over-fitting and to reduce the variance of the model. In particular, at
each iteration [8] proposes to fit a weak learner on a random sample
of the training dataset. The solution proposed by Friedman is similar
to ours because the sampling is repeated at each iteration and is part
of a gradient boosting process, thus favouring the generalization
power of the model without compromising its effectiveness. The
main difference with our approach concerns the selection of the
sample dataset. SelGB selects the negative examples that are likely
to be mis-classified by the scoring model learned so far in order to
learn from them. Stochastic Gradient Boosting selects instead the
sample at random without exploiting any knowledge of the model
learned so far.

3 NOTATION AND PRELIMINARIES
Let D = {(x1,y1), . . . , (x |D | ,y |D |)} be a gold standard training
set, where xi ∈ R |F | is the real valued vector of features in F =
{ f1, f2, . . .}, and yi ∈ R the target label. Gradient boosting is a
greedy stage-wise technique that aims at learning a function F (x)

that minimizes the prediction loss L(yi , F (xi )) averaged over xi ∈
D.

For this work function F (x) is an additive ensemble of regression
trees (weak learners), denoted by E = {t1, . . . , t |E |}, where each
tree ti tries to approximate the negative gradient direction. After
m − 1 trees, the gradient дm of the current function Fm−1(x) is
defined at each data instance xi as:

дm (xi ) =
[
∂L(yi , F (xi ))
∂F (xi )

]
F (x)=Fm−1(x)

The negative gradient −дm is approximated by fitting a regres-
sion tree tm on the pairs {xi ,−дm (xi )}, and it is then used to update
Fm−1(x). Let hm (x) be the prediction given by tree tm on instance
x. Thus we have:

Fm (x) = Fm−1(x) + ν · hm (x)

where ν is the shrinkage factor (or learning rate) which acts as a
regularization factor by shrinking the size of the minimization step
along the steepest descent direction.

When the loss L is Mean Squared Error (MSE), i.e., L(yi , F (xi )) =
1
2 (yi − F (xi ))

2, the negative gradients can be easily computed as
−дm (xi ) = yi−Fm−1(xi ). This is usually denoted with ri and named
pseudo-response.

Without loss of generality, hereinafter we refer to a Web search
scenario where the goal is to learn a scoring function to rank Web
documents in response to a user query. In such LtR framework
gradient boosting algorithms are considered the state of the art
and the gold standard D is indeed made of many ranked lists. For
each assessed query q,D includes in fact multiple query-document
pairs representing both positive (relevant) and negative (not rel-
evant) examples. In turn, each query-document pair represented
by xi ∈ R |F | is labeled with a relevance judgment yi (usually a
positive integer in the range [0, 4] where 4 means highly relevant
and 0 not relevant). Such relevance labels induce a per-query partial
order corresponding to the ideal ranking we aim to learn from the
gold standard. We denote by D− the negative examples in D, and
by D+ the positive instances xi ∈ D such that yi > 0. It is worth
remarking that in the LtR scenario, the amount of negative exam-
ples is typically much larger than the number of positive ones, i.e.,
|D− | ≫ |D+ |. Hereinafter, we will call query list size the cardinal-
ity of the list of training examples referred to a query q, where the
list in D comprises both relevant and not relevant examples.

The Multiple Additive Regression Trees (MART) algorithm
is an implementation of the above framework: a forest of regression
trees is grown through gradient boosting by optimizing MSE. In the
LtR scenario, rank-based quality measures are used to evaluate the
quality of a ranked document list. Hereinafter, we use NDCG@k
as the reference quality measure to be maximized. Given a ranked
document list, NDCG@k is a normalized measure that only weights
the top-k ranked documents according to their relevance and dis-
counts their contribution according to their rank position.MART
can be used as a basic strategy for the LtR problem, but minimizing
MSE does not provide guarantees on NDCG optimization.

The state-of-the-art LtR algorithm is λ-Mart [2], a variant of
MART aimed at optimizing rank-based quality measures. Indeed,
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Algorithm 1 Selective Gradient Boosting.

1: function Selective Gradient Boosting(D,N ,n,p)
input:

2: D : training dataset
3: N : ensemble size
4: n : # of iterations between consecutive selective sampling steps
5: p : % of irrelevant samples kept in D at each sampling step

output:
6: E : trained ensemble
7:
8: E ← ∅ ▷ the current ensemble model
9: D∗ ← D

10: form = 1 to N do
11: if (m mod n) = 0 then ▷ Every n iterations
12: D∗ ← Sel_Sampl(D, E, p)
13: {λi } ← λ-gradients for each xi ∈ D∗

14: R∗ = {(xi , λi )}, for all xi occurring in D∗

15: tm ← fit a regression tree to R∗

16: E ← E ∪ tm
17: return E

a function such as NDCG@k is not differentiable, and thus it can-
not be used as the loss function of a gradient boosting framework.
λ-Mart thus introduces a smooth approximation of the gradient,
which is called λ-gradient. For each training instance xi , λ-Mart
estimates the benefit of increasing or decreasing the currently pre-
dicted score Fm (xi ), by computing the change of NDCG@k value
occurring when a variation of Fm (xi ) causes a change in the rank
position. This estimate, denoted by λi , is used in place of the gradi-
ent дm (xi ).

We remark that, at learning time,MART processes training ex-
amples independently of one another. In fact, for optimizing MSE
knowing whether two examples are referred to the same query or
not is totally irrelevant. The λ-Mart is instead a listwise algorithm,
which evaluates the whole ranked list of training examples referred
to a given query in order to estimate their gradients.

Finally, we note that gradient boosting algorithms require some
kind of regularization to avoid over-fitting. Besides the shrinkage
parameter (ν ) that reduces the variance of each tree added to the
ensemble, we can also control the complexity of each additive
tree tm by limiting, for example, the number of levels or leaves
of the trees. Another regularization technique, which is related
to the approach discussed in the next Section 4, consists in sub-
sampling of the training dataset. For example, at each iteration
of gradient boosting, Stochastic Gradient Boosting [8] fits a
tree on a random sample of the training dataset, thus introducing
randomization to increase robustness and avoid over-fitting. As
a side effect, this approach reduces the computational cost of the
fitting phase due to the decreased amount of training data used.

4 SELECTIVE GRADIENT BOOSTING
In this sectionwe introduce SelectiveGradient Boosting (SelGB).
The pseudo-code in Algorithm 1 shows that SelGB is a gradient
boosting algorithm similar to λ-Mart.

The core of the algorithm is the novel function Sel_Sampl(D, E, p)
(line 12), which selects a subset D∗ of the original dataset D to

be used during the fitting of the next regression tree. In particular,
SelGB maintains in D∗ all the relevant examples D+, whereas
keeps inD∗ only those irrelevant instancesD− that are scored the
highest by the model E learned so far. Specifically, for every query q
occurring inD, all the positive examples (xi ,yi ),yi > 0 are inserted
intoD∗, while the negative instances (xj ,yj ),yj = 0 are scored with
the current model E and sorted according to the estimated score
Fm (x j ). Only the fraction p% of the top-ranked negative instances
xj are then inserted into D∗. This data selection process leads to
a pruned training set D∗ of cardinality |D∗ | = |D+ | + p% · |D− |.
Note that the subset D∗ is used for the next n iterations, until a
new D∗ is selected on the basis of the updated model (line 11).

Unlike Stochastic Gradient Boosting, which randomly sam-
ples D to increase the robustness to over-fitting and to reduce
variance, our approach, which selectively chooses a small sample
of the irrelevant instances to be kept in the training set, aims to
minimize the mis-ranking risk. Due to the characteristics of the
NDCG metric, we need to be very accurate in discriminating the
few positive instances that must be pushed in the top positions of
the scored lists, from the plenty of negative instances present in D.
In the context of ranking, this means to discriminate between the
relevant documents and the highest scored irrelevant documents
for any query in the dataset. Indeed, the negative instances with
the highest scores are exactly those being more likely to be ranked
above relevant instances, thus severely hindering the ranking qual-
ity measured by NDCG. On the other hand, the low-scored negative
instances can hardly affect remarkably NDCG, and can be safely
discarded.

In the following, we discuss in more detail the pseudo-code of
SelGB (see Figure 1). SelGB builds iteratively E until a maximum
number of trees N , which is another hyper-parameter of our learn-
ing algorithm. At each iteration, first we compute the λ-gradients
(line 13) ofD∗. Note that at the first iteration the pseudo-responses
λi just correspond to the original yi labeling the instances xi in
D. These λ-gradients are then used to build the training set R∗
(line 14), on which we fit the next tree tm (line 14) used to grow the
tree ensemble E.

Finally, although not shown in the pseudo-code for sake of sim-
plicity, SelGB can early stop the growth of E, by using a validation
set. The stop occurs when the NDCG@k measured over the valida-
tion set does not improve for a fixed number of iterations. Moreover,
at the first iteration D is not yet pruned and D∗ is initialized with
a copy of D (line 9).

5 EXPERIMENTS
The experimental scenario we focus on is a two-stage query process-
ing architecture common in large-scale Web IR systems [4, 5, 23].
In this scenario a few relevant documents have to be selected from
a huge and noisy collection of Web documents. To this end, a first
query processing stage retrieves from the index a large number of
candidate documents matching the user query. These candidate
documents are then re-ordered by a subsequent, complex and accu-
rate ranking stage. We target in particular the process of learning
an effective ranking function for such a second stage. Experimental
results show that, by exploiting a large number of negative ex-
amples, SelGB is able to build ranking models that result to be
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Table 1: Datasets properties.

Properties Istella-X5k Istella-X2.5k Istella-X1k Istella-X500 Istella-X100

# queries 10,000
# features 220
# query-doc pairs 26,791,447 15,778,399 7,363,902 3,995,063 906,782
max # docs/query 5,000 2,500 1,000 500 100
avg. # docs/query 2,679 1,578 736 400 91
# pos. query-doc pairs 46,371 (0.17%) 46,371 (0.29%) 46,371 (0.63%) 46,371 (1.16%) 46,371 (5.11%)
# neg. query-doc pairs 26,745,076 (99.83%) 15,732,028 (99.71%) 7,317,531 (99.37%) 3,948,692 (98,84%) 860,411 (94,89%)

more accurate than those learned with state-of-the-art ranking
algorithms.

This section is organized as follow. First we introduce themethod-
ology used for the experimental evaluation, and the challenging
LtR dataset used for the experiments. We then analyze the per-
formance achieved on this dataset by the λ-Mart state-of-the-art
algorithm [2], and by two variants of the same algorithm, which
exploit samples of the training instances. Finally, we discuss the
performance achieved by the proposed Selective Gradient Boost-
ing algorithm. The effectiveness metric adopted throughout the
experiments is NDCG@10 [10]. To ease the reproducibility of the
results, we release to the public the new dataset employed, along
with the source code of our implementation of Selective Gradient
Boosting1.

5.1 Datasets and Methodology
We aim to mimic a real-world production environment employ-
ing a multi-stage ranking pipeline. Unfortunately, the available
LtR public datasets are not suited to deeply investigate the impact
of the volume of negative examples on state-of-the-art LtR algo-
rithms. In fact, public available datasets provide a small amount
of assessed examples per query. The most popular LtR datasets,
i.e., MSN Learning to Rank2 and Yahoo! LETOR Challenge (sets
1 and 2)3, provide on average 120 and 20 documents per query,
respectively. To investigate this research line, we thus built a new
dataset from a subset of 10,000 queries sampled from a log of a
real-world Web search engine. For each query, up to 5,000 results
were retrieved from a collection of 44,830,467Web documents af-
ter being ranked according to a BM25F scoring function [25]. The
dataset, hereinafter named Istella-X5k (eXtended), contains in to-
tal 26,791,447 query-document pairs. Each query-document pair is
represented by 220 features, and is labeled by a integer relevance
judgment ranging from 0 (not relevant) to 4 (perfectly relevant).
On average, the dataset contains 2,679 documents per query, but
only 4.64 of them are relevant/positive examples, i.e., only 4.64
query-document pairs are associated with a relevance judgment
in the range [1, 4]. Indeed, the setting we adopted for the dataset
creation is similar to that of [4] where BM25 was used to retrieve
the set of documents to which a multi-stage ranking pipeline is
applied.

To investigate to which extent the presence of negative examples
may influence the performance of LtR algorithms, we also created
1http://quickrank.isti.cnr.it
2http://research.microsoft.com/en-us/projects/mslr/
3http://learningtorankchallenge.yahoo.com

three scaled-down variants of Istella-X5k. For each query in the
training set, we first sorted all negative examples in descending
order of BM25F scores, and then we discarded everything beyond a
given rank. We used this methodology to produce three datasets,
Istella-X2.5k, Istella-X1k and Istella-X500, having at most 2,500,
1,000 and 500 documents per query, respectively. Note that this
scaling down does not affect positive examples that were always
preserved. The four datasets thus share the same positive examples
but they differ in the proportion of positive versus negative exam-
ples. The largest Istella-X5k presents a fraction of 0.17% positive
query-document pairs, while in the smallest Istella-X100 this ratio
is almost 30 times higher (5.11%). Table 1 reports some properties
of the new proposed datasets. Each dataset was then split in three
sets: train (60%), validation (20%), and test (20%). We built the three
partitions of each dataset by always including the same queries
in each of them, so as to allow a direct comparison of the perfor-
mance achieved by the learned models. Although we exploit the
train and validation sets of a given scaled-down dataset to learn
a LtR model, at testing time we always used the test split of the
complete Istella-X5k, to fairly compare the effectiveness of the
learned models, as Istella-X5k best matches the reference scenario
[4, 23]. The reduced datasets Istella-X{100,500,1k,2.5k,5k} are used
in Section 5.2 to comprehensively evaluate the performance of the
λ-Mart algorithm.

We run each algorithm to train up to 1,000 trees. To avoid over-
fitting, all the algorithms employed an “early stop” condition during
training that allows to halt the learning process if no improvement
in terms of NDCG@10 on the validation set is observed on the
last 100 trees trained. When comparing different methods, we also
evaluated statistical significance by using the randomization test
with 10,000 permutations and p-value ≤ 0.05 [20].

5.2 Gradient Boosting for Ranking: λ-Mart
We first investigate the behavior of λ-Mart [21], a state-of-the-art
gradient boosting algorithm that exploits NDCG as loss function.
The goal of this study is to understand whether λ-Mart is able to
exploit a large number of negative examples at training time and
to evaluate its robustness to high class imbalance.

We trained several λ-Mart models on the train split of the five
datasets Istella-X{100,500,1k,2.5k,5k} and we evaluated their per-
formance in terms of NDCG@10 on the test split of Istella-X5k. In
the following we refer to these models with the names λ-Mart100,
λ-Mart500, λ-Mart1k , λ-Mart2.5k and λ-Mart5k , respectively.
The training process of the λ-Mart algorithm was finely tuned by

http://quickrank.isti.cnr.it
http://research.microsoft.com/en-us/projects/mslr/
http://learningtorankchallenge.yahoo.com
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Figure 1: Effectiveness of λ-Mart, trained on Istella-
X{500,1k,2.5k,5k} , computed on the test split of Istella-X5k.

sweeping its learning parameters on the train split of Istella-X5k

and by exploiting the “early stop” condition on the validation split of
the same dataset. We varied the maximum number of tree leaves in
the set {8, 16, 32, 64}, and the learning rate ν in {0.05, 0.1, 0.5, 1.0}.
The best performance of λ-Mart5k was obtained when employ-
ing a learning rate equal to 0.05 and 64 leaves. We applied this
combination of parameters in all the experiments we report in the
following.

Figure 1 reports the performance in terms of NDCG@10 of the
aforementioned λ-Mart models as a function of the number of
trees in the learned ensembles. We first highlight that the model
λ-Mart100 performs significantly worse than the others. Moreover,
the best performance achieved by the other models range from
0.7532 (λ-Mart1k ) to 0.7562 (λ-Mart500), with the latter being the
best performing overall. However the differences of performance
among these models are not statistically significant.

We also highlight that the λ-Mart500 model dominates the oth-
ers with interesting gains when employing only a fraction of the
trees in the ensemble model. For example, when scoring the testing
set with the first 400 trees of the ensemble, the λ-Mart500 model
scores 0.7462, while the second better is λ-Mart1k that scores
0.7396. In this case, the difference is statistically significant. The re-
sults above lead to two considerations. First, Istella-X100 does not
allow to learn models that are more effective than the ones obtained
with larger datasets. Although Istella-X100 is made up of a large
number of negative instances (about 95% of all query-document
pairs), it still misses some negative examples that are important
to allow the resulting models to increase its generalization power.
Therefore, a high number of negative instances provides useful in-
formation for training accurate ranking models. Second, the similar
performance achieved by the best performing models suggests that
λ-Mart is quite robust with respect to the class imbalance of the
examples, as its performance does not degrade significantly when
increasing the number of negative examples.

The above experiments suggest that negative instances are very
informative during the learning process of a λ-Mart algorithm.
Moreover, the use of a dataset providing about 500 negative in-
stances per query is sufficient to achieve the best performance in
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Figure 2: Effectiveness of Stochastic Gradient Boosting
trained and tested on Istella-X5k at different sampling rates.

terms of NDCG@10 in this experimental setting. However, the
above experiment does not allow to conclude that Istella-X500 is
as informative as Istella-X5k, or rather that λ-Mart is not capable
of exploiting larger datasets. It is also worth reminding that no
other LtR dataset released to the public so far provides a number
of documents per query allowing to investigate the above issues.
Our publicly available dataset thus contributes by allowing the
reproducibility of our experiments and further investigation of this
research line.

5.3 Stochastic Gradient Boosting
Stochastic Gradient Boosting (SGB) [8] is a natural competitor
of our SelGB algorithm. At each iteration, SGB fits a weak learner
(λ-Mart in our case) by using a random sample of the training
dataset. The introduction of a randomization step that samples data
instances allows for an increased robustness to over-fitting and
a reduction of the variance. Moreover, it provides computational
savings since each iteration of the learning process deals with a
reduced amount of data.

The experiments reported in this section are performed on the
Istella-X5k dataset. We trained a Stochastic Gradient Boost-
ing λ-Martmodel with different sampling rates in the set {1%, 2.5%,
5%, 10%, 25%}. As we did for λ-Mart, we used the validation set to
avoid over-fitting. We also employed the same hyper-parameters,
i.e., learning rate and the maximum number of leaves, found to be
optimal for λ-Mart.

Figure 2 reports the performance of the SGB models learned
in terms of NDCG@10. Interestingly, none of the models perform
better than λ-Mart. The model with the least aggressive sampling,
i.e., 25% is the best performing one, even if it is far below λ-Mart
(0.6990 versus 0.7548). A possible explanation of this phenomenon
is that the original version of SGB [8] is not query-aware. SGB sam-
ples instances independently of queries, which may lead to queries
associated with a significantly decreased number of candidate doc-
uments after sampling. Second, positive instances are sampled with
the same uniform probability, therefore removing important infor-
mation from the dataset. To solve these issues, we implemented a
modified version of Stochastic Gradient Boosting that adopts a
different sampling strategy. The new algorithm, named Negative
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Figure 3: Effectiveness of Negative Stochastic Gradient
Boosting trained and tested on Istella-X5k at different sam-
pling rates.

Stochastic Gradient Boosting (NegSGB), samples instances at
query level, by explicitly considering the lists of documents asso-
ciated with each query in the training set. Moreover, it performs
sampling only on the negative examples. Positive examples of each
list are always included in the sample used. This is indeed similar
to the common technique of under-sampling the most frequent
class to reduce imbalance, but conducted at the query level rather
than at the dataset level. To some extent, NegSGB is inspired by the
work of Ibrahim and Carman [9]. In that work, authors propose to
apply randomized undersampling techniques to deal with high class
imbalance of examples and they do this at query level. NegSGB can
thus be seen as the extension of the work by Ibrahim and Carman
to gradient boosting as the method we propose perform selection
of negative instances at query level during training. Compared to
Stochastic Gradient Boosting, the advantage of this sampling
strategy is that it both preserves i) all the positive instances and ii)
the per-query examples distribution.

Figure 3 reports the performance of NegSGB trained and tested
on Istella-X5k. The new algorithm achieves a remarkably better
performance over SGB, thus confirming that per-query sampling of
instances belonging to the negative class is an effective technique
to improve the effectiveness achieved by the randomization step.
Moreover, NegSGB outperforms λ-Mart5k with valuable gains in
terms of NDCG@10 when partial ensembles with a limited number
of trees are considered. However, NegSGB is not able to outper-
form λ-Mart on the full ensemble. Indeed, the best performing
NegSGB model, i.e., the one using a sampling rate of 25%, achieves
a NDCG@10 of 0.7531 vs. 0.7556 achieved by λ-Mart500, and the
difference is not statistically significant. On the other hand, the
adoption of smaller sampling rates leads over-fitting, thus causing
the early stop condition based on the validation set to halt the
training process quite early.

In summary, the analysis reveals that standard sampling ap-
proaches do not help λ-Mart in exploiting all the information
available in the largest dataset Istella-X5k. Indeed, the best perfor-
mance figures achieved so far were obtained by λ-Mart trained on
Istella-X500, and by Negative Stochastic Gradient Boosting
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Figure 4: Effectiveness of Selective Gradient Boosting
trained and tested on Istella-X5k at different sampling rates.

trained on Istella-X5k, despite the latter makes use of much more
training data. Therefore, we can conclude that i) the λ-Mart500
model provides the best performance, and ii) learning λ-Mart500-
based models requires to process less data than the best performing
NegSGBmodel, as the latter employs a sampling rate of 25% of each
per-query list, thus generating lists composed of an average number
of 1,250 documents compared to the 500 ones of Istella-X500.

5.4 Selective Gradient Boosting
Unlike other algorithms discussed above, the query level samples
produced by Selective Gradient Boosting are rank-aware. Dur-
ing a training iteration, it focuses on on a small sample of the
negative instances, accurately chosen on the basis of the current
ranks as computed by the scoring model learned so far.

5.4.1 Hyper Parameters Tuning. SelGB shares several hyper
parameters with λ-Mart, i.e., the learning rate, the total number
of trees, and maximum number of leaves. It also introduces two
new parameters, namely n and p, that actively drive the learning
process and characterize the newly proposed algorithm. As stated
in Section 4, the former drives the frequency of the selective sam-
pling step while the latter drives the fraction of per-query negative
samples to keep. In the following experiments, we report the effec-
tiveness of SelGB by varying these two parameters independently
of each other, so as to provide interesting insights regarding the
behavior of the algorithm.

Figure 4 reports the performance achieved by SelGB as a function
of the sampling rate p. Compared with λ-Mart, the performance
improvement is apparent. The best performance is achieved with
a sampling rate of 1%, which is equivalent to using a maximum
of 50 negative documents per query. Under these settings, SelGB
achieves an effectiveness of 0.7800 in terms of NDCG@10, with
a gain of 0.0244 (+3.23%) over the best performing λ-Mart500
model (NDCG@10 = 0.7556). Even when employing lower sampling
rates (0.25% and 0.5%), the resulting performance is similar to the
best NDCG achieved with sampling rate of 1%. On the other hand,
the higher is the sampling rate, the more the performance of the
SelGB algorithm converge to the one of λ-Mart. As an example,
when employing a sampling rate of 25% the SelGB model performs
similarly to the λ-Mart500 one.
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Figure 5: Effectiveness of Selective Gradient Boosting
trained and tested on Istella-X5k by varying the number of
iterations between two consecutive sampling steps.

It is also worth highlighting that such good performance is
achieved quite early during the training. About 100 trees of the
1% sampled model provide almost the same effectiveness of the
full λ-Mart5K , and 600 trees provide almost optimal performance.
Thus not only SelGB can generate more effective models, but it
also remarkably improves the scoring efficiency as a side effect,
as it can grant an effectiveness similar to that of λ-Mart500 with
much smaller ensembles.

Figure 5 reports the performance of SelGB when the number
of iterations between two consecutive selective sampling steps is
varied, i.e., acting on parameter n. In this analysis, the sampling
rate (p) has been fixed to 1%, as this is the value providing the
best performance in the previous experiment. The model obtained
by selectively sampling instances at each iteration (n = 1) is the
best one, along with the one performing sampling every 10 trees
learned. Indeed, when sampling less frequently, the effectiveness
of the models start decreasing (n = 50, n = 100). This behavior
is apparent when we look at the performance curve of the model
obtained when sampling every 100 iterations. The behavior of the
curve between 100 and 200 trees reveals an important increase in
performance in the first part. Suddenly the curve starts to decrease
due to over-fitting as more trees are added. This degraded behavior
continues until a new sampling is generated. From that point on,
the performance increases sharply from 200 to 220 trees, and then
the curve start becoming always more flattened, until it converges
to the final effectiveness of the model.

5.4.2 Effectiveness Analysis. We now present a compari-
son of the effectiveness of SelGB against five competitors. Table 2
reports the performance of all the algorithms tested in terms of
NDCG@10. Each algorithm was trained by exploiting the hyper
parameters combination that maximize its performance. We also re-
port the difference in performance over the most effective baseline
λ-Mart500, and we highlight with the ∗ symbol the performances
that are statistically different with respect to the one obtained by
the model learned by λ-Mart500. Among the baselines reported,
we also include the work by Lucchese et al. [17], as we share a

Table 2: Effectiveness of SelGB and five competitors tested
on Istella-X5k in terms of NDCG@10. We report the rela-
tive difference of performance over λ-Mart500. The ∗ symbol
highlights statistically significant differences.

Algorithm 150 trees Full ensemble

SelGB 0.7628∗+9.1% 0.7800∗+3.2%
λ-Mart500 0.6992 0.7556
λ-Mart5k 0.6855∗

−2.0% 0.7542−0.0%
SGB 0.6787∗

−2.9% 0.6990∗
−7.5%

NegSGB 0.7122∗+1.9% 0.7531−0.0%
Lucchese et al. [17] 0.6982−0.0% 0.7583+0.0%

similar research goal, i.e., to sample instances for improving effi-
ciency and effectiveness of LtR models. However, they propose a
a priori sampling of negative instances, which is not embedded in
the learning process. On the contrary, SelGB selects dynamically
the negative examples to be used at training time, i.e., during the
iterative growing of the scoring model.

Interestingly, SelGB achieves an absolute gain of 0.0244 in terms
of NDCG@10 over λ-Mart500, which accounts for a significant
+3.2% improvement in effectiveness. The solution by Lucchese et
al. shows a marginal gain, as to highlight the deficiencies of a static
sampling approach. Conversely, SGB and NegSGB are both not
particularly effective in training their models.

We provide additional insights on the effectiveness of the newly
proposed algorithm by reporting the performance obtained by scor-
ing functions that only exploit the first 150 trees of the ensembles
under analysis. Here, SelGB scores 0.7628 in terms of NDCG@10.
Despite the usage of only 15% of the trees, SelGB performs better
than the full λ-Mart500 model, composed of 1, 000 trees. Moreover,
when comparing the effectiveness of the two models employing
only the first 150 trees, SelGB shows an important absolute gain of
0.0636, corresponding to a performance improvement of +9.1%.

We are also interested in analyzing how the difference in perfor-
mance provided by SelGB against λ-Mart is spread across queries
with a different list size, i.e., the number of per-query training
examples, also called query list size. We perform this analysis by
bucketing queries by the number of documents they are associated
with. Figure 6 (top half) reports the average per-query difference of
NDCG@10 achieved by SelGB against λ-Mart500 (y-axis), while
the bottom half of the figure presents the number of queries (y-
axis) falling into each bucket. The x-axis reports the query list size
binned at intervals of 100 documents.

First, we observe that Istella-X5k contains 303 (15%) queries
with at most 100 documents, and 787 (39%) queries with more than
4,900 documents. An improvement in this last bucket of queries
having the largest list size has a significant impact on the overall
performance. Indeed, SelGB always provides an improvement over
λ-Mart for queries with list size greater than 3,700, with a signif-
icant average gain in NDCG@10 of about 0.05 for the last bin of
queries. For smaller query with list sizes up to 600 documents, the
performance of SelGB is similar to that of λ-Mart, still using a
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Figure 6: Effectiveness of SelGB vs. λ-Mart500 as a function
of the query list size (top) and distribution of sizes of the
query lists (bottom).

much smaller number of negative instances thanks to the adopted
sampling rate p = 1%.

To conclude, SelGB remarkably outperforms competitors. The
largest gain of performance is achieved for queries having larger
list sizes. These are very likely to be difficult queries, potentially
matching several thousands of documents beyond the 5,000 limit
we imposed. The above experiments confirm that, especially for
queries associated with a large number of candidate documents,
SelGB is able to select and exploit the most informative negative
examples.

5.4.3 Document Selection Analysis. To better understand
the dynamics of SelGB, we conducted an analysis of which negative
examples are actually selected by SelGB during training. We report
the results of this analysis in Figure 7. The heatmap shows the
SelGB selection of negative instances by displaying, on the y-axis,
from the top to the bottom of the figure, queries sorted in ascending
order of their list size. The x-axis reports the ranked list of docu-
ments per query, sorted in descending order of their original value
of BM25F scores. For each query, the brighter the color associated
to each document, the higher the number of times the document
has been selected as a negative instance by SelGB during training.
The figure was built by using a threshold on the number of times
a document is selected to reduce noise. We employed a threshold
equal to 10, meaning that a bright yellow color refers to documents
used in at least 10 different iterations of the learning. The outcome
of this analysis is two-fold: i) the most frequent negative examples
selected are those with the highest BM25F score, meaning that there
is a slight correlation between the ranking metric and BM25F; ii)
despite that, and especially for queries with more than 4,900 docu-
ments, SelGB achieves better performance by selecting negative
instances with lower rank, thus proving the usefulness of examples
with lower BM25F scores.

To provide amore quantitative analysis, we report in Figure 8, the
cumulative distribution of the fraction of negative instances selected
during the training of SelGB as a function of their BM25F rank.
Interestingly, 80% of the negative instances were selected in the top
1,000 positions. The remaining 20% were selected from instances
with lower ranks. The analysis reveals that training a model by
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the train split of Istella-X5k. Queries are sorted in decreas-
ing order of the size of their associated lists. On the y-axis,
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with increasing number of documents. On the x-axis we re-
port the document ranks induced by the associated BM25F
scores. The brighter the color associated with each position,
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SelGB on the train split of Istella-X5k.

using only a few hundreds negative examples per query strongly
limits the effectiveness of the resulting model, see the performance
of λ-Mart500 in Table 2. The proposed SelGB algorithm achieves
a significant gain by selecting 20% of its training instances among
those beyond rank 1,000, despite using a small number of training
instances thanks to the adopted sampling rate. This confirms the
importance of properly exploiting negative examples during the
training process.
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6 CONCLUSION
The aim of this work was to learn LtR models that are able to
effectively rank the huge number of candidate documents retrieved
per each query in a multi-stage retrieval system. In this context, the
first stage of the system aims to maximize recall, and thus many
candidate documents must be retrieved to avoid missing relevant
results. These documents have then to be re-ranked by a precise
and accurate LtR model in the following ranking stage.

We performed an in-depth investigation of this topic that led us
to propose Selective Gradient Boosting (SelGB), a new step-
wise algorithm introducing a tunable and dynamic selection of
negative instances within λ-Mart. SelGB produces as λ-Mart an
ensemble of binary decision trees but performs at training time a
dynamic selection of the negative examples to be kept in the training
set. In particular, the algorithm selects the top-scored negative
instances within the lists associated with each query with the aim
of minimizing the mis-ranking risk. Due to the characteristics of
the NDCG metric used to evaluate the quality of the learned model,
we need to discriminate the few positive instances that must be
pushed in the top positions of the scored lists, from the plenty of
negative instances in the training set. Indeed, top-scored negative
instances are exactly those being more likely to be ranked above
relevant instances, thus severely hindering the ranking quality.

Unlike other sampling methods proposed in the literature, our
method does not simply aim at sampling the training set to reduce
the training time without affecting the effectiveness of the trained
model. Conversely, the proposed method is able to dynamically
choose the “most informative” negative examples of the training
set, so as to improve the final effectiveness of the learned model.
A comprehensive experimental evaluation, based on a new very
large dataset shows that SelGB achieves an astonishing NDCG@10
improvement of 3.2% over the reference λ-Mart state-of-the-art
algorithm. To ease the reproducibility of our results and favor the
research on this challenging topic, we released both the source code
of Selective Gradient Boosting and the new dataset with 10, 000
queries and thousands of assessed documents per query.

As futurework, we plan to studymore in deep different strategies,
with the final goal of improving SelGB. First we aim at investigat-
ing an adaptive strategy for selecting the negative instances to be
kept in the training set. Such strategy could choose on a per query
basis the fraction of negative examples. This is motivated by the
characteristics of real-world search system, where the distribution
of the number candidate documents per query is skewed and some
queries are more difficult than other to answer. Another interest-
ing research direction regards the selection methodology used to
dynamically choose the instances in the training set. Now it is
only based on the scores of the negative examples computed by the
model learned so far, without randomization and, more importantly,
without considering the current λ-gradients, which in turn push
modifications to these scores with the newly added trees. Therefore,
we left as a future work the investigation of selection mechanisms
favoring the examples with the largest λ-gradients. Finally, for a
lack of space, we did not studied the improved efficiency of SelGB
over λ-Mart introduced by the subsampling strategy, neither how
we can obtain an efficiency/effectiveness trade-off by reducing the
frequency of the selection step.
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