An Empirical Study on
Refactoring Objects to Aspects

Fernando Brito e Abreu, Sérgio Bryton

QUASAR/CITI - Center of Informatics and Information Technology
Faculty of Sciences and Technology
Lisbon New University, Portugal
{fba, bryton}Qdi.fct.unl.pt
http://citi.di.fet.unl.pt/

Abstract. It has been proclaimed in the literature that AOP allows ob-
taining better modularized systems than those built with OOP, namely
by reducing tangling and scattering. Very few quantitative studies sus-
taining that claim were published. None is known to contradict it. We
briefly describe an assessment process that allows performing paradigm-
independent modularity assessments, based on a metamodel driven ap-
proach, and a set of paradigm-independent metrics. We use this assess-
ment process upon the 23 GoF design patterns, that were refactored from
Java to AspectJ, and then perform a set of statistical tests to answer
research questions on the effect of this refactoring on overall coupling,
cohesion and modularity.

Keywords: AOP, OOP, Refactoring, Modularity, Coupling, Cohesion,
Metrics, Meta-Model Driven Measurement.

1 Introduction

A programming paradigm is a fundamental style of computer programming.
Well-known examples are Procedural or Structured Programming (PP), Func-
tional Programming (FP), Object-Oriented Programming (OOP) and Aspect-
Oriented Programming (AOP). Programming paradigms usually have their hype
in time, until a new paradigm arrives and a paradigm shift is initiated. In this
paper we are concerned on understanding the impact of the shift from OOP
to AOP, which encompasses making comparisons among systems built with
different paradigms. Performing this kind of assessments is a difficult exercise
since the characterization and quantification of software assets is generally per-
formed using paradigm-specific characteristics and metrics. When a program-
ming paradigm is more an extension than a disruption with an existing one (like
happens with AOP face to OOP), things may get even worse, since there is
a natural compulsion to perform comparisons based only upon what paradigms
have in common (i.e., the features of the older paradigm). This is even fostered if
the representative language of the newer paradigm is a hybrid language that also
supports the older paradigm, as happens in this paper where we compare soft-
ware systems written in perhaps the most widely used programming languages of

each of the paradigms under study: Java for OOP and AspectJ for AOP. In this
paper we present the results of an empirical study where we compared two sets of
functionally equivalent source code examples, the 23 GoF design patterns, that
were refactored from Java to AspectJ [11]. Our main objectives were to provide
the grounds to answer the following research questions (i) Does OOP to AOP
refactoring produce a significant change on the overall coupling, cohesion and
modularity? (i) And what about if we only consider the core modular features
(classes, interfaces and aspects)?

This paper is organized as follows: on section 2 we briefly introduce our
methodological approach to paradigm and language independent assessments;
section 3 describes our empirical study, from collected data to the interpretation
of the statistical tests’ results; related work is described in section 4; we draw our
conclusions in section 5 and, finally, we outline our future work in this research
thread on section 6. Due to space constraints we chose not to present the tables
with the relevant results from the statistical tests used, which are available in

[6].

2 Methodological approach

In a nutshell, our methodological approach is the following: (i) expressing the
domain knowledge with the Paradigm Independent Metamodel (PIMETA)I7];
(ii) defining the Paradigm Independent Modularity Factors (PIFACTORS), a
set of factors that express distinct coupling and cohesion characteristics that,
in our perspective, are influential on modularity[6]; (iii) using the Metamodel
Driven Measurement (M2DM)[1] technique to quantify those factors with the
Object Constraint Language (OCL) [14] upon the PIMETA, thus obtaining the
Paradigm Independent Metrics (PIMETRICS)[6]; (iv) developing an automated
process for metrics collection that allowed to obtain the PIMETRICS from our
sample in a format that can (v) be imported in a statistical tool where our
hypotheses were tested. We now provide some details on each step.

2.1 PIMETA

The PIMETA is instantiated in two steps. In a first step, the metaclasses Paradigm,
Formalism, AtomicFeatureType, ModularFeatureType and DependencyType are
instantiated with the information that describes the formalisms under study (in
this case, the types of features and dependencies that occur in Java and As-
pectJ). Examples of Features can be classes, methods, aspects, parameters, or
instance variables. Modular Features are those that can contain other Features
and Atomic Features are those that cannot. For instance, in AspectJ a Pointcut
Definition is a Modular Feature, since it may contain Pointcuts and Parameters
(the latter is an Atomic Feature). A Dependency Type in AspectJ, for instance,
could be a Method using an Intertype Field or calling an Intertype Operation. In
a second step, the metaclasses AtomicFeature, ModularFeature and Dependency
must be instantiated with actual occurrences of the features and dependencies
in a given software asset under study.

2.2 PIFACTORS

Modularity can be assessed using the concepts of coupling and cohesion which,
in turn, are the result of the dependencies that exist among the features from
a software system. Therefore, we should study the different manifestations of
those dependencies in terms of how the corresponding features participate in
them. Notice that dependencies are directional (they always have a source and
a destination feature). PIFACTORS are a categorization of those dependencies,
as follows:

Role This factor regards to the part a feature plays in each dependency
where it is involved; a feature acting as a source must know about the features
on which it depends, since those may affect its purpose; if acting as a target, it
should be aware of its probable impact on the features which rely on it.

Coverage This factor distinguishes features based on how many other differ-
ent features are involved within its dependencies; for evaluating coupling, from
the source perspective, the more different features a feature uses, the more that
feature is coupled; for evaluating cohesion, the higher the coverage of the fea-
ture which is being analyzed, the higher is its contribute to the cohesion of the
modular feature to which it belongs.

Commitment This factor expresses how much of a module is committed to
the dependencies in which is involved; for evaluating coupling, the more differ-
ent features, within this modular feature, are involved as sources in dependencies
towards external features (i.e., those features that are not within the same modu-
lar feature as the one containing the dependency source), the more this modular
feature is coupled; for evaluating cohesion, the more different features, within
this modular feature, are involved as sources in dependencies towards internal
features, the more this modular feature is cohesive.

Clustering This factor distinguishes features based on how many disjoint
clusters are involved within the dependencies at which they are involved; disjoint
clusters are modular features that do not share any of the modular features
that contains them (i.e., a system composed by two packages; each package is
a cluster disjoint from the other); notice that clustering only makes sense when
evaluating coupling, since that for cohesion, only the dependencies from (and to)
the features within the same modular feature are considered; the more different
disjoint clusters contain targets of dependencies, the more the feature under
evaluation is coupled.

2.3 PIMETRICS

Metrics should be formally defined to avoid subjectivity in their interpreta-
tion and collection. For that purpose we have used the Goal Question Metric
(GQM)[4] approach together with the M2DM technique. This technique was
grounded on the PIMETA and the PIFACTORS, from which the PIMETRICS
set was derived and formalized as OCL expressions. An example of a PIMETRIC
definition and formalization, is presented in Table 1. The complete PIMETRICS
catalogue can be found in[6]. In addition to the formality granted by the use of

this constraint language, OCL expressions can be automatically evaluated upon
the instantiated metamodel, using an OCL evaluator, like the USE [10] tool.

l Goal (G1) ‘Decrease Features Coupling ‘

Question (Q1.1)|What is the coupling coverage of a feature as a source?
Metric (M1.1.1) |Acronym SCouCovS

Name Source Coupling Coverage Size

Informal definition|Number of different external features on which a
feature depends

Formal definition |PIMETA::Feature

SCouCovS(): Integer =

externalDependeeFeatures()->size()

Table 1. PIMETRICS definition and formalization example

2.4 Automated collection process

We developed an automated collection process to collect the PIMETRICS values
from source code in Java and AspectJ, composed by five steps. In this process
(i) the source code is parsed into XML (.ajfml files) using a parser for AspectJ
and Java, the AspectJ-Front parser [5]. Then (ii) the output from the AspectJ-
Front parser is transformed into XML files (.pimetaml files) compliant with
the PIMETA XML schema, using a XSLT file (AJFML2PIMETAML). From
here, another transformation occurs (iii) for generating input (.cmd files), with
another XSLT file (PIMETAML2USE), for the USE tool, which is then used
to (iv) instantiate the PIMETA. Finally, (v) the PIMETRICS, expressed as
OCL expressions, are calculated with the USE tool, upon the previously loaded
PIMETA.

3 Empirical Study

3.1 Sample description

The subjects of our experiment are a set of 2003 features (either atomic or
modular) and 2039 dependencies, between these features, distributed by both
implementation versions (Java and AspectJ) of the 23 GoF Design Patterns, as
can be seen in Figure 1.

The number of features varies a lot from pattern to pattern, as well as between
the GoF implementation versions, as we can see in Figure 2. In most (18) patterns
in the GoF AspectJ implementation version, we see an increase in the number
of existing features. Regarding modular feature types, all the Java ones except
Package and all the AspectJ ones, except AdviceBefore, were found in the sample.
As for atomic feature types, only the Enumeration was not found in the sample
for Java, while for AspectJ only DeclareParents was found within the sample.

1100

1050

1000

950

900 | —| — —| —
850 —| —| — —| —
800

features dependencies

Mjava Maspect]

Fig. 1. Features and dependencies per GoF version

The number of dependencies also varies a lot from pattern to pattern, as well
as between the GoF implementation versions, as we can see in Figure 3. Only in
few (6) patterns in the GoF AspectJ implementation version, we see an increase
in the number of existing dependencies. However, in the remainder 17 patterns,
we hardly see a very pronounced decrease in the number of dependencies. Re-
garding the Java dependency types (see [6] for their full identification), 16 out
of 23 possible ones had instances. As for the AspectJ dependency types, only 9
out of more than 70 possible ones (again see [6]) were found within the sample.
It is worth mentioning that while the referred total number of dependency types
were identified in the latest AspectJ documentation [3], the sample under study
was published more than six years ago[11], when the features of the Aspect]
version available at the time were less than today.

adapter
bridge
builder
command
composite
decorator
fagade
factorymethod
flyweight
interpreter
iterator
mediator
memento
observer
prototype
proxy
singleton
state
strategy
templatemethod
visitor

z
S
=]
&
]
g
‘i
a8
=

chainofresponsability

mjava = aspect)

Fig. 2. Features per pattern per GoF version

Beyond the PIMETRICS, we also used the Potential Crosscutting Size (PCS)
and the Potential Crosscutting Index (PCI) metrics, defined and formalized in
[6], as well as the Average Module Membership (AMM), Intramodular Coupling
Density (ICD) and the Modularization Merit Factor (MMF), defined and for-

proxy

8
s

abstractfactory

adapter

bridge

builder

command
composite
decorator
fagade
factorymethod
flyweight
interpreter
iterator
mediator
memento
observer
prototype
singletan

sta

strategy
ternplatemethod

chainofresponsability

mjava = aspecti

Fig. 3. Dependencies per pattern per GoF version

malized in [2]. All ratio metrics were found within the expected range [0, 1].
We have conducted an exploratory data analysis to eliminate (very few, in fact)
extremes and outliers and to test for the Normal distribution adherence using
the Kolmogorov-Smirnov one-sample test. None of the PIMETRICS could be
considered as having a Normal distribution, so non-parametric tests had to be
used.

3.2 Hypotheses identification and testing
— Metrics discriminative power

Research question Do the proposed metrics for coupling, cohesion and modu-
larity vary significantly from pattern to pattern within the same implementation
language? Although we can see in Figure 2 that the design pattern implementa-
tions, either on Java or AspectJ, differ significantly in size, we expect PIMET-
RICS to have some discriminative power. In other words, they are expected to
show some kind of variance, depending on the considered design pattern. Hy-
potheses and statistical testing We want to know if each of the coupling,
cohesion and modularity metrics, taken from the independent samples, corre-
sponding to features of each of the design patterns, may be considered as drawn
from the same population. In other words, the null hypothesis is that the values
of those metrics do not vary significantly from design pattern to design pat-
tern. We will perform two separate sets of tests, one for the Java patterns and
another for the AspectJ patterns. Each individual test will refer to a given PI-
METRIC. Since that none of the PIMETRICS has a normal distribution, we
will use the Kruskal-Wallis one-way analysis of variance. In our case, the inde-
pendent samples correspond to the 23 implementations of the GoF patterns for
a given language. Results interpretation The Kruskal-Wallis H test statistic
is distributed approximately as chi-square. Consulting a chi-square table with
df=22 (degrees of freedom) and for a significance of a=0.05 (confidence level of

95%) we obtain a critical value of chi-square of 12.3. Since this value is less than
the computed H values, we reject the null hypothesis that the samples do not
differ on the criterion variable (the Design Pattern). In other words, given any
of the metrics, we cannot sustain that the statistical distributions of the groups
of modular features corresponding to each of the design patterns are the same.
This means that we accept the alternative hypothesis that the design pattern has
influence on the values of the proposed metrics. This confirms that the metrics
have discriminative power.

— Qwerall coupling changes

Research question Does the refactoring of software systems produced with an
OOP language to an AOP extension of the same language produces a significant
change on the overall coupling? Regarding coupling, we expect that the AOP
pattern versions are statistically different and, as claimed, exhibiting lower values
for coupling from the OOP ones. Hypotheses and statistical testing If we
consider that we have two independent groups of cases, one for the Java language
and another for the AspectJ language, we can compare the averages for each
of the testing variables in the two groups. In other words we want to test if
there is a significant difference between the averages of the variables describing
cohesion, for the two languages. The adequate test is called the Independent
Samples t-Test for the equality of the means. If both groups have sizes above
30 cases (which is our case), then the distribution ¢ with v degrees of freedom
t(v), approaches the Normal distribution and the test can be applied. Results
interpretation Based upon the result of the Levene’s test and an «=0.05, we
reject the hypothesis of the equality of variances between the two groups, for all
testing variables. Therefore we have to choose the rows signalized with “Equal
variances not assumed”. The positive value for the ¢ statistic shows us that the
values of the coupling metrics are, on the average, superior for Java than for
AspectJ. Considering a test significance a=0.05 we reject the null hypotheses
- the averages of all coupling metrics are the same between the two groups. In
other words, we can say that there is statistical evidence that the coupling for the
OOP versions is, on average, higher than the coupling for AOP module versions.

— Core modular features coupling changes

Research question Does the refactoring produced with an OOP language to
an AOP extension of the same language produces a significant change on the
coupling of the core modular features (classes and interfaces common to Java
and AspectJ GoF versions)? We expect the AOP version to be statistically dif-
ferent and exhibiting the claimed lower coupling than the OOP version. With a
rotation operation we were able to produce a paired list version of our data, so
that for equivalent modular features, we get two variables within the same case,
representing the values for the same variable in Java and in AspectJ, like for
instance: TCouComl-Java and TCouComlI-AJ. Notice that we get fewer cases
than for independent tests, because only classes and interfaces are pairable. Hy-
potheses and statistical testing The hypotheses are the same as above in

section 3.2. The test used was be the Paired Samples T-Test. Results inter-
pretation The positive value for the ¢ statistic shows us that the values of the
coupling metrics are on the average superior for Java than for AspectJ. Consid-
ering a test significance «=0.10 we can conclude that for some paired variables
we can reject the null hypotheses that the averages of both coupling variables
are the same between the two groups, and for others we cannot. Specifically,
we can say that: (i) for coupling coverage (SCouCovl, TCouCovl), for coupling
clustering on the source perspective (SCouClul) and for coupling commitment
also on the source perspective (SCouComl) there is statistical evidence that the
coupling for the OOP modules version is, on average, higher than the coupling
of the corresponding AOP modules version; (ii) for coupling clustering on the
target perspective (TCouClul) and for coupling commitment also on the target
perspective (TCouComl), and with a confidence level as low as 90%, there is
no statistical evidence that the coupling for the OOP modules version is, on
average, different from the coupling of the corresponding AOP modules version.

— QOwerall cohesion changes

Research question Does the refactoring of software systems developed with
an OOP language to an AOP extension of the same language produces a signifi-
cant change on the overall cohesion? We expect the AOP pattern versions to be
statistically different and exhibiting the claimed higher cohesion than the OOP
pattern versions. Hypotheses and statistical testing If we consider that we
have two independent groups of cases, one for the Java and another for the As-
pectJ languages, we can compare the averages for each of the testing variables in
the two groups. In other words, we want to test if there is a significant difference
between the averages of the variables describing cohesion, for the two languages.
We will use the Independent Samples t-Test. Results interpretation Again
based upon the result of the Levene test for «=0.05, we rejected the hypothesis
of the equality of variances between the two groups, for both testing variables.
Again we choose the rows signalized with “Equal variances not assumed”. The
positive value for the ¢ statistic shows us that the values of the cohesion metrics
are on the average superior for Java than for AspectJ. Considering a test signif-
icance a=0.05, we reject the null hypotheses that the averages of both cohesion
variables are the same between the two groups. In other words, there is statistical
evidence that the cohesion for the OOP versions is, on average, higher than the
cohesion for the AOP ones. These results do not corroborate the most common
claims regarding cohesion of AOP systems. As explained earlier, we believe these
results do not evidence the real cohesion differences but, instead, the differences
between the delusional cohesion at the OOP implementations, due to the code
tangling and the cohesion of their AOP equivalent versions.

— Core modular features cohesion changes

Research question Does the refactoring of software systems developed with an
OOP language to an AOP extension of the same language produces a significant
change on the cohesion of the core modular features? Again, with a rotation

operation we get two variables within the same case, representing the values for
the same variable in Java and in AspectJ, like for instance: TCohComlI-Java
and TCohComlI-AJ. Hypotheses and statistical testing The hypotheses are
the same as above in section 3.2. The test we have used was the Independent
Samples T-Test. Results interpretation The positive value for the ¢ statistic
shows us that the values of the cohesion metrics are on the average superior for
Java than for AspectJ. Considering a test significance a«=0.10 we reject the null
hypotheses that the averages of both cohesion variables are the same between the
two groups. Again we confirm that there is statistical evidence that the cohesion
for the OOP modules version is, on average, higher than the cohesion of the
corresponding AOP modules version.

— Qwerall modularity changes

Research question Does the refactoring of software systems developed with
an OOP language to an AOP extension of the same language produce a signif-
icant change on the overall modularity? We expect the AOP pattern versions
to be statistically different and exhibiting the claimed higher modularity than
the OOP pattern versions. Hypotheses and statistical testing If we consider
that we have two independent groups of cases, one for the Java language and
another for the AspectJ language, we can compare the averages for each of the
testing variables in the two groups. In other words, we want to test if there is a
significant difference between the averages of the variables describing modularity,
for the two languages. We have used the Independent Samples t-Test. Results
interpretation Based upon the result of the Levene’s test and an a=0.05 we
reject the hypothesis of the equality of variances between the two groups, for
both testing variables. Therefore we choose the rows signalized with “Equal vari-
ances not assumed”. The positive value for the t statistic shows us that the
values of PCI is on the average superior for Java than for AspectJ. Considering
a test significance a=0.05, we reject the null hypotheses (the averages of the
potential crosscutting is the same between the two groups), meaning that there
is statistical evidence that the potential crosscutting for the OOP versions is, on
average, higher than the potential crosscutting for the AOP versions, which, as
explained earlier, between functional equivalent systems, also means that mod-
ularity is higher on the AOP versions of those systems. The negative value for
the ¢ statistic shows us that the values of MMF is on the average inferior for
Java than for AspectJ. Considering a test significance a=0.05, we reject the null
hypotheses that the averages of the modularity merit factor is the same between
the two groups, meaning that there is statistical evidence that the MMF for the
OOP versions is, on average, lower than the MMF for the AOP versions or, in
other words, that modularity is higher on the AOP versions of those systems.
3.3.

3.3 Threats to validity

The dependency type weight has been set to 1, for not being known, up to
date, an appropriate scale which can be used for the dependencies of Java or

AspectJ. This implies the consent that all dependencies have the same effect on
modularity, in spite of not being at all our conviction. The design patterns im-
plementation in Java and AspectJ is a very interesting case study, yet small and
not representative of a real world system. The sample size is very important to
externally validate the metrics with, for instance, maintenance effort. To improve
the reliability of the automated data collection and measurement process, more
validation and enhancement is required. The AspectJ-Front parser evidenced the
lack of some features that would be of value like, for instance, an xml schema
for the generated xml files. The developed parser still has limitations like when
dealing with different features with the same name (e.g., a method and a field).

4 Related Work

Hannemann and Kiczales presented a comparative study, where they claimed
modularity improvements in 17 of the 23 design patterns [11]. Although being
a qualitative study, it should be taken into consideration the empirical under-
standing of the paradigm effects on modularity, given the authors’ expertise on
the subject.

Proposals based on DSM claim [13] that metrics are not thought for assess-
ing design options at certain decision points, but can be useful for a posteriori
analysis. We do not subscribe to this opinion since the PIMETRICS can also
be used for design evaluations, as long as the PIMETA is instantiated with the
features from the design language being used. Lopes and Bajra [13] proposed the
assessment of aspect modularizations by using the concepts of Design Structure
Matrix (DSM) and Net Option Value (NOV), and present a case study where
several OOP and AOP variants for a software application are compared and
analyzed. They concluded that aspects can be beneficial as well as detrimen-
tal. This study was grounded on a small, however relatively complex example,
which inhibited more ambitious conclusions beyond the scope of the system
itself. Cai and Huynh [9] proposed an evolution model for software modular-
ity assessment using a decision tree based assessment framework, grounded on
augmented constraint networks. The authors claimed its independency of par-
ticular languages and paradigms and that the proposed model quantitatively
corroborates the qualitative claims of Hannemann and Kiczales[11] about the
modularity improvements on the Observer design pattern. However, the fact of
only encompassing one simple example reduces the conclusions’ external validity.
These DSM-based approaches do not seem to provide a scale against which the
results can be compared, to find out whether a design is good or bad. Their the-
oretical validity was not discussed and they reach slightly different conclusions.
While in [9] the qualitative claims in [11] are corroborated, in [13] aspects are
considered to be detrimental as well.

In [12], a quantitative study on the modularization of the design patterns
with aspects is presented. By being grounded on the framework proposed in
[15], which is not validated or formalized, there is a threat to the validity of
those conclusions. Also, there is an apparent contradiction in [15], when the

Prototype, Command, Iterator, Chain of Responsibility, Strategy and Memento
design patterns in AspectJ are ranked among those that present the highest
separation of concerns (SoC) and, simultaneously, ranked among those that pre-
sented the best coupling and cohesion in their OOP versions, suggesting that
to a decrease in modularity corresponds to an increase in the SoC, what sounds
inadequate.

From all the above, we can conclude that most OOP versus AOP modularity
evaluations made so far are grounded on poor metrics or processes meaning that
the validity of their conclusions is threatened.

5 Conclusions

We have applied the M2DM technique, based upon a metamodel that allows
paradigm independent representation of software systems (PIMETA) and OCL,
to formally define and collect a set of paradigm-independent metrics (PIMET-
RICS) from the GoF design patterns functionally-equivalent implementations
in Java and AspectJ[11]. Those metrics allow quantifying a set of paradigm
independent coupling, cohesion and modularity factors, that we dubbed PIFAC-
TORS. Our first conclusion is that is feasible in practice to measure coupling,
regardless of paradigm or programming language, by using the PIMETRICS.

We have used statistical techniques to test a set of hypothesis on the modular-
ity improvements of AOP upon OOP. Our main conclusions were the following;:
(i) The coupling of the coarser grained modules (classes and interfaces) in the
OOP version is, on average, 11% higher than that of the coarser grained mod-
ules (aspects, classes and interfaces) of the AOP version; (ii) The cohesion of the
coarser grained modules in the OOP version is, on average, 20% higher than the
cohesion of the coarser grained modules of the AOP version. This decrease in the
AOP version is due, in our opinion, to the fact of being compared with the cohe-
sion in the modules of the OOP version influenced by the non-functional cohesion
inherent to code tangling, which we named delusional cohesion; (iii) The poten-
tial crosscutting in the OOP version of the patterns is, on average, 16% higher
than the potential crosscutting in the AOP version. This difference evidences a
modularity improvement; (iv) The modularity merit factor in the OOP version
is, on average, 16% lower than the modularity merit factor in the AOP version.
As a whole, we conclude that modularity does improve when OOP systems are
refactored to AOP, but that improvement seems to be far more moderate than
claimed in related studies [12], [15].

6 Future Work

We aim at enlarging our sample of functionally equivalent systems with more
and larger cases. We also are planning to define, at least at an ordinal scale, the
dependency types on Java and AspectJ, based upon their impact on modularity.
Indirect dependencies will also be studied, as well as the delusional cohesion
phenomenon. Finnaly, we are developing a tool-supported process to suggest

and implement cross-paradigm refactorings from OOP to AOP based on the
PIMETRICS capability to identify code-smells [§].

7

Acknowledgments

The work presented herein was partly supported by the VALSE project of the
CITI research center within the Department of Informatics at FCT/UNL in
Portugal.

References

1.

10.

11.

12.

13.

14.
15.

Brito e Abreu, F.: Using ocl to formalize object-oriented design metrics definitions.
Technical Report ES007/2001, INESC, Lisbon, Portugal (May 2001)

. Brito e Abreu, F., Goulao, M.: A merit factor driven approach to the modulariza-

tion of software systems. L’Objet 7(4) (2001)

AspectJ5-Team: Aspectj 5 - quick reference guide (2008)

Basili, V., Caldiera, G., Rombach, H.: The goal question metric approach. In:
Encyclopedia of Software Engineering, pp. 528-532. John Wiley and Sons (1994)
Bravenboer, M.: Aspectj-front parser for aspectj (2008)

Bryton, S.: Modularity Improvements with Aspect-Oriented Programming. Msc,
Faculty of Sciences and Technology, UNL, Caparica, Portugal (2008), http://ctp.
di.fct.unl.pt/QUASAR/Resources/Papers/2008/bryton2008MSc.pdf

Bryton, S., Brito e Abreu, F.: Pimetrics: A metrics set for paradigm independent
modularity evaluation. Technical Report 2007-TR-003, QUASAR Group, Faculty
of Sciences and Technology, UNL, Caparica, Portugal (December 2007 2007)
Bryton, S., Abreu, F.B.: Modularity-oriented refactoring. In: 12th European Con-
ference on Software Maintenance and Reengineering (CSMR’2008). pp. 23-23.
IEEE Computer Society Press, Athens, Greece (Jan 2008)

Cai, Y., Huynh, S.: An evolution model for software modularity assessment. In:
Boehm, B., Chulani, S., Verner, J., Wong, B. (eds.) Fifth International Workshop
on Software Quality (WoSQ’07) @ ICSE’2007. p. 3. Minneapolis, USA (2007)
Gogolla, M., Bohling, J., Richters, M.: Validating uml and ocl models in use by au-
tomatic snapshot generation. Software and System Modeling 4(4), 386-398 (2005)
Hannemann, J., Kiczales, G.: Design pattern implementation in java and aspect;.
In: Aldrich, J., Kostadinov, V., Chambers, C. (eds.) OOPSLA02. pp. 161-173.
ACM Press, Seattle, Washington, USA (2002)

Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., Staa, A.v., Lucena, C.: Quan-
tifying the effects of aspect-oriented programming: A maintenance study. In: In-
ternational Conference on Software Maintenance (ICSM’06). pp. 223-233 (2006)
Lopes, C.V., Bajracharya, S.K.: Assessing aspect modularizations using design
structure matrix and net option value. In: Rashid, A., Aksit, M. (eds.) Transactions
on Aspect-Oriented Software Development I, Lecture Notes in Computer Science,
vol. 3880, pp. 1-35. Springer, Berlin / Heidelberg (2006)

OMG: Object constraint language (ocl) (May 2006)

Sant’anna, C., Garcia, A., Chavez, C., Lucena, C., v. von Staa, A.: On the
reuse and maintenance of aspect-oriented software: An assessment framework. In:
Proceedings XVII Brazilian Symposium on Software Engineering (2003), http:
//twiki.im.ufba.br/pub/Aside/NossasPublicacoes/sbes2003-135.PDF

http://ctp.di.fct.unl.pt/QUASAR/Resources/Papers/2008/bryton2008MSc.pdf
http://ctp.di.fct.unl.pt/QUASAR/Resources/Papers/2008/bryton2008MSc.pdf
http://twiki.im.ufba.br/pub/Aside/NossasPublicacoes/sbes2003-135.PDF
http://twiki.im.ufba.br/pub/Aside/NossasPublicacoes/sbes2003-135.PDF

	An Empirical Study on Refactoring Objects to Aspects

