
SOFTWARE DEFECT REPORT AND TRACKING SYSTEM IN THE
INTERNET:

CONTROLLING THE EVOLUTION OF LEGACY SYSTEMS

António Silva Monteiro1, Miguel Afonso Goulão2, Fernando Brito e Abreu2,
Alberto Bigotte de Almeida1, Pedro Sousa2

Summary:
This paper describes a project of Empirical Software Engineering that uses
Internet technology to implement a software defect report and tracking
system, called SofTrack, in a geographically distributed organisation.
SofTrack is being used to help controlling the evolution of four medium to
large size software systems, on different levels of maturity. They belong to
the Portuguese Navy Information Systems Infrastructure and were
developed using typical legacy systems technology: COBOL with
embedded SQL for queries in a Relational Database environment.
While SofTrack provides the typical functionality of tracking systems, it
also embeds tools for the automatic documentation of source code and
software complexity analysis. This combination of features helps the
management of the maintenance team activity.

1 email: damag@mail.marinha.pt
DAMAG - Portuguese Navy, Praça do Município 1188 Lisboa Codex,
Portugal, ph.: 351.01.3468967, fax.: 351.01.3473154
2 email: {miguel.goulao | fba | pms }@inesc.pt
Software Engineering Group, R. Alves Redol, 9, 13069 Lisboa Codex,
Portugal, ph .: 351.01.3100306, fax.: 351.01.3145843

1. Introduction
Software Process Improvement (SPI) (Humphrey, 1990) is a mean of acquiring the ability to
produce and maintain software of higher quality, at a lower cost and within schedule
(Roberts, 1996), as it reduces the costs associated with poor software quality (Houston, 1996).
DAMAG, the department responsible for the information systems infrastructure within the
Portuguese Navy, is currently carrying out a SPI initiative.
Before the implementation of the actions described in this paper, most of the defects found,
either in-house (by black box testing) or by final users, were simply handled on the telephone
line. The majority of these actions were not recorded. Forecasts of short to medium term
effort, required to support the software systems, were simply not available. This was
particularly problematic since members of the teams in charge of the systems’ evolution often
had regular military assignments (e.g. naval exercises at sea) and those had to be planned with
some advance. On the other hand, without on-line information of pending actions, the heads
of the Software Division could not have control over the ongoing projects. Ultimately, the
final users had no mechanism of feedback on their submitted requests.
To overcome this status-quo a DAMAG/INESC joint team was set up to define the
architecture and develop a defect and reporting system that could be used in the expanding
Navy Intranet. This team works as a Software Engineering Process Group (SEPG) in this
initiative. The SofTrack (Software Defect Report and System Tracking) tool was then
developed. SofTrack embeds a framework for classifying the requests.

SofTrack integrates the features of a typical web-based report and tracking system with the
collection, analysis and presentation of software process and product complexity metrics. It
also embeds a system for automatically generating documentation on the controlled software.
SofTrack's web interface allows users spread across different buildings to have a customised
view of the evolution of the systems they work with. This view is tailored to each user's
activity in what regards that system, in order to make it easier for him to locate the relevant
information for himself.
The paper presents some details on how all these features work together in the task of
predicting and controlling the maintainability of a software system. A particular emphasis
will be put on the support SofTrack gives to the software components complexity assessment,
since it plays a very important role in the software maintenance complexity (Zuze, 1992).
This pilot experiment of Empirical Software Engineering is taking place in the Portuguese
Navy Intranet for a few months. During this pilot stage of the SPI initiative, SofTrack is being
used to track the evolution of four information systems (IS) built with the same products
(COBOL and SQL/DS) in a proprietary system. They were developed by a different team and
are now in different stages of their life cycle. The first IS was developed about a decade ago.
The second one is being used since 1996. The other two systems are currently being tested
and will be released to their final users during the first semester of 1999. All these systems
are in continuous evolution, due to new user’s requirements and external changes (such as the
introduction of the Euro). The SEPG believes that this sample of IS provides a reasonable
overview of the main defects detected in this kind of systems.

2. SofTrack
The conception and acceptance of SofTrack was not an easy nut to crack. It raised
technological, methodological and cultural problems.
From a technological point of view, SofTrack combines the usage of commercial of the shelf
software (COTS) with software developed by INESC and DAMAG. In short, SofTrack
consists of a combination of tools to support the collection, analysis and report presentation of
relevant product and process control information. This introduces changes in the
methodological and cultural habits of the organisation subjects.
In essence, SofTrack uses three sources of data:

• The system’s source code (product data).
• Requests for evolution actions, along with the corresponding follow-up and tracking

data (process data).
• Other documents, such as product documentation, internal reports and scientific papers

(miscelaneous). These are usually provided by the maintenance teams and the SEPG.

As a generic requisite, it was decided that all the interface with SofTrack’s final users should
be performed through the Portuguese Navy’s Intranet. This only constrained the selection of
tools in the sense that all the documents provided to final users must be produced in a suitable
format (HTML) for any modern web browser.
SofTrack runs on a Windows NT web server with the Internet Information Server (IIS). The
IIS is enhanced with the usage of a commercial add-on (ServletExec for Windows) to enable
the support of Java servlets. Part of the data collection and software metrics computation
processes is performed by a Unix workstation.

2.1. Architecture Overview
Figure 1 contains an overview of SofTrack’s architecture.

LOGISCOPE

SOURCE CODE
REPOSITORY

PRODUCT
STRUCTURE
REPOSITORY

SPSS

HTML
PAGES

SAMARITAN

NTServ.UNIX Workstation

SERVLET

Web cl.

R.A.R.E.

BROWSER

Figure 1. SofTrack architecture

Automated tools, that include COBOL parsers, perform the source code data collection. The
source code files, stored in the Source Code Repository, are submitted to Logiscope (Verilog,
1993) and Samaritan (ESW, 1996), both running on a Unix workstation.
Logiscope is the COTS tool responsible for extracting data on the overall architecture of an
application (Call Graph), the logical structure of its components (Control Graph) and
measures of its complexity - software product metrics, such as the ones proposed in
(Halstead, 1977) and (McCabe, 1976). Logiscope was chosen to perform this task because it
supports the above stated features for the COBOL programming language (as well as for
other languages). Logiscope’s outputs are the inputs for Samaritan and SPSS (Statistical
Package for Social Sciences) (SPSS, 1997).
Samaritan is the tool responsible for the generation of updated documentation of the systems
under analysis, based on their source code. The produced documentation is organised in the
Product Structure Repository and presented in HTML pages, to allow an easy browsing
through them.
The process data is collected with RARE (Register and Analysis of Requests of Evolution)
(Goulão, 1998). In essence, RARE is a framework for storing information about evolution
actions, from their request specification to the description of their follow-up, keeping track of
the project’s changed deliverables and the effort required to perform the described activities.
RARE stores data in a format that is suitable for further statistical analysis. The entire user
interaction with the database is performed through the web.
The SPSS tool is then used in the statistical analysis of the product metrics (collected with
Logiscope), as well as the process data stored in the RARE database (this contains data for
computing several process metrics). The SPSS scripting language makes it possible to
schedule and execute a set of statistical procedures that can easily be expanded by adding new
scripts. Moreover, these procedures are developed so that their output is in HTML format,
making it simple to update SofTrack’s web pages with a defined periodicity.
Finally, a java servlet is responsible for dealing with the interaction performed between
clients and the SofTrack. In other words, this mixture of technologies works “behind the
scenes”, invisible to the final users. The servlet implements the data access policy of
SofTrack, granting customised privileges to each user.
In the next sections we provide a few more details on the non-COTS components of

SofTrack.

2.2. Product structure - SAMARITAN
One of the problems the maintenance teams often have to deal with is the poor or outdated
documentation of the maintained systems. Ironically, this makes the developers of the
systems a very important asset, for most of the knowledge on how the system is implemented
lies on their personal memories, instead of the documentation that should have been updated
when the evolution actions were performed. This represents an even more serious problem
when the original developers have to leave the maintenance team. In the particular case of the
Portuguese Navy, this is a common issue, due to the military career of the members of the
staff. All this makes the impact analysis of a requested evolution action more difficult.
While an organisation may implement a policy to ensure that from a given moment in time to
the future, all changes will be documented, there is still the problem of documenting the
current implementation of the IS.
Samaritan is a tool developed at INESC to perform this task. It analyses the system
components and produces a dependency graph between physical artefacts such as executable
images, source files, functions, databases, data base tables, and attributes of database tables.
Each node of the graph describes a single physical artefact. Each edge establishes a
dependency between two artefacts. Since the Samaritan tool documents code and data
artefacts, one must consider the following dependencies:

• Create, read, update and delete are possible dependencies between code and data
artefacts.

• The call dependency is used to establish the control flow between functions.
• The is-part-of dependency is used to establish the organisation of code and data artefacts.

For example, functions are part of source files and attributes are part of tables.

Some rules can be applied to the dependency graph, to reduce the number of links that must
be maintained. For example, if function F is-part-of program P and F reads some database
table attribute, then P also reads the same data, and no explicit link is necessary.
The graph is stored in the Samaritan internal repository and can be accessed for different
purposes, such as complexity computation and impact analysis. In large information systems,
the graph is often in the scale of hundreds of thousands of nodes and edges
For a better management of the dependency graphs’ complexity and their full examination,
Samaritan allows its users to generate customised sub graphs in a hypertext format, where
nodes are HTML pages and edges are hypertext links between pages. These graphs may be
navigated using any HTML browser.
The selection criteria to produce the sub graphs are based on the selection of the type of
implementation artefacts and the type of dependency links. For instance, a user can produce a
hypertext graph that describes the control flow, by selecting only artefacts of type Function
and dependencies of type call.
The current version of Samaritan is able to parse source code in C and Cobol languages (in
SUN, HP and IBM systems) with embedded SQL statements for ORACLE, INFORMIX,
SQL/DS and DB2 databases. It also parses Oracle Stored procedures, Forms and triggers in
PL/SQL language.

2.3. Evolution tracking – RARE
Tracking the evolution of a system gives the ability to pinpoint the evolution actions
performed on a specific item, when and why they were performed, who was responsible for
them and how much effort was spent on each of them. It also provides insight on the quality

of the tracked items and on the software process itself. In the context of SPI, the collection
and analysis of software process metrics is a quantitative approach to the detection of flaws
and pitfalls. It also allows the detection and validation of the best practices. Therefore,
monitoring the evolution of a software system supports the SPI, facilitating the task of the
maintenance teams.
The way the tracking data is recorded influences the type of analysis the SEPG may perform
later. A normalised scheme for classifying the evolution requests (the RARE) was developed
with the help of the maintenance teams, so that the scheme would be rich enough for the
SEPG monitoring activities, yet, simple to use. The latter ensures that the maintenance teams
don’t have to spend too much time logging their activity (after a small training period, filling
a RARE form takes no more than 5 minutes).
Both the requests for evolution actions (user environment) and their follow-up (maintenance
team environment) are performed through the RARE web. Table 1 summarises the data
contained in each RARE record.

User environment Maintenance team environment
• Date
• Identification of the evolution requester
• Normalised description of the request
• Textual description of the request
• User’s perception of the request’s priority

• Identification of the responsible for the
follow-up

• Difficulty assessment
• Normalised description of the evolution

actions
• Textual description of the evolution

actions
• Follow-up data (including relevant time-

stamps)
• Effort

Table 1. The RARE structure

Once submitted, the evolution requests are stored into the database for tracking purposes, and
are then said to be in the "registered" stage. After an early assessment by the support
department, the follow-up of the reported problem will be assigned to an appropriate software
engineer.

2.4. Data access policy
One of the concerns of the common SofTrack user is to be able to quickly locate updated
information that may be appropriate for the activity he is performing. On the other hand, the
system contains classified information. For instance, there are reports on projects that should
only be made accessible to that project's maintenance team and upper management, but not to
the final users. This is clearly a problem of user profile definition.
The following user profiles were identified:

• The managers of the software process.
• The members of the maintenance teams (i.e., the programmers);
• The final users of the developed systems.

The actual definition of each profile’s typical access rights was performed with the help of the
SofTrack’s users. The advantage of this approach was twofold: not only did it help to identify
the main needs of information for each user profile, but it also made the final users feel more
involved in the requirements definition of SofTrack. The second one holds the common

advantages that it brings on any application’s acceptance by the final users.
The SofTrack architecture follows a more generic approach, for flexibility purposes. At a
given point in time, the user will have access to the reports contained in the groups of reports
of his access list and also to the reports accessible through the groups of users to which he
belongs. Figure 2 contains a simplified example of the implementation of the access policy
for a member of the maintenance team of Project A.

FAQ

SofTrack
news bulletin

MTBF

MTTR

Main Group

Public

Upper
Management

Projects

Private

Project A

Project B

Figure 2. Example of user access privileges definition (only the grey ones are accessible).

After logging in the SofTrack, this user only sees the links to the Public pages and to Project
A. The technical solution for this was the usage of a java servlet. The servlet enhances the
HTTP server by enabling request/response services. This servlet interacts with the RARE
database using a JDBC-ODBC bridge. Because all user information is passed to the servlet as
part of the HTTP request, it implements additional authorisation as part of its service method.
When the user logs in the SofTrack, a cookie is set to carry his information inside the system.
From here on, the whole environment is configured for that particular user. This means that
the options presented to him are customised to his profile, keeping him from the unpleasant
feeling of trying to follow a link and receiving back an error page because he does not have
access to it. The servlet uses this cookie to dynamically generate the available links on the
pages it serves back to the client.
Whenever the servlet receives the serve page request, it checks if the user has access to that
URL and serves it back, providing he does have access. This double check on the
accessibility of the page is performed to prevent users from composing an unauthorised page
request.

3. Using SofTrack to assess maintainability
In the absence of an overall consensus within the software engineering community on what
are the main aspects that define software quality, a good approach is to use the framework
provided by ISO/IEC 9126 as a reference (ISO, 1995). Among the quality characteristics on
that standard, one that is particularly relevant for this project is the maintenance complexity
of the systems. In fact, one of the key concerns of SofTrack is to provide tools for detecting
opportunities for making the maintenance activity simpler. This is achieved not only by the
usage of automatic documentation of the source code and tracking of its evolution, but also
by analysing process and product complexity metrics.

3.1. Process Analysis
The RARE is the basis for the tracking of the evolution of the software. The managers use it

to control the process. They can retrieve information about a particular action, or groups of
actions. For instance, getting a Pareto chart on the frequency of evolution actions performed
to each module helps to identify those modules that are more prone to changes (Figure 3),
whether that derives from a poor specification or from a poor development. Since the motive
of the change is registered, the chart may be further specialised to show the distribution for a
particular one. For instance, one may see this same chart to check the frequency of evolution
actions related to software bugs – the most frequent modules make up good candidates for
further analysis and, eventually, reengineering actions.
Managers can also find out what are the most common motives for an evolution request
(Figure 4). The codes in the horizontal axis of this chart are the ones used in the RARE
framework. Here, the most common problem identified related to bugs in the output reports
of the applications. Knowing the most typical defects in the software produced by the
organisation helps defining the training policy, in order to suppress them.

Changed Module

SIPBTC**

SIP81***

SIP32000

SIM
-000

SF28200

SF25000

SF21620

SCEBTC**

EXP21000

DF247B3

DF23000

SIP19000

SF23100

DF15000

DF24151

SF22000

DF24700

N
um

be
r

of
 c

ha
ng

es

8

6

4

2

0

Figure 3. Module change proneness

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

B
.2

A
.2

C
.1

A
.1

B
.1

A
.5

C
.2

C
.4

A
.1

1

A
.6

B
.3

C
.3

A
.3

A
.4

B
.4

E
vo

lu
tio

n
 R

e
q

u
e

st
s

RARE failure code

Figure 4. Evolution requests by failure type

The RARE database also allows the analysis of measures such as the medium time between
failures (MTBF) and the medium time to repair (MTTR). The first one is a measure of the
reliability of the software. A common usage of MTBF is to make a trend analysis of its value
to decide when a software component is ready for release. MTTR gives an idea on how much
time goes from the moment a request for change is submitted until it is fulfilled. It is an
indirect measure of the maintenance difficulty of a software system.

3.2. Module complexity assessment and maintainability
The defect clustering phenomenon is relatively well known. The main reason for this is that,
at least for medium to large systems, their complexity is far from being evenly distributed.
Hence, by determining the overall complexity of the components, on may expect to find the
most defect prone ones, since the defect clusters are usually located in the most complex
software components.
But, how can one tell which are the most complex software components? There is no standard
approach to answer this, in spite of the numerous efforts to assess software complexity. A
survey by Zuze refered that more than 500 different complexity metrics had already been
defined by 1991 (Zuze, 1992). Frequently, these metrics capture an aspect of the software
complexity. So, one can use them individually to control that aspect. But to get an overview
of what the overall complexity is, some authors such as (Khoshgoftaar, 1994) have chosen to
combine several software complexity metrics. Assessing the complexity of a module based on
a set of complexity measures is a somewhat similar problem to multicriteria decision making.
Although we have several driving factors to make a judgement, in the end, we want to get an

overall value for complexity or a rank between the available options.
In this project, the SEPG tries to take advantage of single metrics to control specific issues of
software complexity, but also combines them all to get an overall assessment.

3.2.1. Analysis of the evolution of development practises
The analysed systems were developed using similar techniques and development
environment. As their main task is also the same – the manipulation of the personnel
database, one could feel tempted to believe that there is no significant difference between the
modules of different systems. To find out if this is true for our systems, we conducted an
analysis of variance on the metrics collected in the modules of different systems that showed
that there were significant differences between systems.
Table 2 presents a sample of the collected metrics’ typical values for systems A and B, to
illustrate how the comparison between both systems was performed. The outliers and extreme
values of metrics were excluded. System A is currently in its testing phase, while system B
has been in use for about a decade.

Table 2- Typical metrics values in different systems
A B
Mean Std. Dev. #mod. Mean Std. Dev. #mod.

Direct Calls 14.6 9.0 1239 5.3 3.1 536
Maximum Levels 3.3 0.6 1239 6.5 2.8 536
Unconditional Jumps 0.0 0.4 1239 10.5 9.7 536
Statements 106.0 67.2 1239 105.1 59.4 536
Operands 262.4 176.6 1239 212.3 116.8 536
Operators 255.6 168.2 1239 218.9 120.3 536
Cyclomatic Complexity 22.7 13.7 1239 21.3 12.3 536

While some of the metrics present relatively similar values in modules of both systems, others
show a completely different behaviour. For instance, the number of unconditional jumps is a
lot lower in system A, indicating a change in the way the software is developed. This shows
that although the technology employed to develop both systems is basically the same, some
changes have occurred in the solutions chosen to implement them. This evolution is mostly
due to the gap between the implementation of both systems, which amounts to almost a
decade. The changes reflect the usage of the experience gathered with the older system when
developing the more recent one.
The ISO/IEC 9126 standard describes maintenance complexity (or maintainability) through
the following attributes:

• Analysability – potential effort spent in the diagnosis of defects and identification of
the software items to be changed in an evolution action.

• Changeability – how hard it is to change software.
• Stability – when software is changed, this accounts for the eventual side effects.
• Testability – ability to validate the correctness of the changes performed.

The collected metrics are related to these attributes. For instance, McCabe’s Cyclomatic
Complexity (McCabe, 1976) is good measure for testability, as it reflects the number of
separate paths one would have to test in order to test all the source code. The decrease in the
typical maximum nesting level and on the number of unconditional jumps, along with the
increase on the number of statements, operands and operators seems to indicate that a
programming style trade-off was performed. The source code in project A is easier to

understand, with a smoother control structure (analysability). Interviews with the
maintenance teams revealed that the increase in the number of direct calls results from a
greater effort to separate the functionality of the system in more numerous but simpler
modules. However, this might affect software stability, because the number of couplings grew
(thus, possibly, so did the potential for side effects).

3.2.2. Overall complexity assessment
Normally, the most complex modules are more error prone, and because of that, more likely
to require maintenance actions. Therefore, they make good candidates for analysis, in the
event of a reengineering action. The rationale is that it is possible to reduce the overall system
complexity if you focus on the small percentage of modules that are more complex. A short-
term consequence of that complexity reduction is that it is possible to have smaller
maintenance teams.
The information collected with RARE includes data on the effective effort spent in each
particular evolution action and also on the changed modules, for each of those changes.
Therefore, it is possible to track the changes down to the request that caused them and to find
out how much time was spent with them. On the other hand, since we have the software
versions before and after the evolution, we can evaluate the performed changes in terms of
their complexity. We can use the variation of complexity to estimate the effort spent in the
change.
As seen before, each collected metric measures an aspect of software complexity, but some of
these aspects overlap (some of the collected metrics have a high correlation with each other).
The collected metrics can be combined using the Principal Components Analysis technique
(Reis, 1993; Kaiser 1958), so that we can get a reduced set of factors that hold the
information on the variation of the complexity without a significant information loss. The
derived metrics have a low correlation between them.
This technique allowed us to express the variation of complexity conveyed by the Logiscope
metrics through three factors: F1 (program complexity, maximum nesting level, direct calls,
exit nodes, entry nodes, maximum number of degrees, intelligent content, cyclomatic
complexity, program level, program size, maximum number of nodes, maximum number of
statements, nodes, edges, operators, operands and estimated number of errors), F2 (mental
effort, unconditional jumps and essential complexity) and F3 (pending nodes).
These factors were used as estimators in the following linear regression model:

Efforti = β0 + β1 * F1i + β2 * F2i + εi

The βj coefficients were computed by the least square method and εi represents the residual
error for each case. It turned out that F3 had a neglectible effect on the registered effort
(β3≈0), so, we decided to remove it from our complexity assessment model. This model may
be instantiated with the parameters presented in Table 3.

Table 3 – Complexity assessment model parameters

Coefficient Estimate Standard Error t statistic (5%) Significance
β0 6.682 0.470 14.221 0.000
β1 3.104 1.060 2.928 0.006
β2 8.522 0.587 14.508 0.000

Efforti = 6.682 + 3.104 * F1i + 8.522 * F2i + εi

We may now examine briefly the model and check its statistical validity.

The positive coefficients show that an increase in any of the complexity factors results in the
increase of the expected effort, as expected, due to the nature of the complexity metrics that
were used to compute the factors.
The determination coefficient of the model (R2) is 85.1%. Its adjusted value is 84.3%. This
means that the model does not explain only 15.7% of the effort variation. For instance, the
complexity of the database accesses is not accounted for, so, if a change involves modifying
an embedded SQL statement or change the definition of a table, the model will underestimate
the necessary effort. Including other measures to cover aspects such as the SQL complexity
will likely enhance the model’s ability to assess module complexity.
The F statistic value (108.561) with a significance of 0.05 is higher than the critical value for
a sample of this dimension (F(2, 38) = 3.23). This means we can reject the null hypothesis (H0:
β1 = β2 = 0).
We accounted for the efficiency of the computed predictors by performing the Durbin-
Watson test and checking that there was no serial correlation of the residuals.
We also performed a Goldfeld-Quandt test, to check the homocedasticity of the variables of
our model.
The number of observations used in the construction of this model is still considered by the
metrics team a relatively low one. Only 41 evolution actions were considered. This makes the
model vulnerable to a few factors. For instance, the model contains no information about the
programmer who is responsible for implementing the evolution. (Brooks, 1975) refers an
experiment performed by Sackman, Erikson and Grant (Sackman, 1968) where the authors
show that the productivity of different programmers may differ drastically. In a group of
experienced programmers, the best ones had a productivity level about 10 times better than
the worst ones. The number of observations does not allow analysing effectively the
productivity of the several programmers involved, but it might be necessary to weight the
estimates in order to account for the programmer’s productivity, in this model.
These aspects help explaining the current accuracy of the model in the prediction of effort.
However, the model does give a good basis for assessing software component’s complexity.
As expected, tracing an overall complexity Pareto chart revealed that the core of the systems’
complexity lies on a small percentage of their modules. Boxplot charts are used to select
candidates for reengineering actions (those with extremely high values of complexity).
Furthermore, for these candidates, analysing the individual complexity metrics helps
understanding how they could be improved.

5. Conclusions
In this paper, the overall architecture of a system designed to support a SPI initiative was
described. SofTrack is a system that combines several different technologies, from the
information retrieval techniques used to extract data from the source code to the usage of web
technology to make that information available to users in a distributed environment.
The standardisation of the way of requesting and tracking software evolution actions was a
significant methodological and cultural change for the organisation where this SPI is taking
place. It has created awareness to the need of producing software in a much more controlled
environment within the organisation.
SofTrack provides an integrated view of most of the factors that contribute to software
maintenance complexity:

• The Samaritan tool provides updated documentation on the software systems in a format
that is suitable for quickly locating a software component and analysing its connections to
the remaining system.

• The RARE framework provides a standard recording for all evolution actions and is the

basis for the evolution tracking system itself.
• The software complexity analysis uses a numerical approach to detect potential

maintenance hot-spots, giving guidance for reengineering actions and for planning
resource allocation for maintenance activities.

We believe this combination of features that are normally scattered across several systems
holds in itself potential making the maintenance activity a much controllable one. Although
this project is oriented for controlling the evolution of legacy systems, the basic principles are
generic enough so that they may be applied to other systems.
For instance, if we were to take on a similar approach for tracking the evolution of OO
systems, it would still be useful to have an architecture such as this one, although most of its
specific components would have to be extended to accommodate this paradigm, or even
replaced.

References
Brooks, F.: The mythical man-month. Addison-Wesley, 1975.
ESW: Samaritan – manual técnico. Internal Report - unpublished, 1996.
Florac, W.A., Park, R.E., Carleton, A.D.: Pratical Software Measurement: Measuring for Process
Management and Improvement. CMU/SEI-97-HB-003, 1997.
Goulão, M., Monteiro,A., Martins, J., Bigotte de Almeida, A., Abreu, F.B., Sousa, P.: A software
evolution experiment. ESCOM-ENCRESS98, Rome, 1998.
Halstead, M.: Elements of Software Science. Elsevier, North-Holland, New York 1977.
Houston, D., Keats, J.D.: Cost of Software Quality: A Means of Promoting Software Process
Improvement. 1996.
Humphrey, W.S.: Managing the Software Process. SEI Series in Software Engineering, Addison-
Wesley Publishing Company, 1990.
ISO: Information Technology - Software Quality Characteristics and Metrics. ISO/IEC, 1995.
Kaiser, H.F.: The Varimax Criterion for Analytic Rotation in Factor Analysis. Pshycometrica, 1958.
Khoshgoftaar, T.M., Munson, J.C., Lanning, D.L.: Alternative Approaches for the Use of Metrics to
Order Program Complexity. Elsevier, 1994.
McCabe, T.: A Complexity Measure, IEEE Transactions on Software Engineering, Vol. 2, Nº4 pp
308-320, 1976.
Reis, E.: Análise factorial das componentes principais: um método de reduzir sem perder informação.
Giesta ISCTE, 2ª Ed., 1993.
Roberts, M.A.: Experiences in Analizing Software Inspection Data. Proceedings of the Software
Engineering Process Group Conference, 1996.
Sackman, H., Erikson, J., Grant, E.: Exploratory studies comparing online and offline programming
performance. CACM, 11, 1, 1968.
SPSS: SPSS User’s Guide. SPSS users manual package, 1997.
Verilog: Logiscope Viewer – Basic Concepts. Logiscope users manual package. Verilog SA., 1993.
Zuze, H.: Measuring Factors Contributing to Software Maintenance Complexity, 1992.
Zuze, H.: History of Software Complexity Metrics, 1992a.

