

D6.5 Report on the implementation of the Joint Resource Registry
(Final)

AUTHORS: Luca Frosini

Massimiliano Assante
Leonardo Candela
Lucio Lelii
Francesco Mangiacrapa
Pasquale Pagano

DATE 15 April 2019

 ii

 PARTHENOS – D6.5

 iii

HORIZON 2020 - INFRADEV-4-2014/2015:

Grant Agreement No. 654119

PARTHENOS

 Pooling Activities, Resources and Tools for Heritage E-research Networking, Optimization

and Synergies

Report on the implementation of the Joint Resource Registry (Final)

Deliverable Number D6.5

Dissemination Level Public

Delivery date 15 April 2019

Status Final

Author(s)

Luca Frosini, CNR
Massimiliano Assante, CNR
Leonardo Candela, CNR
Lucio Lelii, CNR
Francesco Mangiacrapa, CNR
Pasquale Pagano, CNR

 iv

Project Acronym PARTHENOS

Project Full title Pooling Activities, Resources and Tools for Heritage E-research
Networking, Optimization and Synergies

Grant Agreement nr. 654119

Deliverable/Document Information

Deliverable nr./title D6.5

Document title Report on the implementation of the Joint Resource Registry
(final)

Author(s) Luca Frosini, CNR
Massimiliano Assante, CNR
Leonardo Candela, CNR
Lucio Lelii, CNR
Francesco Mangiacrapa, CNR
Pasquale Pagano, CNR

Dissemination
level/distribution

Public

Document History

Version/date Changes/approval Author/Approved by

V 0.1 12.04.19 Version ready for approval Luca Frosini

V 1.0 Reviewed Sheena Bassett, PIN

This work is licensed under the Creative Commons CC-BY Licence. To view a copy of the
licence, visit https://creativecommons.org/licenses/by/4.0/

 PARTHENOS – D6.5

 v

Table of Contents

Table of Contents ... v

List of Tables .. vii

List of Figures ... vii

1 Executive Summary.. 1

2 Introduction.. 2
2.1 Definition ... 2
2.2 Requirements ... 3

2.2.1 Functional Requirements ... 3
2.2.2 Non-Functional Requirements... 4

2.3 Architecture .. 6

3 Facet Based Resource Model .. 7
3.1 Information System Model .. 7

3.1.1 Basic Concept ... 7
3.1.2 Entity .. 11
3.1.3 Facet ... 11
3.1.4 Relation ... 11

4 Joint Resource Registry ... 13
4.1 Architecture .. 14

4.1.1 Resource Registry Service... 14
4.1.2 Resource Registry Context Client .. 16
4.1.3 Resource Registry Types Client .. 16
4.1.4 Resource Registry Publisher .. 16
4.1.5 Resource Registry Client ... 16

5 Interacting with Resource Registry Service ... 17
5.1 Context Management ... 18

5.1.1 Contexts Listing ... 19
5.1.2 Create Context .. 19
5.1.2.1 Create Context Example 1 .. 19
5.1.2.2 Create Context Example 2 .. 20
5.1.3 Read Context ... 21
5.1.3.1 Read Context Example .. 21
5.1.4 Verify Context ... 21
5.1.4.1 Verify Context Examples .. 21
5.1.5 Update Context .. 22
5.1.5.1 Rename Context Example .. 22
5.1.5.2 Move Context Example.. 23
5.1.6 Delete ... 23
5.1.6.1 Delete Context Example .. 23

5.2 Types Management .. 24
5.2.1 Type Definition .. 25
5.2.2 Type Creation ... 26
5.2.2.1 Resource Type Creation Example .. 26
5.2.2.2 Facet Type Creation Example .. 27
5.2.2.3 IsRelatedTo Type Creation Example ... 28
5.2.2.4 ConsistsOf Type Creation Example .. 29

 vi

5.2.3 Embedded Type Creation Example... 29
5.2.4 Read Type Definition ... 30
5.2.5 Read a Resource Definition Example ... 30

5.3 Instances Management ... 31
5.3.1 Create Facet Instance Example ... 32
5.3.2 Update Facet Instance Example ... 33
5.3.3 Read Facet Instance Example .. 34
5.3.4 Delete Facet Instance .. 34
5.3.5 Create Resource Instance .. 34
5.3.6 Update Resource Instance .. 37
5.3.7 Delete Resource Instance .. 38
5.3.8 Create ConsistsOf Instance ... 38

5.4 Query and Access .. 39
5.4.1 Get All Instances of a Type .. 42
5.4.1.1 Get All Instances of EService .. 42
5.4.1.2 Get All Instances of EService and subtypes .. 43
5.4.2 Get Filtered Entities ... 43
5.4.3 Raw Query .. 45

6 Backend Database (i.e. OrientDB as Graph Database) ... 47

7 The Studio GUI .. 48

 PARTHENOS – D6.5

 vii

List of Tables

Table 1: Basic Property Types .. 9
Table 2: Derived Property Types ..10
Table 3: Header ..10
Table 4: Propagation Constraints ...10
Table 5: Resource ..11
Table 6: isRelatedTo ...12
Table 7: consistOf ..12
Table 8: isIdentifiedBy ...12
Table 9: Mapping between HTTP methods and CRUD operations ..15
Table 10: Context Management Operations, Methods and URLs ...18
Table 11: Types Management Operations, Methods and URLs...24
Table 12: Instances Management Operations, Methods and URLs ...31
Table 13: Query and Access Management Operations (grouped by inherited port type), Methods

and URLs. ...39

List of Figures

Figure 1: Schema Manager ...48
Figure 2: Textual Query Inspector ..49
Figure 3: Graph Query Inspector ...50
Figure 4: Graph Editor ...50
Figure 5: End-user Graphical User Interface welcome page ..51
Figure 6: End-user Graphical User Interface resource details ..52

1 Executive Summary

Deliverable D6.5 “Report on the implementation of the Joint Resource Registry (final)” is the
revised version of the deliverable D6.3 “Report on the implementation of the Joint Resource
Registry (interim)”.

The D6.5 Report on the implementation of the Joint Resource Registry documents the final
implementation of the Joint Resource Registry (JRR). It complements the D5.2 Report on
the design of the Joint Resource Registry deliverable by providing details on how to interact
with and exploit the functionalities it provides.

The JRR hosts the PARTHENOS entities represented according to the PARTHENOS
Entities Model defined in WP5. As such, it represents an information system for the
PARTHENOS community and the PARTHENOS universe of tools and services designed
for and released in the PARTHENOS infrastructure.

The feedback obtained during the first reporting period has been used to improve the:

• quality of the design,

• the provided APIs of both services and clients,

• and the design of the Graphical User Interfaces (GUIs) provided to the PARTHENOS
community.

The functional and non-functional requirements are now more detailed and the description
have been improved.

The Resource Registry service REST APIs have been improved to strictly adhere to REST
principles. The motivation for using REST architectural style has been added in section
4.1.1. The client’s APIs have been simplified and enriched. Two new Java clients have been
released: Resource Registry Context Client and Resource Registry Schema Client (see
sections 5.1 and 5.2 respectively).

This deliverable presents, in Section 2, the principles and guidelines that govern the
implementation of the JRR which has been designed to support the persistence of the
PARTHENOS Entities. The JRR is implemented as a tailored information system capable
of satisfying the evolution of the model itself, the main features of which are described in
Section 3 since the facet-based resource model is extensively referred to throughout this
report. Entities, Resources, Facets and Relations are described in detail. Section 4
describes the set of technical components comprising the JRR and APIs, covering the
architecture which includes the Resource Registry Service, Context Client, Schema Client,
Publisher and Client. Section 5 provides information regarding how to interact with the
Resource Registry Service by exploiting the Context and Schema Port Types. The REST
APIs are also presented for each functionality. Section 6 covers the backend database,
OrientDB, a Multi-Model Open Source NoSQL DBMS that brings together the power of
graphs and the flexibility of documents into one scalable high-performance operational
database. The final section provides information on the Studio GUI used by the Content
Administrator for searching between the created types and inspection of their schema.

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service

 2

2 Introduction

The Joint Resource Registry (JRR) has been designed to support the persistence of the
PARTHENOS Entities. It is implemented as a tailored information system capable of
satisfying the evolution of the model itself. Moreover, it contributes to the large gCube open-
source framework as presented in the deliverable D6.1 PARTHENOS Cloud Infrastructure.
In this Section, the role of this tailored information system is first clarified and then the
functional and non-functional requirements are illustrated.

2.1 Definition

Several definitions of an Information System (IS) exist. Each definition aims to capture either
a specific role or a specific behaviour in systems managing some kind of information.
It is quite common to define an IS as "any organized system for the collection, organization,
storage and communication of information". The Encyclopaedia Britannica defines an IS as
"an integrated set of components for collecting, storing, and processing data and for
providing information, knowledge, and digital products".

All the definitions convey the characteristics of Information. Information consists of data that:

• is accurate and timely,

• is specific and organized for a purpose,

• is presented within a context that gives it meaning and relevance,

• can increase understanding and decrease uncertainty.

According to the Business Dictionary, an information system is "a combination of hardware,
software, infrastructure and trained personnel organized to facilitate planning, control,
coordination, and decision making in an organization". In this context, trained personnel
are illustrated as:

• human resources;

• procedures for using, operating, and maintaining the information system;

• set of basic principles and associated guidelines, a.k.a. policies, formulated and
enforced to direct and limit actions in pursuit of long-term goals.

Looking at the MIT Press, an information system is "a software system to capture, transmit,
store, retrieve, and manipulate data produced by software systems to provide access to
information, thereby supporting people, organizations, or other software systems".
This definition makes it evident that software systems are both producers and consumers of
the Information System making it the core of their business activities.

 PARTHENOS – D6.5

 3

In the context of the Research Infrastructures1 and system of systems, we can define an
information system (IS) as a software system

• to capture, transmit, store, retrieve, and manipulate data produced by software
systems;

• to provide access to information - organized for a purpose and within a contextual
domain - that are used, accessed, and maintained according to well-known
procedures operated under the limit of the (evolving) organization policies;

• to support people within an organization and other software systems.

2.2 Requirements

The analysis of the requirements of an information system capable of providing support for
a Research Infrastructure led to identification of the functionality the system has to provide
(functional requirements) and the constraints and performances it has to respect (non-
functional requirements). Functional requirements define a function of a system or its
components. Non-Functional requirements specify criteria that can be used to evaluate the
operation of a system, rather than specific behaviour.

It is important to stress that there is an interdependence between these two types of
requirements and the boundaries are not always explicit2. The provided implementation of
a functional requirement could impact on the achievement of a non-functional requirement.
Moreover, the practical achievement is a mix of architectural software design and
deployment architecture. The design may enable more than one deployment architecture
and this is important to accommodate the needs of the specific scenarios where the system
has to be exploited.

2.2.1 Functional Requirements

IEEE has defined Functional Requirements as "A requirement that specifies a function
that a system or system component must be able to perform"3According to this definition,
the following requirements have been identified:

• Contexts management: the system must support the management of different
context to allow segmentation and sharing of instances among the different context.
A typical context is a Virtual Research Environment (VRE).

• Types management: The system must enable model definition (e.g., PARTHENOS
Entities Model). This requires:

◦ the definition of a Data Definition Language (DDL);

◦ the design of dedicated APIs.

• Instances management: Create, Read, Update, Delete (CRUD) of any entity and
relation types defined in the system. To support these requirements the system must:

1 Research Infrastructures are facilities that provide resources and services for research communities to

conduct research and foster innovation. They can be used beyond research for education or public services
and they may be single-sited, distributed, or virtual. They include: major scientific equipment or sets of
instruments; collections, archives or scientific data; computing systems and communication networks; any
other research and innovation infrastructure of a unique nature which is open to external users.
2 Jonas Eckhardt, Andreas Vogelsang, and Daniel Mèndez Fernández. Are "non-functional" requirements
really non-functional? An investigation of non-functional requirements in practice. In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE) , pages 832–842, May 2016
3 IEEE (1990). Standard Glossary of Software Engineering Terminology. IEEE Standard 610.12-1990.

 4

◦ provide a Data Manipulation Language (DML);

◦ support univocal identification of any entities and relations;

◦ support instances validation against the registered schema.

• Referential Integrity is a property of data stating references within it are valid4. A
referential integrity constraint is defined as part of an association between two entity
types. The purpose of referential integrity constraints is to ensure that valid
associations always exist5;

• Propagation Constraints: the system has to enforce the defined remove
propagation constraints to the target entity if a client deletes either the source entity
or the relation between that source and target entities;

• Multi-tenancy support: exploitation of resources in contexts, hereafter shortly
referred as multi-context by offering:

◦ APIs to share instances across contexts;

◦ consistent views across contexts: entity and relation representations must be
observable at the same time from any context the instances belong to;

◦ context views as well as global view at any level of the context hierarchy;

◦ propagation constraints enforcement to observe both add and remove
propagation constraints to the target entity if a client adds or remove either the
source entity or the relation between that source and target entities;67

• Dynamic Query (no pre-defined query): capabilities of a system allowing clients to
build their own query and submit it to the system with no long-term impact on the
JRR. With regard to relational databases, this characteristic seems obvious (provided
by SQL). Unfortunately, especially with the new trend of NoSQL, this same
functionality is not supported by some types of NoSQL databases;

• Standard Abstraction (desiderata) as far as the relational databases respect SQL
standard dialect, it is a desiderata that the JRR supports a standard family of query
language;

• Subscription Notification support allows "full decoupling of the communicating
entities in time, space, and synchronization" 8 which reflect the nature of loosely
coupled nature of distributed interaction in large-scale applications (such as a
Research Infrastructure). By providing this functionality, the possibility to construct
event-based services and to improve the scalability of the system will be ensured.

2.2.2 Non-Functional Requirements

Commonly Non-Functional Requirements are identified as "requirements that specify criteria
that can be used to judge the operation of a system, rather than specific behaviours"9.
Unfortunately, there is no consensus in the scientific community on a non-functional
requirements definition. Martin Glinz 10 has defined taxonomy to identify non-functional
requirements. In particular, a non-functional requirement can be:

4 https://en.wikipedia.org/wiki/Referential_integrity
5 https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/referential-integrity-constraint
6 https://en.wikipedia.org/wiki/Referential_integrity
7 https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/referential-integrity-constraint
8 Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. 2003. The many faces

of publish/subscribe. DOI=http://dx.doi.org/10.1145/857076.857078. ACM Comput. Surv. 35, 2 (June 2003),
114-131.
9 https://en.wikipedia.org/wiki/Non-functional_requirement
10 M. Glinz. On non-functional requirements. In Proc. 15th IEEE Int. Requirements Eng. Conf., 2007.

https://en.wikipedia.org/wiki/Referential_integrity
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/referential-integrity-constraint
https://en.wikipedia.org/wiki/Referential_integrity
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/referential-integrity-constraint
http://dx.doi.org/10.1145/857076.857078
https://en.wikipedia.org/wiki/Non-functional_requirement

 PARTHENOS – D6.5

 5

• An attribute: is a performance requirement or a specific quality requirement;

◦ A performance requirement is a requirement that pertains to a performance
concern;

◦ A specific quality requirement is a requirement that pertains to a quality concern
other than the quality of meeting the functional requirements.

• A constraint: is a requirement that constrains the solution space beyond what is
necessary for meeting the given functional, performance, and specific quality
requirements.

Under the above-mentioned definition and the taxonomy fall:

• High Availability (HA) is a characteristic of a system, which aims to ensure an
agreed level of operational performance, usually uptime, for a higher than normal
period 11;

• Eventual Consistency is a consistency model used in distributed computing to
achieve high availability that informally guarantees that, if no new updates are made
to a given data item, eventually all accesses to that item will return the last updated
value 12 . The Consistency, Availability, Partitionability (CAP) theorem13 states that it
is impossible for a distributed computer system to provide more than two of the
following three guarantees:

◦ Consistency (C): every read receives the most recent write or an error;

◦ Availability (A): every request receives a response, without a guarantee that it
contains the most recent version of the information;

◦ Partitionability (P): the system continues to operate despite arbitrary partitioning
due to network failures.

Given the CAP theorem and the fact that Availability and Partitionability are mandatory
requirements, we selected the Eventual Consistency requirement instead of the stronger
Consistency;

• Horizontal Scalability. Scalability is the capability of a system, network, or process
to handle a growing amount of work, or its potential to be enlarged to accommodate
that growth 14. Horizontally scalability (or scale out/in) means adding more nodes to
(or remove nodes from) a system, such as adding a new computer to a distributed
software application.

• Multi-Tenancy, i.e. a single instance of the technology should be able to serve many
“independent” contexts (between the same Application Domain) 15;

• EUPL licence compatibility of all its components.

11 https://en.wikipedia.org/wiki/High_availability
12 Werner Vogels. 2009. Eventually consistent. Commun. ACM 52, 1 (January 2009), 40-44. DOI:
https://doi.org/10.1145/1435417.1435432
13 Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed Computing, PODC ’00, pages 7–, New York, NY, USA, 2000.
ACM.
14 André B. Bondi. 2000. Characteristics of scalability and their impact on performance. In Proceedings of the
2nd international workshop on Software and performance (WOSP '00). ACM, New York, NY, USA, 195-203.
DOI=http://dx.doi.org/10.1145/350391.350432
15 Please note that different Application domain must be managed by completely separated instances of the
whole IS.

https://wiki.gcube-system.org/gcube/Information_System#cite_note-9
https://en.wikipedia.org/wiki/High_availability
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1435417.1435432
http://dx.doi.org/10.1145/350391.350432

 6

2.3 Architecture

The architecture of this information system comprises several components. It includes the
software components dealing with the generic and the tailored entities models; the services
components implementing the capabilities to interact with those entities; the backend
database used to persist the entities; and finally, the graphical user interface oriented for
human exploitation and visualization of the entities.

The architecture of the information system is, therefore, composed of the following software
components:

• Facet Based Resource Model libraries:

◦ Information System Model library;

◦ gCube Model library;

◦ PARTHENOS Model library.

◦

• Joint Resource Registry:

◦ Resource Registry Service;

◦ Resource Registry Context Client;

◦ Resource Registry Schema Client;

◦ Resource Registry Publisher;

◦ Resource Registry Client.

◦

• Backend Database (i.e. OrientDB as Graph Database);

◦

• Information System Subscription Notification Service;

◦

• Graphical User Interface (GUI).

https://orientdb.com/

 PARTHENOS – D6.5

 7

3 Facet Based Resource Model

The PARTHENOS Joint Resource Registry Data Model is extensively presented in Section
6 of the deliverable D5.2 Design of the Joint Resource Registry. In the following sections,
some basic information about the Resource Model is reported since this is largely used in
the remaining part of this document.

3.1 Information System Model

3.1.1 Basic Concept

Two typologies of Entities are envisaged:

• Resources, i.e. entities representing a description of "thing" to be managed;

Every Resource is characterized by a number of Facets;

• Facets, i.e. entities contributing to "build" a description of a Resource. Every facet,
once attached to a Resource profile, captures a certain aspect / characterization of
the resource. Every facet is characterized by a number of properties.

Two typologies of Relations are envisaged:

• isRelatedTo, i.e. a relation linking any two Resources.

• consistsOf, i.e. a relation connecting each Resource with one of the Facets
characterizing it;

 8

Each Entity and Relation

• has a header automatically generated for the sake of identification and provenance
of the specific information;

• can be specialized

◦ A number of specializations are identified below. Such specialisations are
managed by the gCube Core services, i.e. Core services builds upon these
specialisations to realise its management tasks;

◦ Other specialisations can be defined by clients, the system make it possible to
store these additional typologies of relations and facets and to discover them.

Facet and Relation instances can have additional properties which are not defined in the
schema (henceforth schema-mixed mode).

Relation properties:

• Any relation has a direction, i.e. a "source" (out bound of the relation) and a "target"
(in bound of the relation). Anyway, the relation can be also navigated in the opposite
direction;

• It is not permitted to define a Relation having a Facet as "source". In other words:

◦ It is not permitted to define a Relation connecting a Facet with another one;

◦ It is not permitted to define a Relation connecting a Facet with a Resource (as
target);

• A Facet instance can be linked (by consistsOf or any specialization of it) from
different Resources.

Any Property can be enriched with the following attributes:

• name* (String): the property name;

• type*: the type of the property (e.g. String, Integer, ...);

• description (String, default=null): the description of the property.

• mandatory (Boolean, default=false): indicate if the property is mandatory or not;

• readOnly (Boolean, default=false): the property cannot change its value;

• notNull (Boolean, default=false): whether the property must assume a value diverse
from 'null' or not;

• max (Integer, default=null): whether the property can be limited to a maximum value;

• min (Integer, default=null): whether the property can be limited to a minimum value;

• regexpr (String, default=null): a regular expression16 to validate the property.

16 https://en.wikipedia.org/wiki/Regular_expression

https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#consistsOf
https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Property_Type
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

 PARTHENOS – D6.5

 9

Table 1: Basic Property Types

Type Java type Description

Boolean java.lang.Boolean or boolean Handles only the values True or

False.

Integer java.lang.Integer or int or java.math.BigInteger 32-bit signed Integers.

Short java.lang.Short or short Small 16-bit signed integers.

Long java.lang.Long or long Big 64-bit signed integers.

Float java.lang.Float or float Decimal numbers.

Double java.lang.Double or double Decimal numbers with high

precision.

Date java.util.Date Any date with the precision up to

milliseconds.

String java.lang.String Any string as alphanumeric sequence

of chars.

Embedded ?extends

org.gcube.informationsystem.model.embedded.Embedded

This is an Object contained inside the

owner Entity and has no Header. It is

reachable only by navigating the

owner Entity.

Embedded

list

List<? extends

org.gcube.informationsystem.model.embedded.Embedded>

List of Objects contained inside the

owner Entity and have no Header.

They are reachable only by

navigating the owner Entity.

Embedded set Set<? extends

org.gcube.informationsystem.model.embedded.Embedded>

Set (no duplicates) of Objects

contained inside the owner Entity

and have no Header. They are

reachable only by navigating the

owner Entity.

Embedded

map

Map<String, ? extends

org.gcube.informationsystem.model.embedded.Embedded>

Map of Objects contained inside the

owner Entity and have no Header.

They are reachable only by

navigating the owner Entity.

Byte java.lang.Byte or byte Single byte. Useful to store small 8-

bit signed integers.

Binary java.lang.Byte[] or byte[] Can contain any value as byte array.

https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#Header

 10

Table 2: Derived Property Types

Type Java type Description

Enum java.lang.Enu

m or enum

By default, it is represented using the String representation of the Enum so that the

primitive type used will be String. The enumeration is checked by setting the Regexpr

property. The Regular Expression is auto-generated and it will be something like

^(FIRST-ENUM-STRING_REPRESENTATION|SECOND-ENUM-

STRING_REPRESENTATION|...|LAST_ENUM_STRING_REPRESENTATION)$.

Otherwise (if indicated using an annotation), it can be represented using the Integer value

of the Enum so that the primitive type used will be Integer. The enumeration is checked

using Max and Min properties.

UUID java.util.UUID String representation of the UUID. The check is obtained using the regular expression

^([a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}){1}$

URL java.net.URL String representation of the URL. No check actually.

URI java.net.URI String representation of the URI. No check actually.

Table 3: Header

Name Type Attributes Description

uuid UUID Mandatory=true

NotNull=true

ReadOnly=true

This uuid can be used to univocally identify the Entity

or the Relation

creator String Mandatory=true

NotNull=true

ReadOnly=true

Filled at creation time. The creator is retrieved using

the authorization token

creationTime Date Mandatory=true

NotNull=true

ReadOnly=true

Creation time in milliseconds. Represent the difference,

measured in milliseconds, between the creation time

and midnight, January 1, 1970 UTC

lastUpdateTime Date Mandatory=true

NotNull=true

Last Update time in milliseconds. Represent the

difference, measured in milliseconds, between the last

update time and midnight, January 1, 1970 UTC

Table 4: Propagation Constraints

Name Type Attributes Description

remove Enum Mandatory=true

NotNull=true

Regex=(cascadeWhenOrphan|cascade|keep)

Indicate the behaviour to Resource Registry to

be applied to the target Entity when the source

Entity is remove from context or deleted

add Enum Mandatory=true

NotNull=true

Regex=(propagate|unpropagate)

Indicate the behaviour to Resource Registry to

be applied to the target Entity when the source

Entity is added to Context

Any Relation contains such a property. If the values are not specified at creation time, the
system will initialize it following the following rules:

https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#Relation

 PARTHENOS – D6.5

 11

• IsRelatedTo Relation: remove=keep, add=unpropagate

• ConsistsOf Relation: remove=cascadeWhenOrphan, add=propagate

3.1.2 Entity

The resource entity is conceived to describe every "main thing" to be registered in and
discovered through the Joint Resource Registry.

Table 5: Resource

Resource

Source Relation Multiplicity Target Description

Facets

Resource isIdentifiedBy 1..n Facet Any Resource has at least one Facet which in

some way allow to identify the Resource per

se.

Resource consistsOf 0..n Facet Any Resource consist of zero or more Facets

which describes the different aspects of the

facet.

Relations

Resource isRelatedTo 0..n Resource Any Resource can be related to any other

resource.

3.1.3 Facet

Facets are collections of attributes conceived to capture a certain feature / aspect of the
resource they are associated with.

Every Facet has:

• A Header automatically generated to capture identification- and provenance-related
aspects of the facet once it is instantiated;

• Zero or more properties. Besides the per-facet envisaged properties, clients can add
new ones.

3.1.4 Relation

Every relation has:

• A Header

• A PropagationConstraint

• Zero or More properties (not necessarily predefined, similarly to Facets).

 12

Table 6: isRelatedTo

Source Relation Multiplicity Target Description

Resource isRelatedTo 0..n Resource A relation linking any two Resources.

Default PropagationConstraint has the following values: remove=keep, add=unpropagated.

Table 7: consistOf

Source Relation Multiplicity Target Description

Resource consistsOf 1..n Facet A relation connecting each Resource with

one of the Facet characterizing it.

Default PropagationConstraint has the following values: remove=cascadeWhenOrphan,
add=propagate.

Table 8: isIdentifiedBy

Source Relation Multiplicity Target Description

Resource isIdentifiedBy 1..n Facet A relation connecting each Resource with

one of the Facet which can be used to

identify the Resource.

 PARTHENOS – D6.5

 13

4 Joint Resource Registry

The Joint Resource Registry is designed to support the following operations:

• To capture, transmit, store, retrieve and manipulate data from any software system
enabled on the infrastructure, including:

◦ Location and properties;

◦ Status, load, exploitation usage, and accounting data.

• To provide access to information, organized to enable:

◦ Monitoring, validation, and reporting;

◦ Elasticity and pooling of resources;

• To support any software system to:

◦ Discover services and infrastructure resources.

The Joint Resource Registry enables:

• a set of resource management functions

◦ enabling functions:

▪ publication, discovery;

▪ monitoring, deployment;

▪ contextualization, security, execution.

◦ data management functions:

▪ access, store;

▪ index, search;

▪ transfer, transform.

• a set of applications

◦ built around those functions;

• an abstract view over functions

◦ defined by specifications;

◦ multiple implementations, over time / concurrently.

• secure and consistent entities evolution

◦ tailored support for facet and resource definition;

◦ implementations produce/consume different facets, independently.

• dynamic resource semantics

◦ no longer predefined in class hierarchies;

◦ implicitly captured by current facets;

◦ changes over time / across “similar” resources.

 14

4.1 Architecture

The constituent software components are:

• Resource Registry Service,

• Resource Registry Context Client,

• Resource Registry Schema Client,

• Resource Registry Publisher,

• Resource Registry Client.

4.1.1 Resource Registry Service

The Resource Registry Service is a web service running on SmartGears responsible for
storing information, in particular the global and partial view of:

• the resources (e.g. computing, storage, services, software, datasets);

• their current status (e.g. up and running, available);

• their relationships with other resources;

• the policies governing their exploitation.

The Resource Registry is developed only by using the concepts defined in the Information
System Model and it provides the capabilities to enrich its knowledge by creating new types
of entities and relations and their schemas. The Resource Registry is capable of serving
different applications domains (i.e. Context). To achieve this goal, the Resource Registry
provides capabilities for managing Contexts (the contexts are hierarchical) and associating
the entities and relations to one or more of the Contexts as requested by the different clients.
The Resource Registry is also responsible for notifying any update to or creation of any
entity or relation to Information System Subscription Notification Service.

To reach its goals, the Resource Registry offers four port types:

• Context Management: manage hierarchical contexts;

• Types Management: manages the definition of entities and relations types and their
schema. This choice allows for easy extension and support modification to the
resource model. This is the key factor for the sustainability of the service and
infrastructure that have to last for several years;

• Instances Management: manage instances of registered Entity and Relation type;

• Sharing Management: manages instances sharing across different contexts;

• Query & Access: query instances and get the schema definition of registered types.

Every Port type is exposed as REST17 API. 18REST is an excellent architectural style to
support scalability of service while keeping the complexity of design, implementation, and
deployment at very affordable costs. During the last decade, REST has emerged as a best
practice to design web services. For such a reason, REST has guided the design of the
JRR. REST is an architectural style defined in 2000 by Roy Thomas Fielding. REST defines
six principles and four constraints but it does not provides any concrete guideline or
architecture. An example of concrete architecture for REST is ROA (Resource Oriented
Architecture) which is based on HTTP 1.1. The design of the Resource Registry service

17 https://en.wikipedia.org/wiki/Representational_state_transfer
18 https://en.wikipedia.org/wiki/JSON

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/JSON

 PARTHENOS – D6.5

 15

follows the ROA guidelines. In particular, every REST API is JSON19 based. This means
that any content present in an HTTP request is formatted using the JSON standard.

ROA uses standards HTTP methods applied to URI to realise Create, Read, Update,
Delete (CRUD) operations. Most used HTTP methods in ROA are POST, GET, PUT
and DELETE. According to HTTP specification 20 21:

• POST is used to create a new resource without providing the URI of creating
resource. The representation of the resource is sent, as part of the HTTP body, via
POST to the collection that will contain the resource. The server determines its
appropriate location, and it provides the resulting URI to the client. Also, PUT can be
used to create a new resource if the client provides the URI where the resource will
become available;

• GET is used to get the information about a resource;

• PUT is used to update an existing resource. This operation instructs the server to
apply a new representation as a replacement of the previous one;

• DELETE is used to delete an existing resource.

GET, PUT and DELETE must be idempotent, i.e., the same operation repeated multiple
times has the same side effect than using it one time. Request For Comments (RFC) 7231
clarifies that “repeating the request will have the same intended effect, even if the original
request succeeded, though the response might differ” 15. GET must have no side effect, and
this is also known as safe operation. “This does not prevent an implementation from
including behaviour that is potentially harmful, that is not entirely read-only, or that causes
side effects while invoking a safe method” 15.

Table 9: Mapping between HTTP methods and CRUD operations

CRUD Operation HTTP Method Safe Idempotent

Create POST No No

Read GET Yes Yes

Update22 PUT No Yes

Delete DELETE No Yes23

The table shows the mapping between HTTP methods and CRUD operations. Moreover, it
shows the property of safety and idempotency the methods must satisfy.

19 https://en.wikipedia.org/wiki/JSON
20 Henrik Frystyk Nielsen, Jeffrey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys, Paul J. Leach, and
Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, June 1999.
21 Roy T. Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. RFC
7231, June 2014.
22 Also Create to the URI where the resource will be available.
23 Allamaraju (Subbu Allamaraju. RESTful Web Services Cookbook: Solutions for Improving Scalability and
Simplicity. O’Reilly, first edition, Nov 2010) argues that DELETE idempotency should be accomplished client-
side. The server should inform the client if a delete succeeded because the resource was really deleted or it
was not found i.e., 404 Not Found error is suggested instead of 204 No Content. The latter situation should be
treated as idempotent by the client.

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON

 16

ROA gives particular emphasis on "make it a resource" paradigm and proposes descriptive
and predictable URI as technology to satisfy the resource identification constraint. Hence,
any resource in ROA has a URI.

4.1.2 Resource Registry Context Client

The Resource Registry Context Client is a java library providing RPC facilities to interact
with the Context Management port type. The library hides all the complexity of marshalling
and un-marshalling of requests and results. By using this library, any client can manage java
classes instead of JSON objects.

4.1.3 Resource Registry Types Client

The Resource Registry Schema Client is a java library providing RPC facilities to interact
with the Types Management port type. The library hides all the complexity of marshalling
and un-marshalling of requests and results. By using this library, any client can manage java
classes instead of JSON objects.

4.1.4 Resource Registry Publisher

The Resource Registry Publisher is a java library providing RPC facilities to interact with the
Instances Management port type. The library hides all the complexity of marshalling and
un-marshalling of requests and result. By using this library any client can manage java
classes instead of JSON objects.

4.1.5 Resource Registry Client

The Resource Registry Client is a java library providing RPC facilities to interact with the
Query & Access port type. The library hides all the complexity of marshalling and un-
marshalling of requests and result. By using this library any client manages java classes
instead of JSON objects.

 PARTHENOS – D6.5

 17

5 Interacting with Resource Registry Service

This section provides information regarding how to interact with the Resource Registry
Service by exploiting the Context and Schema Port Types. The REST APIs are also
presented for each functionality. Please note that the provided examples may intentionally
hide some details in the response to avoid unneeded complexity.

Resource Registry is a web service which represents the core component of the JRR. It is
designed to comply with Resource Oriented Architecture (ROA) by grouping the required
management APIs logically and making them "as a resource". The Resource Registry
service exposes five port-type. The term port type is used to indicate the first level Uniform
Resource Locator (URL) path starting from the service base path, i.e., if the service base
path is / then the URLs /a and /b are two different port types. Each port type exposes
RESTful APIs to satisfy one or more of the functional requirements identified.

• Contexts Management: manages hierarchical contexts. A VRE is a typical context
managed by the Resource Registry;

• Types Management: manages the definition of entities and relations types and their
schema. This choice allows for easy extension and support modification to the
resource model. This is the key factor for the sustainability of the service and
infrastructure that have to last for several years;

• Instances Management: manages entities and relations instances;

• Sharing Management: manages instances sharing across different contexts;

• Query and Access: supports the discovery of instances through access patterns and
queries.

The rest of this chapter presents these five port type by describing the exposed REST APIs.

Every port type uses the standard HTTP statuses to provide information regarding the
execution of the requested operations. In particular used status code for successful
operation are:

• 200 OK (used with PUT (update) and GET)

https://tools.ietf.org/html/rfc7231#section-6.3.1;

• 201 Created (used with PUT or POST when a resource is created)

https://tools.ietf.org/html/rfc7231#section-6.3.2;

• 204 No Content (used with HEAD and DELETE)

https://tools.ietf.org/html/rfc7231#section-6.3.5.

The most common error status a client can obtain are

• 400 Bad Request used to indicate a clients error

https://tools.ietf.org/html/rfc7231#section-6.5.1;

• 401 Unauthorized used to indicate that the client has not enough right to perform

such request
https://tools.ietf.org/html/rfc7235#section-3.1;

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service
https://tools.ietf.org/html/rfc7231#section-6.3.1
https://tools.ietf.org/html/rfc7231#section-6.3.2
https://tools.ietf.org/html/rfc7231#section-6.3.5
https://tools.ietf.org/html/rfc7231#section-6.5.1
https://tools.ietf.org/html/rfc7235#section-3.1

 18

• 404 Not Found used to indicate that the requested instance does not exists

https://tools.ietf.org/html/rfc7231#section-6.5.4;

• 405 Method Not Allowed the used HTTP method is not supported for the

requested URL https://tools.ietf.org/html/rfc7231#section-6.5.5. The response
contains the Allow HTTP Header indicating the supported HTTP method for such
URL https://tools.ietf.org/html/rfc7231#section-7.4.1;

• 409 Conflict the request could not be completed due to a conflict with the current

state of the target resource.
https://tools.ietf.org/html/rfc7231#section-6.5.8.];

• 500 Internal Server Error indicate a server failure.

https://tools.ietf.org/html/rfc7231#section-6.6.1.

5.1 Context Management

It is responsible for managing Context belonging to the same Application Domain.
The security configuration based on the Authorization Framework makes this port type
accessible only from the Resource Manager. In other words, no others client is allowed to
manage Context other than the Resource Manager. See D6.1 PARTHENOS Cloud
infrastructure for details about the Resource Manager and the Authorization Framework.

Context requirements are:

• No predefined number of levels;

• Possibility to change the name of the Context with no impact for any component;

• Possibility to move a Context from a parent Context to another.

Available Methods:

• Listing: allows to enumerate the contexts;

• Create: allows to create a new context as a child of another context (if any). The
context has a name;

• Exists: allows to check if a Context exists;

• Read: allows to read a Context;

• Update: allows to rename a context or to move a context as a child of another
Context;

• Delete: allows to delete a Context.

Table 10: Context Management Operations, Methods and URLs

Operation HTTP Method URL

Listing GET /contexts

Create PUT /contexts/{CONTEXT_UUID}

Read GET /contexts/{CONTEXT_UUID}

Exists HEAD /contexts/{CONTEXT_UUID}

Update PUT /contexts/{CONTEXT_UUID}

Delete DELETE /contexts/{CONTEXT_UUID}

Any request to this port type has success if the following guarantees are satisfied:

https://tools.ietf.org/html/rfc7231#section-6.5.4
https://tools.ietf.org/html/rfc7231#section-6.5.5
https://tools.ietf.org/html/rfc7231#section-7.4.1
https://tools.ietf.org/html/rfc7231#section-6.5.8
https://tools.ietf.org/html/rfc7231#section-6.6.1

 PARTHENOS – D6.5

 19

• the hierarchy of contexts is a tree with an arbitrary number of levels;

• two contexts with the same name can only exist if they have different parents;

• any update to a context does not have any side effect on the instances belonging to
the context;

• it is not possible to delete a context if it contains instances. It is a responsibility of the
clients to remove the instances from the context (or delete them) before trying to
delete the context.

This section provides information regarding how to interact with Resource Registry Service

for Context Management. Apart from the REST API, this port type can be used also by using

Resource Registry Context Client Java library. Both REST and Java APIs are presented.

The provided examples can intentionally hide some details to avoid unneeded complexity.

Resource Registry Context Client has the following Maven coordinates:

<dependency>
 <groupId>org.gcube.information-system</groupId>
 <artifactId>resource-registry-context-client</artifactId>
 <version>[1.0.0-SNAPSHOT, 2.0.0-SNAPSHOT)</version>
</dependency>

To use the client, you need first get a ResourceRegistryPublisher instance.

By using ResourceRegistryPublisherFactory.create() method the library

discovers the correct endpoint to interact with the Resource Registry for the current context.

SecurityTokenProvider.instance.set("Your-Token-Here");
ResourceRegistryContextClient resourceRegistryContextClient =
 ResourceRegistryContextClientFactory.create();

5.1.1 Contexts Listing

GET /contexts

Return the list of existing contexts.

5.1.2 Create Context

Create new Context as child of another Context (if any).

PUT /contexts/{CONTEXT_UUID}

5.1.2.1 Create Context Example 1

Create a new Context with named ParthenosInfrastructure with no parent. It is a ROOT
Context.

Request URL

PUT /contexts/2705dd32-c857-444b-818a-3ec69e339e5d

Request Body
{
 "@class": "Context",
 "name": "ParthenosInfrastructure",
 "header": {
 "@class": "Header",

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Publisher
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Publisher
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Publisher
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Publisher

 20

 "uuid": "2705dd32-c857-444b-818a-3ec69e339e5d"
 }
}

Response Body
{
 "@class": "Context",
 "name": "ParthenosInfrastructure",
 "header": {
 "@class": "Header",
 "uuid": "2705dd32-c857-444b-818a-3ec69e339e5d",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2017-03-1711:47:55",
 "lastUpdateTime": "2017-03-17 11:47:55"
 }
}

Java API

Context parthenosInfrastructure = new ContextImpl("ParthenosInfrastructure");
resourceRegistryContextClient.create(parthenosInfrastructure);

5.1.2.2 Create Context Example 2

Create a new Context with named ParthenosVO as child of Context with UUID 2705dd32-
c857-444b-818a-3ec69e339e5d (ParthenosInfrastructure)

Request URL

PUT /contexts/30f6254c-c87a-451e-bc0f-7cfcbd94a84a

Request Body
{
 "@class": "Context",
 "name": "ParthenosVO",
 "header": {
 "@class": "Header",
 "uuid": "30f6254c-c87a-451e-bc0f-7cfcbd94a84a"

},
 "parent" : "2705dd32-c857-444b-818a-3ec69e339e5d"
}

Response Body
{
 "@class": "Context",
 "name": "ParthenosVO",
 "header": {
 "@class": "Header",
 "uuid": "30f6254c-c87a-451e-bc0f-7cfcbd94a84a",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2017-03-17 11:47:56",
 "lastUpdateTime": "2017-03-17 11:47:56"
 },
 "parent" : "2705dd32-c857-444b-818a-3ec69e339e5d"
}

 PARTHENOS – D6.5

 21

Java API

Context parthenosVO = new ContextImpl("ParthenosVO");
parthenosVO.setParent(parthenosInfrastructure);
esourceRegistryContextClient.create(parthenosVO);

5.1.3 Read Context

Return the definition of the Context identified by the UUID provided as path parameter.

Request URL

GET /contexts/{CONTEXT_UUID}

5.1.3.1 Read Context Example

Read the Context having UUID 30f6254c-c87a-451e-bc0f-7cfcbd94a84a.

Request URL

GET /contexts/30f6254c-c87a-451e-bc0f-7cfcbd94a84a

Response Body
{
 "@class": "Context",
 "name": "ParthenosVO",
 "header": {
 "@class": "Header",
 "uuid": "30f6254c-c87a-451e-bc0f-7cfcbd94a84a",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2017-03-17 11:47:56",
 "lastUpdateTime": "2017-03-17 11:47:56"
 },
 "parent" : "2705dd32-c857-444b-818a-3ec69e339e5d"
}

Java API

resourceRegistryContextClient.read("30f6254c-c87a-451e-bc0f-7cfcbd94a84a");

5.1.4 Verify Context

Check if the Context identified by the UUID provided as path parameter exists.

Request URL

HEAD /contexts/{CONTEXT_UUID}

5.1.4.1 Verify Context Examples

Check the Context having UUID 30f6254c-c87a-451e-bc0f-7cfcbd94a84a.

Request URL

HEAD /contexts/30f6254c-c87a-451e-bc0f-7cfcbd94a84a

 22

If the context exist the response HTTP status code is 204 No Content, otherwise is 404

Not Found.

Java API

resourceRegistryContextClient.exists("30f6254c-c87a-451e-bc0f-7cfcbd94a84a");

5.1.5 Update Context

Rename or move a Context identified by the UUID provided as path parameter.

Request URL

PUT /contexts/{CONTEXT_UUID}

5.1.5.1 Rename Context Example

Rename a Context 30f6254c-c87a-451e-bc0f-7cfcbd94a84a (was ParthenosVO) to the new
name ParthenosCommunity.

Request URL

PUT /contexts/30f6254c-c87a-451e-bc0f-7cfcbd94a84a

Request Body
{
 "@class": "Context",
 "name": "ParthenosCommunity",
 "header": {
 "@class": "Header",
 "uuid": "30f6254c-c87a-451e-bc0f-7cfcbd94a84a"
 },
 "parent" : "2705dd32-c857-444b-818a-3ec69e339e5d"
}

Response Body
{
 "@class": "Context",
 "name": "ParthenosCommunity",
 "header": {
 "@class": "Header",
 "uuid": "30f6254c-c87a-451e-bc0f-7cfcbd94a84a",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2017-03-17 11:47:56",
 "lastUpdateTime": "2017-03-17 11:57:36"
 },
 "parent" : "2705dd32-c857-444b-818a-3ec69e339e5d"
}

Java API

parthenosVO.setName("ParthenosCommunity");
Context parthenosCommunity = resourceRegistryContextClient.update(parthenosVO);

 PARTHENOS – D6.5

 23

5.1.5.2 Move Context Example

Move the Context 30f6254c-c87a-451e-bc0f-7cfcbd94a84a as ROOT Context.

Request URL

PUT /contexts/30f6254c-c87a-451e-bc0f-7cfcbd94a84a

Request Body
{
 "@class": "Context",
 "name": "ParthenosCommunity",
 "header": {
 "@class": "Header",
 "uuid": "30f6254c-c87a-451e-bc0f-7cfcbd94a84a"
 },
 "parent" : null
}

Response Body
{
 "@class": "Context",
 "name": "ParthenosCommunity",
 "header": {
 "@class": "Header",
 "uuid": "30f6254c-c87a-451e-bc0f-7cfcbd94a84a",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2017-03-17 11:47:56",
 "lastUpdateTime": "2017-03-17 11:58:21"
 }
}

Java API

parthenosCommunity.setParent(null);
resourceRegistryContextClient.update(parthenosCommunity);

5.1.6 Delete

Delete the Context identified by the UUID provided as path parameter.

Request URL

DELETE /contexts/{CONTEXT_UUID}

5.1.6.1 Delete Context Example

Delete the Context having UUID 30f6254c-c87a-451e-bc0f-7cfcbd94a84a.

Request URL

PUT /contexts/30f6254c-c87a-451e-bc0f-7cfcbd94a84a

The returned HTTP status is 204 No Content.

 24

Java API

resourceRegistryContextClient.delete(parthenosCommunity);

5.2 Types Management

Types Management is responsible for managing the instantiation of the IS Model by allowing
the definition of entities, relations and embedded types and their schema. Giving the REST
principle Manipulation Of Resources Through Representations the defined Data Definition
Language (DDL) (see functional requirement) is a specification of the representation of a
type.

This port type exposes the following APIs:

• Listing: allows to enumerate the types;

• Create: allows to create a new type;

• Exists: allows to check if a type exists;

• Read: allows to read a type definition;

• Delete: allows to delete a type.

Table 11: Types Management Operations, Methods and URLs

Operation HTTP Method URL

Listing GET /types

Create PUT /types/{TYPE_NAME}

Read GET /types/{TYPE_NAME}

Exists HEAD /types/{TYPE_NAME}

Delete DELETE /types/{TYPE_NAME}

Types Management does not provide the capability to update the specification of a type. No
one could know what the impact on changing the schema of a type would be because
potentially any client could create them. The IS Model provides by design the support for
evolution via inheritance and schema-mixed mode.

The Types Management implements the following policies:

• it ignores all the properties a client tries to define for a resource;

• it deletes a type only if the type has no instances and no sub-types;

• it supports multiple inheritance;

• it enforces inheritance rules. A type can have only one ancestor between Resource,
Facet, isRelatedTo, consistsOf. The specialisations of any relation must have source
and target entity types hierarchically compatibles with the parent relations.

This section provides information regarding how to interact with Resource Registry Service

for Types Management. Apart from the REST API, this port type can be used also by using

Resource Registry Schema Client Java library. Both REST and Java APIs are presented.

The provided examples can intentionally hide some details to avoid unneeded complexity.

Resource Registry Schema Client has the following Maven coordinates:

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Publisher
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Publisher
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Publisher

 PARTHENOS – D6.5

 25

<dependency>
 <groupId>org.gcube.information-system</groupId>
 <artifactId>resource-registry-schema-client</artifactId>
 <version>[1.0.0-SNAPSHOT, 2.0.0-SNAPSHOT)</version>
</dependency>

To use the client, you need first get a ResourceRegistrySchemaClient instance.

By using ResourceRegistrySchemaClientFactory.create() method the library

discovers the correct endpoint to interact with the Resource Registry for the current context.

SecurityTokenProvider.instance.set("Your-Token-Here");
ResourceRegistrySchemaClient resourceRegistrySchemaClient =
 ResourceRegistrySchemaClientFactory.create();

5.2.1 Type Definition

Any Type is described by the following attributes:

• name* (String): the type name;

• description (String, default=null): the description of the type;

• abstract (Boolean, default=false): indicate if the type is an abstract or concrete. It is
not possible to instantiate an abstract type;

• superclasses* (List<String>): the list of all super types of this type. Multiple
Inheritance is supported.

• properties: zero or more properties. Any property is described by the following
attributes:

◦ name* (String): the property name;

◦ type*: the type of the property (e.g. String, Integer, ...);

◦ description (String, default=null): the description of the property.

◦ mandatory (Boolean, default=false): indicate if the property is mandatory or not;

◦ readOnly (Boolean, default=false): the property cannot change its value;

◦ notNull (Boolean, default=false): whether the property must assume a value
diverse from 'null' or not;

◦ max (Integer, default=null): whether the property can be limited to a maximum
value;

◦ min (Integer, default=null): whether the property can be limited to a minimum
value;

◦ regexpr (String, default=null): a regular expression24 to validate the property.

Each Relation has two additional mandatory attributes:

• source: indicates the required source type to instantiate such a relation;

• target: indicates the required target type to instantiate such a relation.

Each Resource has two arrays (instead of properties):

24 https://en.wikipedia.org/wiki/Regular_expression

https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#Property
https://wiki.gcube-system.org/gcube/Interacting_with_Resource_Registry_Service_-_Context_and_Schema_Port_Type#Property_Type
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

 26

• facets: this array defines which Facet types describe the resource and which
consistsOf relation type must be used to connect the facet instance;

• resources: this array defines which other Resource types could be related to the
defined type and which isRelatedTo relation type could be used to connect the
instances of them. The array contains only the outbound relations.

Each element of the ‘facets’ and ’resources’ arrays contained in the Resource definition is
composed of six attributes (* indicates a mandatory attribute):

• source* (String): it is always the name of the defined target type;

• relation* (String): the relation type name to be used to connect the source type to
the target type;

• target* (String): the target type name of the relation [String];

• description (String, default=null): the description of the reason why the source and
the target should be related;

• max (Integer, default=null): the upper bound number of relations between the source
and target types (null means unbounded);

• min (Integer, default=null): the lower bound number of relations between the source
and target types (null is the same as zero which means that the relation is optional).
Optional relations are specified as to provide suggestion to whom is interested in
instantiating the resource type.

5.2.2 Type Creation

Allow to create new Entity or Relation or Embedded Type.

Request URL

PUT /types/{TYPE_NAME}

5.2.2.1 Resource Type Creation Example

PUT /types/Actor

Request Body
{
 "name": "Actor",
 "description": "Any entity (human or machine) playing an active role.",
 "abstractType": true,
 "superclasses": ["Resource"],
 "facets": [
 ...
],
 "resources": [
 ...
]
}

 PARTHENOS – D6.5

 27

Java API

public interface Actor extends Resource {

 public static final String NAME = "Actor";
 public static final String DESCRIPTION = "Any entity (human or machine) playing an active role.";
 public static final String VERSION = "1.0.0";

 ...
}

resourceRegistrySchemaClient.create(Actor.class);

5.2.2.2 Facet Type Creation Example

PUT /types/ContactFacet

Request Body
{
 "name": "ContactFacet",
 "description": "This facet is expected to capture contact information",
 "abstractType": false,
 "superclasses":["Facet"],
 "properties":[
 {
 "name": "name",
 "description": "First Name",
 "mandatory": true,
 "readonly": false,
 "notnull": true,
 "max": null,
 "min": null,
 "regexpr": null,
 "linkedType": null,
 "linkedClass": null,
 "type": 7 /* String*/
 },
 ...,
 {
 "name": "eMail",
 "description": "A restricted range of RFC 822 compliant email address. ... ",
 "mandatory": true,
 "readonly": false,
 "notnull": true,
 "max": null,
 "min": null,
 "regexpr":"^[a-z0-9._%+-]{1,128}@[a-z0-9.-]{1,128}$",
 "linkedType": null,
 "linkedClass": null,
 "type":7 /* String */
 }
]
}

 28

Java API

public interface ContactFacet extends Facet {

 public static final String NAME = "ContactFacet";
 public static final String DESCRIPTION = "This facet is expected to capture contact information";
 public static final String VERSION = "1.0.0";

 public static final String EMAIL_PROPERTY = "eMail";
 public static final String EMAIL_PATTERN = "^[a-z0-9._%+-]{1,128}@[a-z0-9.-]{1,128}$";

 @ISProperty(mandatory=true, nullable=false)
 public String getName();

 public void setName(String name);

 @ISProperty
 public String getTitle();

 public void setTitle(String title);

 @ISProperty
 public String getMiddleName();

 public void setMiddleName(String middleName);

 @ISProperty(mandatory=true, nullable=false)
 public String getSurname();

 public void setSurname(String surname);

 @ISProperty(name=EMAIL_PROPERTY, mandatory=true, nullable=false, regexpr=EMAIL_PATTERN)
 public String getEMail();

 public void setEMail(String eMail);

}

5.2.2.3 IsRelatedTo Type Creation Example

PUT /types/Hosts

Request Body
{
 "name": "Hosts",
 "description": "...",
 "abstractType": false,
 "superclasses": ["IsRelatedTo"],
 "properties": null,
 "source": "Site",
 "target": "Service"
}

 PARTHENOS – D6.5

 29

Java API

public interface Hosts<Out extends Site, In extends Service>
 extends IsRelatedTo<Out, In> {

 public static final String NAME = "Hosts";

}

resourceRegistrySchemaClient.create(Hosts.class);

5.2.2.4 ConsistsOf Type Creation Example

PUT /types/HasContact

Request Body
{
 "name": "HasContact",
 "description": "...",
 "abstractType": false,
 "superclasses": ["ConsistsOf"],
 "properties": null,
 "source": "Resource",
 "target": "ContactFacet"
}

Java API
public interface HasContact
 <Out extends Resource, In extends ContactFacet>
 extends ConsistsOf<Out, In> {

 public static final String NAME = "HasContact";

}

resourceRegistrySchemaClient.create(HasContact.class);

5.2.3 Embedded Type Creation Example

PUT /types/AccessPolicy

Request Body
{
 "name": "AccessPolicy",
 "description": "...",
 "abstractType": false,
 "superclasses": ["Embedded"],
 "properties":[
 {
 "name": "policy",
 "description": "...",
 "mandatory": false,
 "readonly": false,
 "notnull": false,

 30

 "max": null,
 "min": null,
 "regexpr": null,
 "linkedType": null,
 "linkedClass": "ValueSchema",
 "type": 9 /* Embedded */
 },
 {
 "name": "note",
 "description": "...",
 "mandatory": false,
 "readonly": false,
 "notnull": false,
 "max": null,
 "min": null,
 "regexpr": null,
 "linkedType": null,
 "linkedClass": null,
 "type":7 /* String */
 }
]
}

Java API

public interface AccessPolicy extends Embedded {

 public static final String NAME = "AccessPolicy";

 @ISProperty
 public ValueSchema getPolicy();

 public void setPolicy(ValueSchema policy);

 @ISProperty
 public String getNote();

 public void setNote(String note);
}

resourceRegistrySchemaClient.create(AccessPolicy.class);

5.2.4 Read Type Definition

It allows to read Type Definition.

Request URL

GET /types/{TYPE_NAME}

5.2.5 Read a Resource Definition Example

GET /types/Actor

 PARTHENOS – D6.5

 31

Response Body
{
 "name": "Actor",
 "description": "Any entity (human or machine) playing an active role.",
 "abstractType": true,
 "superclasses": ["Resource"],
 "facets": [
 ...
],
 "resources": [
 ...
]
}

Java API

resourceRegistrySchemaClient.read("Actor");

5.3 Instances Management

The Instances Management port type is responsible for the management of entities and

relation instances. It offers the following APIs:

• Create: it allows to create a new entity or relation instance in a certain context;

• Exists: it allows to check if an instance exists in a certain context;

• Read: it allows to get the representation of the requested instance in a certain

context;

• Update: it allows to update an instance in a certain context;

• Delete: it allows to delete an instance.

Table 12: Instances Management Operations, Methods and URLs

Operation HTTP Method URL

Create PUT /instances/{TYPE_NAME}/{UUID}

Read GET /instances/{TYPE_NAME}/{UUID}

Exists HEAD /instances/{TYPE_NAME}/{UUID}

Update PUT /instances/{TYPE_NAME}/{UUID}

Delete DELETE /instances/{TYPE_NAME}/{UUID}

The Instances Management implements the following policies:

• it manages the Header automatically;

• it allows to identify an instance via the Universally Unique Identifier (UUID) specified

in the Header;

 32

• it allows the creation of an instance only if the declared type is already present in

the system (previously registered via the Type Management port type);

• it validates the instance against the schema of the defined type;

• it imposes the default values of propagation constraints when the client does not

specify their values;

• it guarantees propagation constraints.

The gCube framework uses an authorisation token in the HTTP header to identify the user

and the context of each request. The authorisation framework equips the container running

the web services. It intercepts any requests, resolves the token and forwards the request to

the service if authorised, along with the user and the operating context.

The Resource Registry uses the context to identify the belonging instances and the user to

manage the Header properly:

• at creation time to initialise creator and modifiedBy properties;

• at updated time to updated modifiedBy property.

This section provides information regarding how to interact with Resource Registry Service

for Instances Management. Apart from the REST API, this port type can be used also by

using Resource Registry Publisher Java library. Both REST and Java APIs are presented.

The provided examples can intentionally hide some details to avoid unneeded complexity.

Resource Registry Publisher has the following Maven coordinates:

<dependency>
 <groupId>org.gcube.information-system</groupId>
 <artifactId>resource-registry-publisher</artifactId>
 <version>[1.0.0-SNAPSHOT, 2.0.0-SNAPSHOT)</version>
</dependency>

To use the client, you need first get a ResourceRegistryPublisher instance.

By using ResourceRegistryPublisherFactory.create() method the library

discovers the correct endpoint to interact with the Resource Registry for the current context.

SecurityTokenProvider.instance.set("Your-Token-Here");
ResourceRegistryPublisher resourceRegistryPublisher =
 ResourceRegistryPublisherFactory.create();

5.3.1 Create Facet Instance Example

PUT /instances/CPUFacet/69f0b376-38d2-4a85-bc63-37f9fa323f82

Request Body
{
 "@class": "CPUFacet",
 "header": {
 "@class": "Header",
 "uuid": "69f0b376-38d2-4a85-bc63-37f9fa323f82"

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Publisher
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Publisher

 PARTHENOS – D6.5

 33

 },
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "1 GHz"
}

Response Body
{
 "@class": "CPUFacet",
 "header": {
 "@class": "Header",
 "uuid": "69f0b376-38d2-4a85-bc63-37f9fa323f82",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2016-10-05 11:16:24",
 "lastUpdateTime": "2016-10-05 11:16:24"
 },
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "1 GHz"
}

Java API

CPUFacet cpuFacet = new CPUFacetImpl();
cpuFacet.setClockSpeed("1 GHz");
cpuFacet.setModel("Opteron");
cpuFacet.setVendor("AMD");

resourceRegistryPublisher.create(cpuFacet);

5.3.2 Update Facet Instance Example

PUT /instances/CPUFacet/69f0b376-38d2-4a85-bc63-37f9fa323f82

Request Body
{
 "@class": "CPUFacet",
 "header": { "uuid":"69f0b376-38d2-4a85-bc63-37f9fa323f82" },
 /* only the UUID is checked and must be the same of the UUID provided in the URL */
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed":"2 GHz"
}

Response Body
{
 "@class": "CPUFacet",
 "header": {
 "@class": "Header",

 "uuid": "69f0b376-38d2-4a85-bc63-37f9fa323f82",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2016-10-05 11:16:24",
 "lastUpdateTime": "2016-10-05 11:18:33"
 },
 "model": "Opteron",

 34

 "vendor": "AMD",
 "clockSpeed": "2 GHz"
}

Java API

createdCpuFacet.setClockSpeed("2 GHz");
resourceRegistryPublisher.update(createdCpuFacet);

5.3.3 Read Facet Instance Example

GET /instances/CPUFacet/69f0b376-38d2-4a85-bc63-37f9fa323f82

Response Body
{
 "@class": "CPUFacet",
 "header": {
 "@class": "Header",

 "uuid": "69f0b376-38d2-4a85-bc63-37f9fa323f82",
 "creator": "luca.frosini",
 "modifiedBy": "luca.frosini",
 "creationTime": "2016-10-05 11:16:24",
 "lastUpdateTime": "2016-10-05 11:18:33"
 },
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "2 GHz"
}

Java API

resourceRegistryPublisher.read("69f0b376-38d2-4a85-bc63-37f9fa323f82");

5.3.4 Delete Facet Instance

DELETE /instances/CPUFacet/69f0b376-38d2-4a85-bc63-37f9fa323f82

Java API

boolean deleted = resourceRegistryPublisher.delete(createdCpuFacet);

5.3.5 Create Resource Instance

PUT /instances/HostingNode/670eeabf-76c7-493f-a449-4e6e139a2e84

Request Body
{
 "@class": "HostingNode",
 "header": {
 "uuid": "670eeabf-76c7-493f-a449-4e6e139a2e84",
 ...
 }"consistsOf": [
 {

 PARTHENOS – D6.5

 35

 "@class": "ConsistsOf",
 "target": {
 "@class": "CPUFacet",
 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "2 GHz"
 }
 },
 {
 "@class": "IsIdentifiedBy",
 "target": {
 "@class": "NetworkingFacet",
 "ipAddress": "146.48.87.183",
 "hostName": "pc-frosini.isti.cnr.it",
 "domainName": "isti.cnr.it",
 "mask": "255.255.248.0",
 "broadcastAddress": "146.48.87.255"
 }
 }
],
 "isRelatedTo": [
 {
 "@class": "Hosts",
 "propagationConstraint": {
 "add": "unpropagate",
 "remove": "cascade"
 },
 "target": {
 "@class": " EService",
 "header": {
 "uuid": "9bff49c8-c0a7-45de-827c-accb71defbd3"
 }
 /* The EService was already created, so the UUID is enough to attach it by
using Hosts relation */

 }
 }
]
}

Response
{
 "@class": "HostingNode",
 "header": {
 "uuid": "670eeabf-76c7-493f-a449-4e6e139a2e84",
 ...
 },
 "consistsOf": [
 {
 "@class": "ConsistsOf",
 "header": {
 "uuid": "9d0b1b2b-ac4e-40a9-8dea-bec90076e0ca",
 ...
 },
 "target": {
 "@class": "CPUFacet",
 "header": {
 "uuid": "1daef6a8-5ca4-4700-844b-2a2d784e17b0",
 ...
 },

 36

 "model": "Opteron",
 "vendor": "AMD",
 "clockSpeed": "2 GHz"
 }
 },
 {
 "@class": "IsIdentifiedBy",
 "header": {
 "uuid": "02a7072c-4f72-4568-945b-9ddccc881e9f",
 ...
 },
 "target": {
 "@class": "NetworkingFacet",
 "header": {
 "uuid": "59617b01-5856-4d8e-b85c-590a42039933",
 ...
 },
 "ipAddress": "146.48.87.183",
 "hostName": "pc-frosini.isti.cnr.it",
 "domainName": "isti.cnr.it",
 "mask": "255.255.248.0",
 "broadcastAddress": "146.48.87.255"
 }
 }
],
 "isRelatedTo": [
 {
 "@class": "Hosts",
 "header": {
 "uuid": "47494ad0-e606-4630-9def-4c607761ae14",
 ...
 },
 "propagationConstraint": {
 "add": "unpropagate",
 "remove": "cascade"
 },
 "target": {
 "@class": "EService",
 "header": {
 "uuid": "9bff49c8-c0a7-45de-827c-accb71defbd3",
 ...
 }
 }
 }
]
}

Java API

NetworkingFacet networkingFacet = new NetworkingFacetImpl();
networkingFacet.setIPAddress("146.48.87.183");
networkingFacet.setHostName("pc-frosini.isti.cnr.it");
networkingFacet.setDomainName("isti.cnr.it");
networkingFacet.setMask("255.255.248.0");
networkingFacet.setBroadcastAddress("146.48.87.255");

networkingFacet = resourceRegistryPublisher.createFacet(networkingFacet);

HostingNode hostingNode = new HostingNodeImpl();

 PARTHENOS – D6.5

 37

CPUFacet cpuFacet = new CPUFacetImpl();
cpuFacet.setClockSpeed("2 GHz");
cpuFacet.setModel("Opteron");
cpuFacet.setVendor("AMD");
hostingNode.addFacet(cpuFacet);

IsIdentifiedByImpl<Resource,Facet> isIdentifiedBy = new IsIdentifiedByImpl<Resource, Facet>(hostingNode,
networkingFacet, null);
hostingNode.addFacet(isIdentifiedBy);

PropagationConstraint propagationConstraint = new PropagationConstraintImpl();
 propagationConstraint.setRemoveConstraint(RemoveConstraint.cascade);
propagationConstraint.setAddConstraint(AddConstraint.unpropagate);

Activates<HostingNode, EService> hosts = new ActivatesImpl<HostingNode, EService>(hostingNode,
eService, propagationConstraint);
hostingNode.attachResource(hosts);

hostingNode = resourceRegistryPublisher.createResource(hostingNode);

5.3.6 Update Resource Instance

PUT /instances/HostingNode/670eeabf-76c7-493f-a449-4e6e139a2e84

Request Body
{
 "@class": "HostingNode",
 "header": {
 "uuid": "670eeabf-76c7-493f-a449-4e6e139a2e84",
 ...
 },
 "consistsOf": [
 {
 "@class": "ConsistsOf",
 "header": {
 "uuid": "9d0b1b2b-ac4e-40a9-8dea-bec90076e0ca",
 ...
 },
 "target": {
 "@class": "CPUFacet",
 "header": {
 "uuid": "1daef6a8-5ca4-4700-844b-2a2d784e17b0",
 ...
 },
 "model": "Opteron",
 "vendor": "AMD",
 /* Updated the following property */
 "clockSpeed": "1 GHz"
 }
 },
 {
 "@class": "IsIdentifiedBy",
 "header": {
 "uuid": "02a7072c-4f72-4568-945b-9ddccc881e9f",
 ...
 },
 "target": {
 "@class": "NetworkingFacet",

 38

 "header": {
 "uuid": "59617b01-5856-4d8e-b85c-590a42039933",
 ...
 },
 "ipAddress": "146.48.87.183",
 "hostName": "pc-frosini.isti.cnr.it",
 "domainName": "isti.cnr.it",
 "mask": "255.255.248.0",
 "broadcastAddress": "146.48.87.255",
 /* Added the following property */
 "username": "luca.frosini"
 }
 }
]
}

Java API

networkingFacet = (NetworkingFacet) hostingNode.getIdentificationFacets().get(0);
networkingFacet.setAdditionalProperty("username", "luca.frosini");

cpuFacet = hostingNode.getFacets(CPUFacet.class).get(0);
cpuFacet.setClockSpeed("1 GHz");

hostingNode = resourceRegistryPublisher.updateResource(hostingNode);

5.3.7 Delete Resource Instance

PUT /instances/HostingNode/670eeabf-76c7-493f-a449-4e6e139a2e84

Java API

boolean deleted = resourceRegistryPublisher.deleteResource(hostingNode);

Similarly to the examples provided for Facets and Resources is possible to operate on
consistsOf and isRelatedTo relations. Here we just provide an example of consistsOf
creation.

5.3.8 Create ConsistsOf Instance

PUT /instances/IsIdentifiedBy/02a7072c-4f72-4568-945b-9ddccc881e9f

In this example the target Facet already exists. The Service set automatically the
propagation constraint to default values (i.e. remove=cascadeWhenOrphan,
add=propagate)

Request Body
{
 "@class": "IsIdentifiedBy",
 "header": {
 "uuid": "02a7072c-4f72-4568-945b-9ddccc881e9f",
 ...
 },
 "source": {
 "@class": "HostingNode",
 // The HostingNode must be already created. The header with UUID is enough.
 "header": {

https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#PropagationConstraint_Propagation_Constraint
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#PropagationConstraint_Propagation_Constraint

 PARTHENOS – D6.5

 39

 "uuid": "670eeabf-76c7-493f-a449-4e6e139a2e84"
 }
 },
 "target": {
 "@class": "NetworkingFacet",
 /* The NetworkingFacet already exists, so the UUID is enough to attach it by using
IsIdentifiedBy relation */
 "header": {
 "uuid": "59617b01-5856-4d8e-b85c-590a42039933"
 },
 }
}

Response
{
 "@class": "IsIdentifiedBy",
 "header": {
 "uuid": "02a7072c-4f72-4568-945b-9ddccc881e9f",
 ...
 },
 "propagationConstraint": {
 "add": "propagate",
 "remove": "cascadeWhenOrphan"
 },
 "source": {
 "@class": "HostingNode",
 "header": {
 "uuid": "670eeabf-76c7-493f-a449-4e6e139a2e84"
 }
 },
 "target": {
 "@class": "NetworkingFacet",
 "header": {
 "uuid": "59617b01-5856-4d8e-b85c-590a42039933",
 ...
 },
 "ipAddress": "146.48.87.183",
 "hostName": "pc-frosini.isti.cnr.it",
 "domainName": "isti.cnr.it",
 "mask": "255.255.248.0",
 "broadcastAddress": "146.48.87.255"
 }
}

5.4 Query and Access

Query and Access port type allows the performing of queries on instances in a specific con-
text. It exposes some of the safe methods already available through dedicated port types
in addition to query APIs.

Table 13: Query and Access Management Operations (grouped by inherited port type), Methods and
URLs.

Group Operation
HTTP

Method
URL

Contexts Listing GET /access/contexts

 40

Group Operation
HTTP

Method
URL

Existence HEAD /access/contexts/{CONTEXT_UUID}

Read GET /access/contexts/{CONTEXT_UUID}

Types

Listing GET /access/types

Existence HEAD /access/types/{TYPE_NAME}

Read GET
/access/types/{TYPE_NAME}

[?polymorphic=false]

Instances
Existence HEAD /access/instances/{TYPE_NAME}/{UUID}

Read GET /access/instances/{TYPE_NAME}/{UUID}

Query

Query all instances

of a type
GET

/access/query/{TYPE_NAME}

[?polymorphic=true]

Get filtered entities GET

/access/query/{ENTITY_TYPE_NAME}

/{RELATION_TYPE_NAME}

/{REFERENCE_ENTITY_TYPE_NAME}

[?polymorphic=true&direction=(in|out|both)

[&reference={REFERENCE_ENTITY_UUID}

&name1=value1&name2=value2&...]

Raw Query
Gremlin Query to

Graph
GET /query?q={query}

Table 13 shows the exposed APIs grouped by base URL. The APIs, which get context
Information:

• list all existent contexts;

• check if a context with a certain CONTEXT_UUID exists;

• read the representation of the context identified by the CONTEXT_UUID.

The APIs to retrieve types information:

• list all the registered types;

• check if a certain type exists;

• read the schema for the specified TYPE_NAME.

Using the parameter polymorphic=true, apart from the schema for the specified
TYPE_NAME, it returns also the schema of all the sub-types.

The APIs to get instances information:

• check if a certain instance exists;

• read the representation of a certain instance.

The above mentioned APIs has been already presented in the dedicated sections, hence
they will not be presented again. This section, instead, provides information regarding how
to interact with Resource Registry Service for Query and Raw Query parts. Apart from the
REST API, this port type can be used also by using Resource Registry Client Java library.
Both REST and Java APIs are presented. The provided examples can intentionally hide
some details to avoid unneeded complexity.

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Service
https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Publisher

 PARTHENOS – D6.5

 41

 42

Resource Registry Client has the following Maven coordinates:

<dependency>
 <groupId>org.gcube.information-system</groupId>
 <artifactId>resource-registry-client</artifactId>
 <version>[1.0.0-SNAPSHOT, 2.0.0-SNAPSHOT)</version>
</dependency>

To use the client, you need first get a ResourceRegistryClient instance.

By using ResourceRegistryClientFactory.create() method the library discovers

the correct endpoint to interact with the Resource Registry for the current context.

SecurityTokenProvider.instance.set("Your-Token-Here");
ResourceRegistryClient resourceRegistryClient =
 ResourceRegistryClientFactory.create();

5.4.1 Get All Instances of a Type

GET /access/query/{TYPE_NAME}[?polymorphic=true]

This APIs returns the list of all instances of a certain TYPE_NAME provided as a path

parameter. This API allows a client to indicate if it is interested in getting all the instances of
the specified type (all the instances of sub-types) or it requires only the instances of the
indicated type using polymorphic=false (default true).

5.4.1.1 Get All Instances of EService

GET /access/query/EService?polymorphic=false

Response
[
 {
 "@class": "EService",
 "header": {
 "uuid": "0717b450-a698-11e2-900a-a46c6ff57f05",
 ...
 },
 "consistsOf": [
 ...
],
 "isRelatedTo": [
 ...
],
 },
 ...,
 {
 "@class": "EService",
 "header": {
 "uuid": "3b6061f9-e2ab-4c01-b3b2-48b470a5b8a",
 ...
 },
 "consistsOf": [
 ...
],

https://wiki.gcube-system.org/gcube/Information_System_Resource_Registry#Resource_Registry_Publisher

 PARTHENOS – D6.5

 43

 "isRelatedTo": [
 ...
],
 }
]

5.4.1.2 Get All Instances of EService and subtypes

GET /access/query/EService?polymorphic=true

Response
[
 {
 "@class": "RunningPlugin",
 "header": {
 "uuid": "66d69dab-203e-45ff-b49e-a8fa4126a392",
 ...
 },
 ,
 "consistsOf": [
 ...
],
 "isRelatedTo": [
 ...
],
 },
 ...,
 {
 "@class": "EService",
 "header": {
 "uuid": "0717b450-a698-11e2-900a-a46c6ff57f05",
 ...
 },
 ,
 "consistsOf": [
 ...
],
 "isRelatedTo": [
 ...
],
 }
]

5.4.2 Get Filtered Entities

GET /access/query/{ENTITY_TYPE_NAME}

 /{RELATION_TYPE_NAME}/{REFERENCE_ENTITY_TYPE_NAME}

 [?polymorphic=true&direction=(in|out|both)

 [&reference={REFERENCE_ENTITY_UUID}

 &name1=value1&name2=value2&...]

This API returns the list of instances of a specific entity type (indicated by the first path
parameter i.e., ENTITY_TYPE_NAME) and filters them according to the following criteria:

• The second path parameter indicates which relation type (i.e.,
RELATION_TYPE_NAME) must be related to the obtained instances;

 44

• The direction of the relation can be specified by using direction query variable which
by default is both. The reference of the direction is the ENTITY_TYPE_NAME. Allowed

values for direction are (in|out|both);

• The third path parameter (i.e., REFERENCE_ENTITY_TYPE_NAME) defines the types

of the entity in the opposite side of the relation;

• The reference query parameter enforces a specific instance of referenced type by

specifying the UUID (i.e., REFERENCE_ENTITY_UUID);

• When the client does not indicate reference query parameter, it is possible to filter

between the reference entities by specifying an arbitrary number of name-value
couples. The API evaluates in AND the set of couple specified as query parameters
(i.e., &name1=value1&name2=value2);

• The polymorphic query parameter (default=true) indicates if the client is

requesting only instances of the indicated type (polymorphic=false) or also the

instances of any extension of the indicated type (polymorphic=true).

The service will return 400 Bad Request in case the indicated types are not compliant

with the model (e.g., specifying an isRelatedTo relation between a facet type and a resource
type).

This API is very versatile. Examples of use are:

• /access/query/Eservice/IsIdentifiedBy/SoftwareFacet?polymorph

ic=false&direction=out

this invocation allows to retrieve all the EService instances having a
SoftwareFacet related with IsIdentifiedBy. The only allowed direction is out

because IsIdentifiedBy is a specialisation of ConsistsOf which by definition

’exists’ (out) from a resource and ’enters’ (in) into a facet;

• /access/query/EService/IsIdentifiedBy/SoftwareFacet?polymorphic=true&direction=
out&reference=7bc997c3-d005-40ff-b9ed-c4b6a35851f1

This invocation allows retrieval of the EService instance identified by a SoftwareFacet

with UUID 7bc997c3-d005-40ff-b9ed-c4b6a35851f1. The URL has

polymorphic=true query parameter (it could be omitted because it is the default) this

means that the result could be for example a RunningPlugin (which is a specialisation of

EService) identified by the SoftwareFacet with such UUID. The direction=out query

parameter is the only valid value for the request to avoid to get a 400 Bad Request

response;

• /access/query/Resource/IsIdentifiedBy/ContactFacet?polymorphi

c=true&direction=out

This invocation allows retrieval of all the Resource instances (any type of Resource
instance giving the query parameter polymorphic=true) which is identified by a
ContactFacet;

• /access/query/Resource/ConsistsOf/ContactFacet?polymorphic=true&direction=out
This invocation allows retrieval of all the Resource instances (any type of Resource
instance giving the query parameter polymorphic=true) having a ContactFacet

related by any type of ConsistsOf relation (giving the query parameter

polymorphic=true);

 PARTHENOS – D6.5

 45

• /access/query/Service/Hosts/Site?polymorphic=true&direction=i

n

This invocation allows retrieval of all the Service instances having an incoming Hosts
relation (a specialisation of IsRelatedTo) from Site resource instances;

• /access/query/Service/Hosts/Site?polymorphic=true&direction=in&reference=16032
d09-3823-444e-a1ff-a67de4f350a8
This invocation allows retrieval of all the Service instances hosted by (having an
incoming Hosts relation from) the Site with UUID 16032d09-3823-444e-a1ff-
a67de4f350a;

• /access/query/Eservice/ConsistsOf/SoftwareFacet?polymorphic=true&direction=out
&group=accounting&name=accounting-service
This invocation allows to retrieve the EService instances identified by a

SoftwareFacet with group=accounting and name=accounting-service

(i.e., the running Accounting Service instances).

5.4.3 Raw Query

GET /query?q={query}

This API provides a way to query the underlying database persistence by using the
persistence query language dialect. This API does not provide any consistency with the
Information System Model concepts. The result is related to how the service decides to
represent the Information System Model concepts on persistence data model. At the time of
writing, the underlying database persistence is OrientDB. It should be used only for
development purposes because the way to represent the Information System Model
concepts can change at any time or can change the database persistence. At time of writing
the query language supported is OrientDB SQL Dialect25

This API is accessible only to infrastructure managers and administrators. The base path of
this API differs from the others to facilitate the definition of networking and authorisation
policies to restrict the access.

GET /query?q=SELECT FROM SoftwareFacet LIMIT 2

Response Body
{
 "result": [
 {
 "@type": "d",
 "@rid": "#99:5",
 "@version": 12,
 "@class": "SoftwareFacet",
 "header": {
 "@type": "d",
 "@version": 0,
 "@class": "Header",
 "uuid": "6b724a7c-9f51-4a4e-8e8e-1636ca2e9d29",
 "creator": "VREManagement:WhnManager:pc-frosini.isti.cnr.it_8080",
 "creationTime": "2017-10-05 16:09:02.618 +0200",
 "lastUpdateTime": "2017-10-05 17:23:44.191 +0200",
 "@fieldTypes": "creationTime=t,lastUpdateTime=t"
 },

25 http://orientdb.com/docs/last/SQL.html

https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#IS_Model
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#IS_Model
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#IS_Model
http://orientdb.com/docs/last/
http://orientdb.com/docs/last/
https://wiki.gcube-system.org/gcube/Facet_Based_Resource_Model#IS_Model
http://orientdb.com/docs/last/SQL.html
http://orientdb.com/docs/last/SQL.html

 46

 "name": "WhnManager",
 "description": "Web Hosting Node Service",
 "optional": false,
 "version": "2.0.0-SNAPSHOT",
 "group": "VREManagement",
 "in_IsIdentifiedBy": [
 "#168:5"
]
 },
 {
 "@type": "d",
 "@rid": "#99:6",
 "@version": 5,
 "@class": "SoftwareFacet",
 "header": {
 "@type": "d",
 "@version": 0,
 "@class": "Header",
 "uuid": "bc98eec4-4365-49fd-83b3-2cacaf17f8bf",
 "creator": "VREManagement:SmartExecutor:pc-frosini.isti.cnr.it_8080",
 "creationTime": "2017-10-05 17:22:06.351 +0200",
 "lastUpdateTime": "2017-10-05 17:23:44.206 +0200",
 "@fieldTypes": "creationTime=t,lastUpdateTime=t"
 },
 "name": "SmartExecutor",
 "description": "Smart Executor Service",
 "optional": false,
 "version": "1.7.0-SNAPSHOT",
 "group": "VREManagement",
 "in_IsIdentifiedBy": [
 "#168:6"
]
 }
],
 "notification": "Query executed in 0.147 sec. Returned 2 record(s)"
}

 PARTHENOS – D6.5

 47

6 Backend Database (i.e. OrientDB as Graph Database)

OrientDB is a Multi-Model Open Source NoSQL DBMS that brings together the power of
graphs and the flexibility of documents into one scalable high-performance operational
database26. OrientDB engine supports Graph, Document, Key/Value, and Object models.
A graph represents a network-like structure consisting of Vertices (also known as Nodes)
interconnected by Edges (also known as Arcs).

OrientDB's graph model is represented by the concept of a property graph, which defines
the following:

• Vertex - an entity that can be linked with other Vertices and has the following
mandatory properties:

o unique identifier,
o set of incoming Edges,
o set of outgoing Edges.

• Edge - an entity that links two Vertices and has the following mandatory properties:
o unique identifier,
o link to an incoming Vertex (also known as head),
o link to an outgoing Vertex (also known as tail).

In addition to mandatory properties, each vertex or edge can also hold a set of custom
properties. These properties can be defined by users, which can make vertices and edges
appear similar to documents. 27 Given that, we can say that OrientDB, used as graph
database, is de-facto a graph-document database. This peculiarity provides an excellent
support for the Information System model which has been mapped on OrientDB concepts
as following:

• Entities are modelled as Vertexes;

• Relations are modelled as Edges.

In both cases, the OrientDB internal ID has been hidden and, instead, the header property
(embedded) is created which provides, among others, the ID to uniquely identify the Entity
or Relation.

Another important characteristic is the native support of embedded properties. Embedded
properties are structured properties inside a vertex or an edge. The Header is the only
properties of resources.

OrientDB provides a simple referential integrity support guaranteeing that if a vertex is
deleted then every attached edge (incoming or outgoing) is also deleted. The Resource
Registry provides additional referential integrity support by using directives contained in
each PropagationConstraint property attached to edges. It is responsibility of the Resource
Registry to provide support for this.

26 http://orientdb.com/docs/2.2.x/
27 http://orientdb.com/docs/2.2.x/Tutorial-Introduction-to-the-NoSQL-world.html

http://orientdb.com/docs/2.2.x/
http://orientdb.com/docs/2.2.x/Tutorial-Introduction-to-the-NoSQL-world.html

 48

7 The Studio GUI

The Content administrator is allowed to use the Web Graphical User Interface (GUI)
provided with OrientDB called Studio.

Figure 1 shows the interface allowing browsing and searching of the content of the Joint
Resource Registry. It also allows the inspection of the schema of the resources defined in
the PARTHENOS Entity Model. At the top of the page the search bar is presented. The
browsing is paginated and the types are divided into vertex and edge types.

Figure 1: Schema Manager

Moreover, two different interfaces to get the results of a query are provided. The first one,
see Figure 2, provides textual results, while the second one, see Figures 3 and 4, provides
a graphical representation of the graph results of the query.

The interface providing textual results also allows editing of any of the presented instances
by clicking on the resulting row.

 PARTHENOS – D6.5

 49

Figure 2: Textual Query Inspector

The interface providing the representation of the graph instead allows inspection of the
content of the vertexes and edges by clicking on any one of them. The information is
provided in the side panel on the left. The side panel has two tabs: the first shows the
properties of the selected element; the second tab is used to change the presentation
information of the element such as the colour of the circle for vertexes, and the attached
label for edges and vertexes. The label can be either one of the attributes of the element or
OrientDB internal information such as the internal id.

 50

Figure 3: Graph Query Inspector

The Graph Query Inspector interface also allows iterative inspection by navigating the
relations (edges) created between the entities (vertexes). By clicking on the element an
overlay menu is presented. The menu directs the user to the valid options available for the
navigation.

Figure 4: Graph Editor

The Content administrator graphical user interface will be complemented by an additional
interface designed for end-users. This additional tool will present the content of the Joint
Resource Registry as a catalogue of resources. The catalogue will be searchable and

 PARTHENOS – D6.5

 51

browsable while faceted search will allow interactive inspections of the PARTHENOS
entities.

The end-user graphical user interface is currently under testing and validation and its
description will be added to the D6.5 Report on the Implementation of the Joint Resource
Registry (final) deliverable due at month 48. A preliminary screenshot of this interface is
shown in Figures 5 and 6. Figure 5 shows the welcome page allowing browsing between
the types and the research infrastructures (i.e. groups), Figure 6 shows an example of a
resource details.

Figure 5: End-user Graphical User Interface welcome page

 52

Figure 6: End-user Graphical User Interface resource details

	Table of Contents
	List of Tables
	List of Figures
	1 Executive Summary
	2 Introduction
	2.1 Definition
	2.2 Requirements
	2.2.1 Functional Requirements
	2.2.2 Non-Functional Requirements

	2.3 Architecture

	3 Facet Based Resource Model
	3.1 Information System Model
	3.1.1 Basic Concept
	3.1.2 Entity
	3.1.3 Facet
	3.1.4 Relation

	1
	4 Joint Resource Registry
	4.1 Architecture
	4.1.1 Resource Registry Service
	4.1.2 Resource Registry Context Client
	4.1.3 Resource Registry Types Client
	4.1.4 Resource Registry Publisher
	4.1.5 Resource Registry Client

	5 Interacting with Resource Registry Service
	5.1 Context Management
	5.1.1 Contexts Listing
	5.1.2 Create Context
	5.1.2.1 Create Context Example 1
	5.1.2.2 Create Context Example 2
	5.1.3 Read Context
	5.1.3.1 Read Context Example
	5.1.4 Verify Context
	5.1.4.1 Verify Context Examples
	5.1.5 Update Context
	5.1.5.1 Rename Context Example
	5.1.5.2 Move Context Example
	5.1.6 Delete
	5.1.6.1 Delete Context Example

	5.2 Types Management
	5.2.1 Type Definition
	5.2.2 Type Creation
	5.2.2.1 Resource Type Creation Example
	5.2.2.2 Facet Type Creation Example
	5.2.2.3 IsRelatedTo Type Creation Example
	5.2.2.4 ConsistsOf Type Creation Example
	5.2.3 Embedded Type Creation Example
	5.2.4 Read Type Definition
	5.2.5 Read a Resource Definition Example

	5.3 Instances Management
	5.3.1 Create Facet Instance Example
	5.3.2 Update Facet Instance Example
	5.3.3 Read Facet Instance Example
	5.3.4 Delete Facet Instance
	5.3.5 Create Resource Instance
	5.3.6 Update Resource Instance
	5.3.7 Delete Resource Instance
	5.3.8 Create ConsistsOf Instance

	5.4 Query and Access
	5.4.1 Get All Instances of a Type
	5.4.1.1 Get All Instances of EService
	5.4.1.2 Get All Instances of EService and subtypes
	5.4.2 Get Filtered Entities
	5.4.3 Raw Query

	6 Backend Database (i.e. OrientDB as Graph Database)
	7 The Studio GUI

