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ABSTRACT

This paper addresses both the efficiency and the portability of
a computer program in charge of the baseband signal process-
ing of a GNSS receiver. Efficiency, in this context, refers to
optimizing the speed and memory requirements of the soft-
ware receiver. Specifically, the interest is focused on how fast
the software receiver can process the incoming stream of raw
signal samples and, in particular, if signal processing up to
the position fix can be executed in real-time (and how many
channels the host computer executing the receiver application
can sustain in parallel). This is achieved by applying the con-
cept of parallelization at different abstraction levels. The pa-
per describes strategies based on task, data and instruction-
level parallelism, as well as actual implementations released
under an open source license and the results obtained with
different commercially available computing platforms. At the
same time, the proposed solution also addresses portability,
understood as the usability of the same software in different
computing environments.

1. INTRODUCTION

Back in 2006, Gregory W. Heckler published an open source
library implementing SIMD-based correlators for GNSS soft-
ware receivers [1]. That library included arithmetic func-
tions that operate on 16 bit integers, providing MMX and
SSE2 versions of each function, as well as an MMX-enabled
fixed point, radix-2, FFT. The code was then integrated into
a software-defined GPS L1 C/A receiver (still available on-
line1), which became, to the authors knowledge, the first
available open source software-defined GPS receiver that at-
tained real-time processing in midrange computers.

In one decade, processors’ clocking speed has hardly dou-
bled. A typical desktop bought in 2006 could be shipped with
a Pentium IV processor at 2.0 GHz, with the 64-bit x64 86

1See https://github.com/gps-sdr/gps-sdr



architecture being introduced in the market. In 2016, Intel is
planning to release their Broadwell-E processor series, with
a clock speed up to 3.50 GHz. Differences are more obvious
in the number of cores and the memory bandwidth: while in
2006 dual-core processor technology was being introduced in
the market, with memory bandwidths on the order of 2 GB/s,
Broadwell-E processors can house up to 20 cores, with mem-
ory bandwidths on the order of 100 GB/s. The requirements
for a GNSS software receiver have also evolved in such pe-
riod: from targeting GPS L1 C/A signals transmitted by 24
satellites, GNSS receiver technology is moving into a sce-
nario with more than 100 satellites, 10 different GNSS open
signal waveforms for civilian usage, belonging to 4 different
systems and broadcast at 4 different frequency bands. The
new signals are mostly based on binary offset carrier (BOC)
modulations, which require more bandwidth and more pro-
cessing complexity on the receiver, and the natural target is
a multi-constellation, multi-band GNSS receiver operating in
real-time. It is then of the utmost importance to exploit the
underlying parallelisms in the processing platform executing
the software receiver in order to meet real-time requirements.

After describing the technical foundations on how the
typical mathematical operations involved in GNSS baseband
processing can be accelerated by honoring certain software
design patterns and exploiting the underlying hardware archi-
tecture of the processing platform, this paper presents a prac-
tical, reusable, and expandable implementation that meets
another important feature in nowadays computing ecosys-
tem: portability. Solutions are tested in disparate, commer-
cially available platforms, providing performance measure-
ments both as isolated operations and in the context of a
GNSS software receiver, and releasing all the source code un-
der an open source license. As a practical outcome of the pre-
sented work, the paper presents the first free and open source
software defined receiver that is able to operate in real-time
in ARM-based, commercially available processing platforms,
as well as an independent software library that can be used by
other software applications.

2. PARALLELIZATION STRATEGIES

2.1. Task parallelism

A fundamental model of architectural parallelism is found in
shared-memory parallel computers, which can work on sev-
eral tasks at once, simply by parceling them out to the differ-
ent processors, by executing multiple instruction streams in
an interleaved way in a single processor (an approach known
as simultaneous multithreading, or SMT), or by a combina-
tion of both strategies. SMT platforms, multicore machines,
and shared-memory parallel computers all provide system
support for the execution of multiple independent instruction
streams, or threads. This approach is referred to as task par-

allelism, and it is well supported by the main programming
languages, compilers and operating systems [2]. To make this
potential performance gain effective, the software running on
the platform must be written in such a way that it can spread
its workload across multiple execution cores. Applications
and operating systems that are written to support this feature
are referred to as multi-threaded. When programmed with
the appropriate design, execution can be accelerated almost
linearly with the number of processing cores.

2.2. Data parallelism

In order to cope with the high computational load of GNSS
baseband processing, software-defined receivers can resort to
another form of parallelization: instructions that can be ap-
plied to multiple data elements in parallel, thus exploiting
data parallelism. This computer architecture is known as Sin-
gle Instruction Multiple Data (SIMD). Intel introduced the
first instance of SIMD extensions to the 32-bit x86 architec-
ture, called MMX, in 1997. MMX added eight 64-bit registers
to the x86 instruction set, and a plethora of SIMD operations
to operate on the data in those registers. Later SIMD exten-
sions, named SSE, SSE2, SSE3, SSSE3, SSE4.1 and SSE4.2,
added eight 128-bit registers to the x86 instruction set. Addi-
tionally, SSE operations included SIMD floating-point opera-
tions, and expanded the type of integer operations available to
the programmer. The other important processor manufacturer,
AMD, quickly followed this technology and thus it is present
in the vast majority of modern personal computers. Starting
from Intel’s Sandy Bridge processors (2011), a new instruc-
tion set called Advanced Vector Extensions (AVX) was incor-
porated which has the capacity to further accelerate the com-
putation of the vector operations. AVX provides new features,
256-bit registers, new instructions and a new coding scheme.
AVX-2 was introduced with Haswell processors (2013), ex-
panding most integer commands to 256 bits, and Intel’s Xeon
Phi processors (expected in 2016) will support AVX-512, pro-
viding 512-bit extensions to AVX. SIMD technology is also
present in embedded systems: NEON technology is a 128-bit
SIMD architecture extension for the ARM Cortex-A series
processors, providing 32 registers, 64-bits wide (dual view as
16 registers, 128-bits wide).

2.3. Instruction-level parallelism

Computer processors are composed of a number of functional
units that may be able to operate simultaneously. As a re-
sult, a computer might be able to fetch a datum from memory,
multiply two floating-point numbers, and evaluate a branch
condition all at the same time. This is often referred to as
instruction-level parallelism. A processor that supports this
is said to have a superscalar architecture, and nowadays it is
a common feature in general-purpose microprocessors. Mod-
ern compilers put considerable effort into finding a suitable
ordering of operations that keeps many functional units and



paths to memory busy with useful work. Unfortunately, sev-
eral studies showed that typical applications are not likely to
contain more than three or four different instructions that can
be fed to the computer at a time in this way, limiting the reach
of this approach [3]. Even so, techniques such as manual loop
unrolling can still accelerate execution by a factor of two [1].

3. COMPUTING ECOSYSTEM

In 2016, desktop computers are not the dominant form fac-
tor anymore. Laptops, gaming consoles, mini PCs, tablets
and smartphones has pushed into the market other sort of pro-
cessors with low power consumption figures and specific fea-
tures for multimedia content handling. This is the case of
the embedded reduced instruction set computing (RISC) mi-
croprocessor architecture or, most commonly referred to by
the name of the industry’s leading provider, ARM processors.
Starting from Cortex-A series, they support SIMD through
NEON technology, a 128-bit architecture extension consist-
ing of a set of registers and operands designed to accelerate
image processing tasks such as 2D/3D graphics manipula-
tion and video encoding and decoding. In 2016, ARM-based
multi-core systems-on-chip are already available in commer-
cial devices such as smartphones and tablets. As a well-
known and accessible example, Raspberry Pi 3 ships with a
quad-core 64-bit ARM Cortex A53 running at 1.2 GHz. This
paper presents an open source library that implements NEON
versions of the most demanding mathematical operations in
a typical GNSS software receiver, showing accelerations sur-
passing a factor of ten when executed in actual ARM-based
systems, with the overall result of enabling real-time execu-
tion in such devices.

Another relevant example is found in Graphic Processing
Units, or GPUs, which are specifically designed to accelerate
the creation of images in a frame buffer intended for output
to a display. GPUs are commonplace in embedded systems,
mobile phones, personal computers, workstations, high-end
video cards and game consoles. Such processor architecture
follows another parallel programming model, called Single
Instruction, Multiple Threads (SIMT). While in SIMD ele-
ments of short vectors are processed in parallel, and in SMT
instructions of several threads are run in parallel, SIMT is
a hybrid between vector processing and hardware threading.
Currently, OpenCL is the most popular open GPU computing
language that supports devices from several manufacturers,
while CUDA is the dominant proprietary framework specific
for NVIDIA GPUs. GPUs are massive parallel computing
platforms that can hold hundreds or even thousands of stream
processors. However, each of them runs slower than a CPU
core does and, even though they are Turing complete, they
miss some essential features such as virtual memory man-
agers or hardware interrupt controllers, and their instruction
sets are optimized mostly for image processing using float-

ing point data. The use of GPUs to accelerate a software-
defined GNSS receiver is not a straightforward process, and
it requires solving several trade-offs to split the signal pro-
cessing chain between the host CPU and the auxiliary GPU
(or GPUs) in order to use the best complementing features of
both architectures [4]. This paper describes a GPU-based im-
plementation of GNSS multiple correlators that can be seam-
lessly integrated into a GNSS software-defined receiver being
executed in a general-purpose processor, sharing the process-
ing work with the CPU and thus alleviating the overall load.

This rich ecosystem of computing platforms (i.e., several
generations of Intel and AMD processors, implementing dif-
ferent SIMD instruction sets; ARM processors with NEON
extensions, all in 32 and 64-bit architectures; and the possible
presence of GPUs) raises the need to address portability as a
key feature for a real impact in an open source context.

The baseband processing acceleration strategies for
GNSS software-defined receivers described on this paper are
put in practice in GNSS-SDR [5], an open source software
receiver available online2, that can be executed in Intel, AMD
and ARM processors (32 and 64 bits), thus covering the vast
majority of today’s computers.

4. TASK PARALLELIZATION

Task parallelization focuses on distributing execution pro-
cesses (threads) across different parallel computing nodes
(processors), each executing a different thread (or process)
on the same or different data. Spreading processing tasks
along different threads must be carefully designed in order to
avoid bottlenecks (either in the processing or in memory ac-
cess) that can block the whole processing chain and prevent
it from attaining real-time operation. This section provides
an overview of the task scheduling strategy implemented in
GNSS-SDR and a description of the most computationally
demanding operations in a GNSS receiver.

4.1. Multi-threading in GNSS software receivers

GNSS-SDR uses a “thread-per-block” scheduler, which
means that each instantiated processing block runs in its own
thread. This architecture scales very well to multicore proces-
sor architectures. The implementation is provided by GNU
Radio [6], whose flow graph computations can be jointly
modeled as a Kahn process [7, 8]. A Kahn process describes a
model of computation where processes are connected by com-
munication channels to form a network. Processes produce
data elements or tokens and send them along a communica-
tion channel where they are consumed by the waiting destina-
tion process. Communication channels are the only method

2See https://github.com/gnss-sdr/gnss-sdr



processes may use to exchange information. Kahn requires
the execution of a process to be suspended when it attempts
to get data from an empty input channel. A process may not,
for example, test an input for the presence or absence of data.
At any given point, a process can be either enabled or blocked
waiting for data on only one of its input channels: it cannot
wait for data from more than one channel. Systems that obey
Kahn’s mathematical model are determinate: the history of
tokens produced on the communication channels does not de-
pend on the execution order [7]. With a proper scheduling
policy, it is possible to implement software defined radio pro-
cess networks holding two key properties:

• Non-termination: understood as an infinite running
flow graph process without deadlocks situations, and

• Strictly bounded: the number of data elements buffered
on the communication channels remains bounded for
all possible execution orders.

An analysis of such process networks scheduling was pro-
vided in [9]. By adopting GNU Radio’s signal processing
framework, GNSS-SDR bases its software architecture in a
well-established design and extensively proven implementa-
tion. Section 6.1 provides details on how this concept is ap-
plied in the context of a GNSS software-defined receiver.

4.1.1. GPU Offloading

GPU-accelerated computing consists in the use of a graph-
ics processing unit (GPU) together with a CPU to acceler-
ate the execution of a software application, by offloading
computation-intensive portions of the application to the GPU,
while the remainder of the code still runs on the CPU. The key
idea is to utilize the computation power of both CPU cores
and GPU execution units in tandem for better utilization of
available computing power. Examples of GPU offloading in
the context of GNSS receivers have been extensively reported
in literature (see, for instance, [10, 11, 12]).

4.1.2. FPGA Offloading

The commercial availability of system-on-chip (SoC) devices
which integrate the software programmability of an ARM-
based processor with the hardware programmability of an
FPGA (e.g., Xilinx’s Zynq-7000 family [13]), allows for sys-
tems in which the most computationally demanding opera-
tions of the GNSS receiver are executed in the programmable
logic, whereas the rest of the software receiver is executed in
the processing system. The implementation of FPGA-based
accelerators and its communication with processes executed
in the ARM processor are out of the scope of this paper.

4.2. Key operations and data types

In order to describe the most computationally demanding op-
erations in the receiver chain, let us assume a generic GNSS

complex baseband signal of the form

sT (t) =
√
PT

∞∑
u=−∞

d(u)p(t− uTbI ) , (1)

where

p(t) =

Nc−1∑
k=0

q(t− kTPRN ) (2)

and

q(t) =

Lc−1∑
l=0

ci(l)gT (t− lTc) , (3)

being PT the transmitting power, d(u) ∈ {−1, 1} the navi-
gation message data symbols, Tb the bit period, Nc the num-
ber of repetitions of a full codeword that spans a bit period,
TPRN = Tb

Nc
the codeword period, ci(l) ∈ {−1, 1} a chip of a

spreading codeword i of length Lc chips, gT (t) the transmit-
ting chip pulse shape, which is considered energy-normalized
for notation clarity, and Tc = Tb

NcLc
is the chip period.

The analytic representation of a signal received from a
generic GNSS satellite i can be generically expressed as

ri(t) = αi(t)si,T (t− τi(t)) e−j2πfdi (t)ej2πfct+w(t) , (4)

where αi(t) is the amplitude, si,T (t) is the complex baseband
transmitted signal, τi(t) is the time–varying delay, fdi(t) =
fcτi(t) is the Doppler shift, fc is the carrier frequency, and
w(t) is a noise term.

Assuming w(t) as additive white Gaussian noise, at least
in the band of interest, it is well known that the optimum re-
ceiver is the code matched filter (often referred to as correla-
tor), expressed as

hMFi
(tk; τ̂i, f̂di , φ̂i) =

Lc−1∑
l=0

c∗i (l)g
∗
R(−tk − lTc + τ̂i + LcTc)·

· e−jφ̂ie−j2πf̂di tk =

= q∗R(−tk + τ̂i + LcTc)e
−jφ̂ie−j2πf̂di tk , (5)

where ci(l) ∈ {−1,+1} is the l-th chip of a spreading code-
word (known as pseudorandom sequence) of length Lc, gR(t)
is the receiving chip pulse shape, Tc is the chip period, and
τ̂i, f̂di , φ̂i are local estimates of the time-delay, Doppler-shift
and carrier phase of the received signal, respectively. The
code matched filter output can be written as a convolution of
the form

yi(tk; τ̂ik−1
, f̂dik−1

, φ̂ik−1
) = (6)

= ri(tk; τik , fdik , φik) ∗ hMF i
(tk; τ̂ik−1

, f̂dik−1
, φ̂ik−1

) .

Notice that, in the matched filter, we have substituted the es-
timates τ̂ik , f̂dik and φ̂ik for trial values obtained from pre-
vious (in time) estimates of these parameters, which we have



defined as τ̂ik−1
, f̂dik−1

and φ̂ik−1
, respectively. This is the

usual procedure in GNSS receivers, since the estimates are
not really available, but are to be estimated after correlation.
Since the correlators perform the accumulation of the sam-
pled signal during a period Tint and then release an output,
we can write the discrete version of the signal as:

yik =
|aik |

2
K

sin(π∆fdikTint)

π∆fdikTint
· di
(

[k] Tb
Tint

)
· (7)

·Rp̃q(∆τik) · e−j(π∆fdik
Tint+∆φik

)
+ w̃ik

where we defined aik as the receiving signal complex ampli-
tude of the GNSS satellite i at time k, ∆fik = fdik − f̂dik−1

,

∆φik = φik − φ̂ik−1
and ∆τik = τik − τ̂ik−1

(that is, the
estimation errors of Doppler shift, carrier phase and time
delay, respectively), Tint is the integration time, Rp̃q(t) =∫ +∞
−∞ p̃∗(ψ)q(t − ψ)dψ is the cross-correlation function be-

tween the received, possibly filtered pulse train modulated by
the PRN sequence, and a local replica q(t) defined as in (3),
w̃ik as remnant noise, and [k] Tb

Tint

means the integer part of
kTint

Tb
. From now on, we will consider K = Tint

Ts
as the in-

teger number of samples collected in an accumulation. This
number will not be an integer in receiver configurations hav-
ing a sample rate incommensurable with the chip rate, and
thus some integration blocks will accumulate K + 1 samples
instead of K.

The output of the correlator centered at the estimation
of the time delay error in the previous time step, known as
Prompt correlator, can be the written as:

Pik = yik

(
∆τ̂ik−1

,∆f̂dik−1
,∆φ̂ik−1

)
. (8)

The other correlators are shifted in time with respect to the
Prompt, usually in a symmetric arrangement. The advanced
and delayed replicas are known as Early and Late correlator
outputs, and can be written as

Eik = yik

(
∆τ̂ik−1

+ ε,∆f̂dik−1
,∆φ̂ik−1

)
(9)

and

Lik = yik

(
∆τ̂ik−1

− ε,∆f̂dik−1
,∆φ̂ik−1

)
. (10)

Very Early and Very Late outputs can be defined likewise with
ε′ > ε. From those correlator outputs, some error functions
(known in this context as discriminators) can be defined [14].
For instance, the normalized non-coherent code discriminator

∆τ̂ik =
|Eik |

2 − |Lik |
2√

1
U
∑U−1
u=0

∣∣<{Pik−u
}
∣∣2 + 1

U
∑U−1
u=0

∣∣={Pik−u
}
∣∣2 ,

(11)

the coherent carrier phase four-quadrant arctangent discrimi-
nator

∆φ̂ik = atan2
(
={Pik}
<{Pik}

)
, (12)

and the four-quadrant arctangent FLL discriminator as a mea-
sure of the frequency error

∆f̂ik =
1

2π (tk − tk−1)
· (13)

· atan2
(<{Pik−1

}<{Pik}+ ={Pik−1
}={Pik}

<{Pik−1
}={Pik} − <{Pik}={Pik−1

}

)
,

where <{·} and ={·} stand for the real and imaginary com-
ponents, respectively.

The new estimations ∆τ̂ik , ∆φ̂ik and ∆f̂ik are then low-
pass filtered and reinjected back into the matched filter of
Equation (5), thus closing the tracking loops. Such an archi-
tecture is represented in Figure 1. Delay estimation is used to
compute pseudorange, while phase and frequency estimators
are used to demodulate and decode the navigation message
(that is, the sequence of bits denoted as d(u) in Equation (1))
and to obtain phase range and phase range rate observables.
This is all the information required to compute a position fix.

At this level of abstraction, parallelization of operations to
the incoming signal is performed at a targeted satellite signal
basis. Explicitly, the stream of digital signal samples at the
output of the analog-to-digital converter of a radio-frequency
front-end, assuming Ns in-view GNSS satellites, can be writ-
ten as

xq[n]=

Ns−1∑
i=0

α̃i(tn)s̃i,T (tn−τin)e−j2πfdin tnej2πfIFtn +w̃(tn)

(14)
where tn = nTs, Ts ≤ 2Tc is the sampling period, n is the
temporal index, fIF is the intermediate frequency, and ·̃ de-
notes a filtered, probably distorted version of the original sig-
nal. The correlations described in Equation (6) and both the
delay and phase locked loops are replicated for each received
satellite signal (denoted in the equation with the index i), with
a minimum of four of them locked-in at the same time in order
to be able to compute a position fix.

The index q in Equation (14) denotes that the value of
each sample xq[n] is actually quantized and represented with
q bits. Most commercial RF integrated circuits for GNSS re-
ceivers deliver samples with q = 2 or q = 3 bits. However,
this is not a format that a computer is ready to manipulate in-
ternally. Even though operations involving values expressed
with 3 bits can be defined by software, neither the compiler
nor the underlying hardware are optimized to do so. Proces-
sor architectures are designed to work more efficiently when
manipulating values with specific bit lengths (that is, 8, 16, 32
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Fig. 1. Diagram of typical code and carrier tracking loops in a GNSS receiver. Colored dotted-line boxes show functions
that have been implemented in SIMD technology. In this example, lanes with label “16ic” are data streams whose items are
complex numbers with real and imaginary components represented with 16-bit integers, whereas label “32fc” indicates lanes
whose items are complex numbers with real and imaginary components in 32-bit floating point representation.

or 64 bits per item), and interpreted either as integers (signed
or unsigned) or floating-point values. Some of those specific
formats for data items are summarized in Table 1. A con-
version is then required from the sample bit length delivered
by the analog-to-digital converter at the output of the front-
end to the bit length and format of the data items feeding the
software-defined receiver. Section 7 presents results for op-
erations (shown in Figure 1) on data types labelled as “16ic”
and “32fc” in Table 1.

5. DATA PARALLELIZATION

At a lower level of abstraction, some operations on incoming
data can be further parallelized by applying the same opera-
tion on different data samples at a time (i.e., parallelizing in
the temporal index n). This is the approach of SIMD pro-
cessing, which has been embodied in different technologies
described below.

5.1. SSE technology

The family of Streaming SIMD Extensions (SSE) instruction
sets is now present in all Intel and AMD processors of to-
day’s computers. In this technology, the same set of instruc-

tions is executed in parallel to different sets of data. This
reduces the amount of hardware control logic needed by N
times for the same amount of calculations, where N is the
width of the SIMD unit. In case of SSE, registers are 128-
bits wide, so each one can hold two complex floating point
samples (denoted as “32fc” in Table 1), or four complex short
integers (denoted as “16ic” in Table 1). Operations are then
applied to those registers, thus executing the same instruc-
tion to multiple samples at a time, and saving clock cycles.
Hence, SIMD operations can only be applied to certain pre-
defined processing patterns. In addition, it is important to take
into account that Intel’s and AMD’s processors will transfer
data to and from memory into registers faster if the data is
aligned to 16-byte boundaries. While the compiler will take
care of this alignment when using the basic 128-bit type, this
means that data has to be stored in sets of four 32-bit floating
point values in memory for optimal performance. If data is
not stored in this kind of fashion then more costly unaligned
scalar memory moves are needed, instead of packaged 128-
bit aligned moves. Effective SSE will minimize the number
of data movements between the memory subsystem and the
CPU registers. The data should be loaded into SSE registers
only once, and then the results moved back into memory only
once when they are no longer needed in that particular code



Type name
in VOLK

Definition Sample stream

Signed integer,
8-bit two’s complement number
ranging from -128 to 127.

“8i”

C type name: int8 t

[S0], [S1], [S2], ...

Unsigned integer, 8 bits
ranging from 0 to 255.“8u”
C type name: unsigned char

[S0], [S1], [S2], ...

Complex samples, with real and
imaginary parts of type int8 t“8ic”
C type name: lv 8sc t (*)

[SI
0 +jSQ

0 ], [SI
1 +jSQ

1 ], ...

Signed integer,
16-bit two’s complement number
ranging from -32768 to 32767

“16i”

C type name: int16 t

[S0], [S1], [S2], ...

Unsigned integer, 16 bits
ranging from 0 to 65535.“16u”
C++ type name: uint16 t

[S0], [S1], [S2], ...

Complex samples, with real and
imaginary parts of type int16 t“16ic”
C type name: lv 16sc t (*)

[SI
0 +jSQ

0 ], [SI
1 +jSQ

1 ], ...

Unsigned integer, 32 bits
ranging from 0 to 4294967295.“32u”
C type name: uint32 t

[S0], [S1], [S2], ...

Signed numbers with fractional parts,
can represent values ranging from
≈ 3.4×10−38 to 3.4×1038

with a precision of 7 digits (32 bits).
“32f”

C type name: float

[S0], [S1], [S2], ...

Complex samples, with real and
imaginary parts of type float“32fc”
C++ type name: lv 32fc t (*)

[SI
0 +jSQ

0 ], [SI
1 +jSQ

1 ], ...

Unsigned integer, 64 bits
ranging from 0 to 264 − 1.“64u”
C type name: uint64 t

[S0], [S1], [S2], ...

Signed numbers with fractional parts,
can represent values ranging from
≈ 1.7×10−308 to 1.7×10308

with a precision of 15 digits (64 bits).
“64f”

C type name: double

[S0], [S1], [S2], ...

Table 1. Data type names used in the VOLK library, which
also provides the C programming language type name defini-
tions marked with an asterisk (*).

block. Listing 1 provides a pseudocode example of SIMD
programming.

5.2. AVX technology

Intel’s extension to the SSE family is the Advanced Vector
Extension (AVX), which extends the 128-bit SSE register into
256-bit AVX register that consist of two 128-bit lanes. An
AVX lane is an extension of SSE4.2 functionality, with each
register holding eight samples of complex type 16-bit integer
or four samples of complex type 32-bit float. AVX operates
most efficiently when the same operations are performed on
both lanes. On the contrary, cross-lane operations are limited
and expensive, and not all bit shuffling combinations are al-
lowed. This leads to higher shuffle-overhead since many op-
erations now require both cross-lane and intra-lane shuffling

[15], thus expending extra clock cycles. The same applies to
AVX-2 (which adds integer operations to the AVX instruc-
tion set), and most recent AVX-512, which introduces 512-bit
wide registers.

5.3. NEON technology

SIMD technology is also present in ARM processors through
the NEON instruction set. The NEON instructions support 8-
bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers, as
well as 32-bit single-precision floating point elements. NEON
technology includes support for unaligned data accesses and
easy loading of interleaved data, so there is no need to account
for that, on the contrary of SSEx and AXV. A draw back is
that the NEON floating point pipeline is not entirely IEEE-
754 compliant. This is a problem for blocks when processing
a large large number of floating point items, since the differ-
ent results will accumulate along samples and makes NEON
and SSE results not comparable. Countermeasures should be
taken where applicable.

6. IMPLEMENTATION

6.1. A multi-threaded GNSS receiver

Software defined receivers can be represented as flow graph
of nodes. Each node represents a signal processing block,
whereas links between nodes represents a flow of data. The
concept of a flow graph can be viewed as an acyclic direc-
tional graph with one or more source blocks (to insert sam-
ples into the flow graph), one or more sink blocks (to termi-
nate or export samples from the flow graph), and any signal
processing blocks in between. The diagram of a processing
block (that is, of a given node in the flow graph), as imple-
mented by the GNU Radio framework, is shown in Figure 2.
Each block can have an arbitrary number of input and out-
put ports for data and for asynchronous message passing with
other blocks in the flow graph. In all software applications
based on the GNU Radio framework, the underlying process
scheduler passes items (i.e., units of data) from sources to
sinks. For each block, the number of items it can process
in a single iteration is dependent on how much space it has
in its output buffer(s) and how many items are available on
the input buffer(s). The larger that number is, the better in
terms of efficiency (since the majority of the processing time
is taken up with processing samples), but also the larger the
latency that will be introduced by that block. On the contrary,
the smaller the number of items per iteration, the larger the
overhead that will be introduced by the scheduler.

Thus, there are some constraints and requirements in
terms of number of available items in the input buffers and
in available space in the output buffer in order to make all the
processing chain efficient. In GNU Radio, each block has a



Algorithm 1 Simplified pseudocode for each block’s thread
in GNU Radio.

1: Set thread’s processor affinity and thread priority.
2: Handle queued messages.
3: Compute items available on input buffer(s) as the differ-

ence between write and read pointers for all inputs.
4: Compute space on output buffer(s) as the difference be-

tween write pointers to the first read pointer.
5: if all requirements are fulfilled then
6: Get all pointers to input and output buffers.
7: Execute the actual signal processing (call work()).
8: else
9: Try again.

10: end if
11: Notify neighbors (tell previous and next blocks that there

is input data and/or output buffer space).
12: Propagate to upstream and downstream blocks that the

iteration has finalized.
13: Wait for data/space or a new message to handle.

runtime scheduler that dynamically performs all those com-
putations, using algorithms that attempt to optimize through-
put, implementing a process network scheduling that fulfills
the requirements described in [9]. Each processing block ex-
ecutes in its own thread, which runs the procedure sketched
in Algorithm 1. A detailed description of the GNU Radio
internal scheduler implementation (memory management, re-
quirement computations, and other related algorithms and pa-
rameters) can be found in [16], and of course in GNU Radio
source code3.

Runtime Scheduler

handle_msg( )
{
  …
}

work( )
{
  …
}

Circular 
Output 
Buffer

notify_downstream( )

from downstream

notify_upstream( )

from upstream

upstream read pointer

Upstream 
Output 
Buffer

from downstream

output write 
pointer

Fig. 2. Diagram of a signal processing block, as implemented
by GNU Radio. Each block has a completely independent
scheduler running in its own execution thread and a messag-
ing system for communication with other upstream and down-
stream blocks. The actual signal processing is performed in
the work() method. Figure adapted from [17].

Under this scheme, software-defined signal processing
blocks read the available samples in their input memory
buffer(s), process them as fast as they can, and place the result
in the corresponding output memory buffer(s), each of them

3Available at https://github.com/gnuradio/gnuradio

being executed in its own, independent thread. This strategy
results in a software receiver that always attempts to process
signal at the maximum processing capacity, since each block
in the flow graph runs as fast as the processor, data flow and
buffer space allows, regardless of its input data rate. Achiev-
ing real-time is only a matter of executing the receivers full
processing chain in a processing system powerful enough to
sustain the required processing load, but it does not prevent
from executing exactly the same process at a slower pace, for
example, by reading samples from a file in a less powerful
platform.

Figure 3 shows the flow graph diagram used in GNSS-
SDR. There is a signal source block (either a file or a radio-
frequency front-end) writing samples in a memory buffer at a
given sampling rate; some signal conditioning (possible data
type adaptation, filtering, frequency downshifting to base-
band, and resampling); a set of parallel channels, each one
reading form the same upstream buffer and targeted to a dif-
ferent satellite; a block in charge of the formation of observ-
ables collecting the output of each satellite channel after the
despreading (and thus in a much slower rate); and a signal
sink, responsible for computing the position-velocity-time so-
lution from the obtained observables and providing outputs in
standard formats (such as KML, GeoJSON, RINEX, RTCM
and NMEA).

Signal 
Conditioner

Signal 
Source

Acquisition

Tracking Nav. 
msg

Observables Signal 
Sink

N parallel channels 

Fig. 3. Simplified GNSS-SDR flow graph diagram. Each
blue box is a signal processing block sketched in Figure 2.
Here, only the data stream layer is represented, where differ-
ent data rates are indicated with different colors for the mem-
ory buffers.

The flow graph in Figure 3 can be expanded to accom-
modate more GNSS signal definitions in the same band (for
instance, a GPS L1 C/A and Galileo E1b receiver), and to
accommodate more bands (thus defining a multi-band, multi-
system GNSS receiver). In all cases, each of the process-
ing blocks will be executing its own thread, defining a multi-
threaded GNSS receiver that efficiently exploits task paral-
lelization.

6.2. Single Instruction, Multiple Data (SIMD)

The implementation of data parallelization techniques pre-
sented in this paper extends the Vector-Optimized Library of
Kernels (VOLK4, see [18, 19, 20]), an open source software

4Available at https://github.com/gnuradio/volk



library that provides an abstraction of optimized mathemati-
cal routines targeting several SIMD processors. For each tar-
geted mathematical operation (referred to as kernels in this
context), VOLK provides a “generic” (i.e. written in plain C
language) implementation that can run in virtually every mod-
ern processor, plus a number of versions for different SIMD
technologies. For each architecture or platform that a devel-
oper wishes to vectorize for (e.g. SSE, AVX, NEON, etc.),
a new implementation of a given function can be added to
VOLK. The specific host computer devoted to run the soft-
ware receiver is then benchmarked by executing all the im-
plementations that it is able to do. At runtime, when such
functions are called by a software application, VOLK selects
the fastest implementation available for the given processor
and memory alignment, thus addressing efficiency and porta-
bility at the same time. Each specific kernel implementation
for a given platform, SIMD technology version or run-time
condition is known as proto-kernel.

As an additional key feature, VOLK provides
volk modtool, an application that generates an empty
copy of VOLK’s software structure (basically all the source
code tree, with the benchmarking system, architecture and
machine abstractions, automatic selection of best implemen-
tation at runtime, building scripts, etc., but without including
any kernel implementation) ready to be filled with other
custom kernels that, by its specificity, are not included in the
library. Benefiting from such modular design, and VOLK’s
open source license, the authors of this paper developed a
complementary new module, so-called VOLK GNSSSDR,
which extends the original VOLK with operations that are
useful in the context of a GNSS software receiver, such
as joint Doppler removal and correlation of the incoming
signals with multiple delayed local replicas of the PRN code
(as shown in Figure 1). Although this new library is used
by GNSS-SDR, it can also be used independently for other
purposes.

A pseudocode example of a proto-kernel is shown in List-
ing 1. The approach consists in processing as many input data
items as possible by packing such items into SIMD registers,
and computing the desired result using vector operands, either
using in-line assembly or compiler intrinsics. The “tail” items
that do not fit in those packs are then processed separately, in
a plain C implementation.

s t a t i c i n l i n e void
v o l k g n s s s d r 1 6 i c x 2 m u l t i p l y 1 6 i c n e o n (

l v 1 6 s c t ∗ out , c o n s t l v 1 6 s c t ∗ i n a ,
c o n s t l v 1 6 s c t ∗ i n b , unsigned i n t n u m p o i n t s )

{
c o n s t unsigned i n t n e o n i t e r s = n u m p o i n t s / 4 ;
/∗ n e o n i t e r s on ly i n t e g e r p a r t o f d i v i s i o n ! ∗ /
unsigned i n t n ;
/∗ D e c l a r e o t h e r l o c a l v a r i a b l e s ∗ /
f o r ( n = 0 ; n < n e o n i t e r s ; ++n )

{
/∗ NEON i m p l e m e n t a t i o n ∗ /
/∗ 1) Load 4 i t e m s from i n a and i n b ∗ /
/∗ i n NEON 128−wide r e g i s t e r s ∗ /
/∗ 2) M u l t i p l y f o u r complex numbers ∗ /
/∗ u s i n g NEON v e c t o r o p e r a n d s ∗ /
/∗ 3) S t o r e r e s u l t s i n o u t p o i n t e r ∗ /

}
f o r ( n = n e o n i t e r s ∗ 4 ; n < n u m p o i n t s ; ++n )
{

/∗ P l a i n C i m p l e m e n t a t i o n f o r t a i l i t e m s ∗ /
/∗ t h a t do n o t f i t i n 4− i t em p a c k e t s ∗ /
o u t [ n ] = i n a [ n ] ∗ i n b [ n ] ;

}
}

Listing 1. Example of data parallelization implementation: C
code structure for vector element-wise multiplication (16-bit
integer complex data type) in NEON technology. Each data
item is 32-bit wide, so 4 items fit in a 128-bit register which
can then be operated at the same time, thus saving clock cy-
cles.

6.3. Single Instruction, Multiple Threads (SIMT)

In the SIMT execution model, the SIMD model is combined
with multi-threading. In a SIMT machine, there is a set
of processors, each of them enabled to execute N parallel
threads performing the same instruction. The key difference
between SIMD and SIMT is that in the latter it is possible
to combine a single instruction with multiple registers, mul-
tiple addresses and multiple flow paths. This feature enables
the parallel processing of large vectors of data, and it is spe-
cially well-suited to speed up the real-time high-resolution 3D
graphics computing-intensive tasks, such as texture process-
ing. This execution model establishes a hierarchy of execu-
tion units, such as blocks (set of threads) and grids (set of
blocks). In a GPU kernel call, the programmer must select
the number of threads per block and the number of blocks per
grid, and this will impact on the amount of computational re-
sources allocated during the call. For more detailed informa-
tion the reader is referred to [21]. In a GPU-accelerated GNSS
receiver, each of the receiver channels must share the GPU re-
sources, therefore, there is a trade-off in the resources alloca-
tion for each channel and the maximum number of available
channels. If the GPU resource occupancy reaches 100%, the
GPU kernel calls are queued for later execution, so the inte-
gration must be carefully designed in order to avoid blocking
the whole flow graph execution.

For a practical implementation, we opted for
the NVIDIA GPU computing platform and the
CUDA programming model [22]. A CUDA ker-
nel was implemented integrating the operations of the
VOLK GNSSSDR kernels “32fc rotator dot prod 32fc xn”
and “32fc xn resampler 32fc xn”, as defined in Figure 1, and



embedded into GNSS-SDR as an option for signal tracking
implementation.

7. RESULTS

The presented VOLK GNSSSDR library provides more than
25 different kernels, for “8ic”, “16ic” and “32fc” data types,
each one with several proto-kernels, i.e., specific implemen-
tations targeting a given SIMD technology, such as SSE2,
SSE3, SSE4.1, AVX and AVX2 (aligned and unaligned mem-
ory versions), as well as NEON. Some of the most relevant
for GNSS baseband processing were shown in Figure 1. The
library was then integrated into GNSS-SDR, and the effec-
tiveness of the proposed implementation was tested in four
different computing platforms, with disparate processors, op-
erating systems and compilers. Namely:

• Platform #1 - Server: a Dell’s PowerEdge R730 server
housing a CPU with two Intel Xeon E5-2630 v3 at
2.4 GHz (8 cores, 16 threads each) and an NVIDIA
Tesla K10 GPU with 2 x 1536 CUDA cores clocked
at 745 MHz. The operating system during tests was
GNU/Linux Ubuntu 14.04, 64 bits, using GCC 4.9.2.

• Platform #2 - Laptop: Apple’s MacBook Pro Late
2013, with an Intel Mobile Core i7-4558U (quad-core)
CPU at 2.4 GHz (active cores can be speeded up to
3.8 GHz), and Hyper Threading technology allows the
system to recognize eight total “cores” or “threads”
(four real and four virtual), plus an NVIDIA GeForce
GT 750M GPU with 384 CUDA cores clocked at 967
MHz. The operating system during tests was Mac OS
X 10.11, using Apple LLVM / Clang version 7.0.2.

• Platform #3 - Embedded development kit: NVIDIA’s
Jetson TK1 developer kit, equipped with a quad-
core ARM Cortex-A15 CPU at 2.32 GHz and an
NVIDIA Kepler GPU with 192 CUDA cores clocked
at 950 MHz. The operating system during tests was
GNU/Linux Ubuntu 14.04, 32 bits, using GCC 4.8.4.

• Platform #4 - Mini-computer: Raspberry Pi 3 Model
B, equipped with a Broadcom BCM2837 CPU (64 bit,
ARMv8 quad-core ARM Cortex A53) clocked at 1.2
GHz. The operating system used during tests was Rasp-
bian GNU/Linux 8 (jessie), 32 bits, using GCC 4.9.2.

This Section reports the results obtained by some of the key
kernels implemented in the VOLK GNSSSDR library and the
performance achieved by the full software receiver in the de-
scribed computer environments. All these results were ob-
tained using GNSS-SDR v0.0.7 [23]. The reader is free to
reproduce the experiments in his/her own machine by build-
ing that specific source code snapshot (or any other more re-
cent version) and executing the provided profiling application

volk gnsssdr profile, and is very welcome to con-
tribute with bug reports, improvements and the addition of
new kernels and proto-kernels.

7.1. SIMD acceleration

7.1.1. Results in x86 / x86 64 architectures

The acceleration factor achieved by different SIMD im-
plementations with respect to the generic version, when
executed in x86 / x86 64 processor architectures, are
shown in Figures 4 and 5. Notably, the carrier removal
and multiple correlation kernels for “16ic” and “32fc”
data types (denoted as 16ic rotator dot prod 16ic xn and
32fc rotator dot prod 32fc xn) showed accelerations close to
×15 and ×25, respectively. Three correlators were used in
those experiments, although the kernel interface admits an ar-
bitrary number of them.

7.1.2. Results in ARM architectures

The acceleration factor achieved by NEON implementations
with respect to the generic version, when executed in ARM-
based computing platforms, are shown in Figures 6 and 7.
Although, as stated in Section 5.3, NEON is not IEEE-754
compliant in its floating-point operations, numerical results
show that they remain reasonably close to those obtained by
IEEE-754 compliant technologies (e.g., SSE) when input vec-
tors are as long as 50, 000 complex items, which corresponds
to the number of samples in 1 ms when sampled at 50 Msps
in baseband, thus covering the GNSS signal with maximum
available bandwidth (i.e., Galileo E5).

7.2. Integration in a GNSS software receiver

In order to measure the performance of the parallelization
strategies in combination with the data parallelization tech-
niques described in this paper when applied to a full software-
receiver, both the VOLK GNSSSDR library and the GPU-
targeted implementations were integrated into GNSS-SDR.
The results obtained on the aforementioned computing plat-
forms are shown below.

7.2.1. Number of channels processed in real-time

Figure 8 shows the execution time for different correlation
vector lengths (2048, 4096, and 8192) and for different num-
ber of parallel channels targeting GPS L1 C/A signals and
using three correlators per channel. This configuration mim-
icks typical receiver’s configurations, and corresponds to the
correlation lengths to be computed in 1 ms when sampling at
2.048, 4.096, and 8.192 Msps, respectively. In all platforms,
volk profile and volk gnsssdr profile were ex-
ecuted before the tests in order to enjoy the fastest available



SIMD implementation for each specific processor. Remark-
ably, ARM-based platforms achieved real-time processing of
four or more channels in the narrowest bandwidth configura-
tion.

7.2.2. GPU offloading

Fig. 9 shows the execution time for different correlation vec-
tor lengths (2048, 4096, and 8192) and for different num-
ber of parallel channels targeting GPS L1 C/A signals, with
three correlators per channel. Results show that, as expected,
the amount of available GPU resources limits the paralleliza-
tion of correlation operations, hence defining the slope of the
computing time growth. Platform #1 is equipped with the
most powerful GPU, and thus it showed the best performance
for all the tested correlation lengths. Regarding the real-time
limit, defined at 1 ms, Table. 2 shows the maximum parallel
channels available for each platform.

Table 2. Maximum number of real-time parallel channels for
each platform using GPU accelerators.

Correlator length 2048 4096 8192
Platform #1 65 45 25
Platform #2 12 11 10
Platform #3 1 0 0

8. CONCLUSIONS

This paper described several parallelization techniques ad-
dressing computational efficiency, at different abstraction lay-
ers, and their specific application in the context of software-
defined GNSS receivers. All those concepts were applied into
a practical implementation available online under a free and
open source software license. Building upon well-established
open source frameworks and libraries, this paper showed that
it is possible to achieve real-time operation in different com-
puting environments. Portability was demonstrated by build-
ing and executing the same source code in a wide range of
computing platforms, from high-end servers to tiny and af-
fordable computers, using different operating systems and
compilers, and showing notable acceleration factors of key
operations in all of them.

As a practical outcome of the presented work, this paper
introduced, to the best of authors’ knowledge, the first free
and open source software-defined GNSS receiver able to sus-
tain real-time processing and to provide position fixes (as well
as other GNSS data in form of RINEX files or RTCM mes-
sages streamed over a network) in ARM-based devices.

Future work will be related to the application of OpenMP
for task parallelization; AVX+ technology using 512-bit reg-

isters and 64-bit NEON for data parallelization; and FPGA
offloading in order to target real-time operation with higher
signal bandwidths in multi-band, multi-constellation configu-
rations.
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Fig. 4. Acceleration factor with respect to the generic implementation achieved by different proto-kernels in Platform #1.
Operations were applied to vectors of 8111–item length, and the results were averaged over 1987 iterations.
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Fig. 5. Acceleration factor with respect to the generic implementation achieved by different proto-kernels in Platform #2.
Operations were applied to vectors of 8111–item length, and the results were averaged over 1987 iterations.
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Fig. 6. Acceleration factor with respect to the generic implementation achieved by different proto-kernels in Platform #3.
Operations were applied to vectors of 8111–item length, and the results were averaged over 1987 iterations.
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Fig. 7. Acceleration factor with respect to the generic implementation achieved by different proto-kernels in Platform #4.
Operations were applied to vectors of 8111–item length, and the results were averaged over 1987 iterations.
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Fig. 8. CPU execution times (averaged for 1000 independent realizations) for different number of parallel channels and cor-
relation lengths (2048, 4096 and 8192 samples of type “32fc”) and executing platforms. Each channel was configured with
3 correlators. The intersection of these plots with the dashed red line at 1 ms indicates the number of channels that a given
platform can sustain in real-time for GPS L1 C/A signals.
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Fig. 9. GPU execution times (averaged for 1000 independent realizations) for different number of parallel channels and cor-
relation lengths (2048, 4096 and 8192 samples of type “32fc”) and executing platforms. Each channel was configured with
3 correlators. The intersection of these plots with the dashed red line at 1 ms indicates the number of channels that a given
platform can sustain in real-time for GPS L1 C/A signals.


