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Abstract

Interval arithmetic is a fundamental and reliable mathematical machinery for scientific computing and for addressing uncertainty
in general. In order to apply interval mathematics to real life uncertainty problems, one needs a computerized (machine) version
thereof, and so, this article is devoted to some mathematical notions concerning the algebraic system of machine interval arith-
metic. After formalizing some purely mathematical ingredients of particular importance for the purpose at hand, we give formal
characterizations of the algebras of real intervals and machine intervals along with describing the need for interval computations
to cope with uncertainty problems. Thereupon, we prove some algebraic and order-theoretic results concerning the structure of
machine intervals.
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1 Introduction

A natural and elegant idea is that of expressing uncertain real-valued quantities as real closed intervals. In this
very simple and old idea, the field of interval mathematics has its roots from the Greek mathematician Archimedes
of Syracuse to the American mathematician Ramon Edgar Moore, who was the first to define interval analysis in
its modern sense and recognize its power as a viable computational tool for intervalizing uncertainty. In between,
historically speaking, several distinguished constructions of interval arithmetic by John Charles Burkill, Rosalind
Cecily Young, Paul S. Dwyer, Teruo Sunaga, and others (see, e.g., [3], [50], [20], and [46]) have emphasized the
very idea of reasoning about uncertain values through calculating with intervals. By integrating the complementary
powers of rigorous mathematics and scientific computing, interval arithmetic is able to offer highly reliable accounts of
uncertainty. It should therefore come as no surprise that the interval theory has been fruitfully applied in diverse areas
that deal intensely with uncertain quantitative data (see, e.g., [7], [9], and [27]).

In order to apply interval mathematics to real life uncertainty problems, we need first to digitize it so that it can
be processed by a computer. Although calculating with intervals is an old idea, Moore was the first to recognize the
practical power of machine interval arithmetic as a viable computational tool for bounding errors and intervalizing
uncertainties (see, e.g., [35], [36], [37], and [38]).

In view of this computational power against error, machine implementations of interval arithmetic are of great
importance. It should therefore come as no surprise that there are many software implementations of interval arithmetic.
As instances, we may mention INTLAB, Sollya, InCLosure and others (see, e.g., [44], [5], [10], [19], and [33]). Fortunately,
computers are getting faster and most existing parallel processors provide a tremendous computing power. So, with
little extra hardware, it is very possible to make interval computations as fast as floating point computations (For further
reading about machine arithmetizations and hardware circuitries for interval arithmetic, see, e.g., [7], [8], [26], [30],
[28], [29], [40], [41], and [25]).

The objective of this article is then to investigate some mathematical notions concerning the algebraic system
of machine interval arithmetic. We begin in section 2 by specifying some notational conventions and formalizing
some purely algebraic and order-theoretical ingredients of importance to our purpose. In section 3, we give a formal
characterization of an interval algebra over the real field. In section 4, we provide a discussion of the limitations and
loss of precision of machine real arithmetic along with a clarification of the need for the infinite precision of machine
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interval arithmetic. Thereupon, in section 5, we give an algebraic characterization of the key concepts of machine real
arithmetic and machine interval arithmetic. Finally, in section 6, we deduce some algebraic and order-theoretic results
concerning the structure of machine intervals.

2 On Some Fundamental Notions of Relations and Structures

Before moving on to characterize the algebra of intervals, we begin in this section by specifying some notational
conventions and formalizing some algebraic and order-theoretical ingredients we shall need throughout this article (For
further details about the notions prescribed here, the reader may consult, e.g., [2], [11], [13], [14], [17], and [34]).

Most of our notions are characterized in terms of ordinals and ordinal tuples. So, we first define what an ordinal is.

Definition 2.1 (Ordinal). An ordinal is the well-ordered set of all ordinals preceding it. That is, for each ordinal n, there
exists an ordinal S (n) called the successor of n such that

(∀n)(∀k)(k = S (n)⇔ (∀m)(m ∈ k⇔ m ∈ n∨m = n)) .

In other words, we have S (n) = n∪{n}. Accordingly, the the first infinite (transfinite) ordinal is the set ω =
{0,1,2, ...}. All ordinals preceding ω (all elements of ω) are finite ordinals. The idea of transfinite counting (counting
beyond the finite) is due to Cantor (See [4]).

With the aid of ordinals, the notions of countably finite, countably infinite and uncountably infinite sets can be
characterized as follows.

Definition 2.2 (Countably Finite and Infinite Sets). A set S is countably finite if there is a bijective mapping from S
onto some finite ordinal n ∈ ω . A set S is countably infinite (or denumerable) if there is a bijective mapping from S
onto the infinite ordinal ω .

For example the set {a0,a1,a2} is countably finite because it can be bijectively mapped onto the finite ordinal
3 = {0,1,2}, while the set {a0,a1,a2, ...} is denumerable because it can be bijectively mapped onto the infinite ordinal
ω = {0,1,2, ...}.

Definition 2.3 (Uncountably Infinite Sets). An uncountably infinite set is an infinite set which is not countably infinite.

For example the set R of real numbers is uncountably infinite.
The notion of an n-tuple is characterized in the following definition.

Definition 2.4 (Ordinal Tuple). For an ordinal n = S(k), an n-tuple (ordinal tuple) is any mapping τ whose domain is n.
A finite n-tuple is an n-tuple for some finite ordinal n. That is

τS(k) = 〈τ (0) ,τ (1) , ...,τ (k)〉
= 〈(0,τ (0)) ,(1,τ (1)) , ...,(k,τ (k))〉 .

If n = 0 =∅, then, for any set S, there is exactly one mapping (the empty mapping) τ∅ =∅ from ∅ into S.
An important definition we shall need is that of the Cartesian power of a set.

Definition 2.5 (Cartesian Power). Let ∅ denote the empty set. For a set S and an ordinal n, the n-th Cartesian power
of S is the set Sn of all mappings from n into S, that is

Sn =

{
{∅} n = 0,

the set of all n-tuples of elements of S n = 1∨1 ∈ n.

If S is the empty set ∅, then 1

∅n =

{
{∅} n = 0,
∅ n = 1∨1 ∈ n; and ∅∅n

=

{
∅ n = 0,
{∅} n = 1∨1 ∈ n.

The preceding definition can be further generalized by introducing the notion of the Cartesian product (or
cross-product).

1Amer in [1] used the n-th Cartesian power of ∅ to define empty structures, and axiomatized their first-order theory.
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Definition 2.6 (Cartesian Product). Let Si be sets, for an ordinal 1 ≤ i ≤ n. The Cartesian product of S, denoted
S1×S2× ...×Sn or equivalently ∏

n
i=1Si, is defined to be

∏
n
i=1Si =

 S
n (∀Si)(∀S j)(Si = S j = S) ,

∅ (∃Si)(Si =∅) ,
{〈s1, ...,sn〉 |si ∈ Si} otherwise.

In accordance with the preceding definitions, a set-theoretical relation is a particular type of sets. Let S2 be the
binary Cartesian power of a set S . A binary relation on S is a subset of S2. That is, a set ℜ is a binary relation on a set
S iff (∀r ∈ℜ)((∃x,y ∈ S)(r = (x,y)). In this set-theoretical sense, the notion of density of a set with respect to an
ordering relation ℜ is characterized in the following definition.

Definition 2.7 (Density). A set S is dense with respect to a strict ordering relation ℜ (or an ℜ-dense) iff 2

(∀x,y ∈ S)(xℜy⇒ (∃z ∈ S)(xℜz∧ zℜy)).

By means of the above concepts, we next define the notions of partial and total operations.

Definition 2.8 (Partial and Total Operations). Let Sn be the n-th Cartesian power of a set S . An n-ary (total) operation
on S is a total function tn : Sn 7−→ S . An n-ary partial operation in S is a partial function pn : U 7−→S , where U ⊂ Sn.
The ordinal n is called the arity of tn or pn.

A binary operation is an n-ary operation for n = 2. Addition and multiplication on the set R of real numbers are
best-known examples of binary total operations, while division is a partial operation in R.

We finalize this section by characterizing an important notion we shall need, that of a structure of a formalized
language L (or an L-structure).

Definition 2.9 (Structures). Let L be a formalized language (possibly with no individual constants). By an L-structure
we understand a system M=

〈
A;FM;RM

〉
, where

• A is a (possibly empty) set called the individuals universe of M. The elements of A are called the individual
elements of M;

• FM is a (possibly empty) set of finitary total operations onA. The elements of FM are called the M-operations;

• RM is a (possibly empty) set of finitary relations on A. The elements of RM are called the M-relations.

An L-structure with an empty individuals universe is called an empty L-structure 3. By a many-sorted L-structure
we understand an L-structure with more than one universe set. By a relational L-structure we understand an L-structure
with a non-empty set of relations and an empty set of functions. By an algebraic L-structure (or an L-algebra) we
understand an L-structure with a non-empty set of functions. An L-algebra endowed with a compatible ordering
relation ℜ is called an ℜ-ordered L-algebra.

3 Interval Algebra over the Real Field

The main business of this section is to give a formalized characterization of the theory of real interval arithmetic. There
are many theories of interval arithmetic (see, e.g., [22], [29], [21], [32], [31], [7], [16], and [12].). We are here interested
in characterizing classical interval arithmetic as introduced in, e.g., [35], [45], [38], and [9]. An algebra for machine
intervals over a different theory of intervals will be fundamentally the same as the one presented in this article, but it
might differ in the resulting algebraic properties.

A theory ThI of a real interval algebra (a classical interval algebra or an interval algebra over the real field) is
characterized in the following definition (see [9] and [15]).

Definition 3.1 (Theory of Real Interval Algebra). Take σ = {+,×;−,−1 ;0,1} as a set of non-logical constants and let
R=

〈
R;σR

〉
be the totally ≤-ordered field of real numbers. The theory ThI of an interval algebra over the field R is

the theory of a two-sorted structure IR =
〈
IR;R;σIR

〉
prescribed by the following set of axioms.

2The abbreviation “iff ”, for “if and only if ”, is attributed to the great mathematician Paul Richard Halmos (1916–2006) who preferred it for
definitions. Despite the customary usage of “if”, rather than “iff”, in statements of definitions, it is a usual practice to prefer “iff” for definitions, in
formalized treatments where steering clear of ambiguity is a must (see, e.g., [24], [47], and [48]). Accordingly, we shall follow the formal tradition of
Hunter, Suppes and Tarski, and deploy “iff ” as an ordinary English translation of “⇔” in all statements of our definitions.

3First-order logics with empty structures were first considered by Mostowski in [39], and then studied by many logicians (see, e.g., [43], [23], and
[1]). Such logics are now referred to as free logics.
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(I1) (∀X ∈ IR)(X = {x ∈ R|(∃x ∈ R)(∃x ∈ R)(x≤R x≤R x)}),

(I2) (∀X ,Y ∈ IR)
(
◦ ∈ {+,×}⇒ X ◦IR Y = {z ∈ R|(∃x ∈ X)(∃y ∈ Y )(z = x◦R y)}

)
,

(I3) (∀X ∈ IR)
(
� ∈ {−}∨

(
� ∈ {−1}∧0IR 6⊆ X

)
⇒�IRX = {z ∈ R|(∃x ∈ X)(z = �Rx)}

)
.

The sentence (I1) of definition 3.1 characterizes what an interval number (or a closed R-interval) is. The sentences
(I2) and (I3) prescribe, respectively, the binary and unary operations for R-intervals. Hereafter, the upper-case Roman
letters X , Y , and Z (with or without subscripts), or equivalently [x,x],

[
y,y
]
, and [z,z], shall be employed as variable

symbols to denote real interval numbers. A point (singleton) interval number {x} shall be denoted by [x]. The letters A,
B, and C, or equivalently [a,a],

[
b,b
]
, and [c,c], shall be used to denote constants of IR. Also, we shall single out the

symbols 1I and 0I to denote, respectively, the singleton R-intervals {1R} and {0R}. For the purpose at hand, it is
convenient to define two proper subsets of IR: the sets of symmetric interval numbers and point interval numbers.
Respectively, these are defined and denoted by

IS = {X ∈ IR|(∃x ∈ R)(0≤ x∧X = [−x,x])},
I[x] = {X ∈ IR|(∃x ∈ R)(X = [x,x])}.

From the fact that real intervals are totally ≤R-ordered subsets of R, equality of R-intervals follows immediately
from the axiom of extensionality 4 of set theory. That is,

[x,x] =I
[
y,y
]
⇔ x =R y∧ x =R y.

From the fact that R-intervals are ordered sets of real numbers, the following theorem is derivable from definition
3.1 (see [9] and [11]).

Theorem 3.1 (Interval Operations). For any two interval numbers [x,x] and
[
y,y
]
, the binary and unary interval

operations are formulated in terms of the intervals’ endpoints as follows.

(i) [x,x]+I
[
y,y
]
=
[
x+R y,x+R y

]
,

(ii) [x,x]×I
[
y,y
]
=
[
min{x×R y,x×R y,x×R y,x×R y},max{x×R y,x×R y,x×R y,x×R y}

]
,

(iii) −I [x,x] = [−Rx,−Rx],

(iv) 0I 6⊆ [x,x]⇒ [x,x]
−1I

=
[
x
−1R ,x

−1R
]
,

where min and max are respectively the ≤R-minimal and ≤R-maximal.

Wherever there is no confusion, we shall drop the subscripts I and R. By definition 2.8, it is obvious that all the
interval operations, except interval reciprocal, are total operations. The additional operations of interval subtraction
and division can be defined respectively as X−Y = X +(−Y ) and X÷Y = X×

(
Y
−1
)

.

Interval multiplication left and right subdistributes over interval addition 5. In other words, the structure 〈IR;+I ,
×I ;0I ,1I〉 of real interval numbers is a commutative S-semiring (subdistributive semiring) [9].

Throughout this article, we shall employ the following theorem and its corollary (see, [8], and [9]).

Theorem 3.2 (Inclusion Monotonicity in Classical Intervals). Let X1, X2, Y1, and Y2 be interval numbers such that
X1 ⊆ Y1 and X2 ⊆ Y2. Then for any binary operation ◦ ∈ {+,×} and any definable unary operation � ∈ {−,−1 }, we
have

(i) X1 ◦I X2 ⊆ Y1 ◦I Y2,

(ii) �IX1 ⊆ �IY1.

4The axiom of extensionality asserts that two sets are equal if, and only if they have precisely the same elements, that is, for any two sets S and
T , S = T ⇔ (∀z)(z ∈ S⇔ z ∈ T ).

5An S-ringoid (or a subdistributive ringoid) is a ring-like structure that satisfies at least one of the following subdistributive criteria (see [11] and
[15]).

(i) (∀x,y,z ∈R)(x×R (y+R z)⊆ x×R y+R x×R z),

(ii) (∀x,y,z ∈R)((y+R z)×R x⊆ y×R x+R z×R x).

Noteworthy, the notion of an S-ringoid is a generalization of the notion of a near-semiring; a near-semiring is a ringoid that satisfies the criteria of
a semiring except that it is either left or right distributive (For detailed discussions of near-semirings and related concepts, the reader may refer to,
e.g., [49], [42], and [6]).
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In consequence of this theorem, from the fact that [x,x]⊆ X ⇔ x ∈ X , we have the following important special
case.

Corollary 3.1 (Membership Monotonicity for Classical Intervals). Let X and Y be real interval numbers with x ∈ X
and y ∈ Y . Then for any binary operation ◦ ∈ {+,×} and any definable unary operation � ∈ {−,−1 }, we have

(i) x◦R y ∈ X ◦c Y ,

(ii) �Rx ∈ �cX.

In addition to ordering intervals by the set inclusion relation ⊆, there are many orders presented in the interval
literature. Among these is Moore’s partial ordering which is defined by [x,x]<M

[
y,y
]
⇔ x <R y. In contrast to the

case for ⊆, Moore’s partial ordering <M is not compatible with the algebraic operations on IR (see [9] and [15]).

4 From Approximations to Infinite Precision: The Need for Machine Intervals

In order to clarify the need for machine interval arithmetic, this section provides a brief discussion of the limitations
and loss of precision of machine real arithmetic. Machine real numbers have finite decimal places of precision. The
finite precision provided by modern computers is enough in many real life applications, and there is scarcely a physical
quantity which can be measured beyond the maximum representable value of this precision.

So when is the finite precision not enough? The problem arises when doing arithmetic. The operation of
“subtraction”, for example, results, in many situations, in an inevitable loss of precision. Consider, for instance, the
expression x− y, with x = 0.963 and y = 0.962. The exact result of x− y is 0.001, but when evaluating this expression
on a machine with 2 significant digits, the values of x and y are rounded downward to have the same machine value
0.96, and the machine result of x− y becomes 0, which is a complete loss of precision. Instead, by enclosing the exact
values of x and y in interval numbers, with outward rounding (see section 5), a guaranteed enclosure of the exact result
of x− y can be obtained easily by computing with machine interval numbers.

This problem of machine subtraction has dangerous consequences in numerical computations. To illustrate, consider
the problem of calculating the derivative of a real-valued function f at a given point. The method of finite differences is
a numerical method which can be performed by a computer to approximate the derivative. For a differentiable function
f , the first derivative f (1) can be approximated by

f (1) ∼=
f (x+dx)− f (x)

dx
,

for a small nonzero value of dx. As dx approaches zero, the derivative is better approximated. But as dx gets smaller,
the rounding error increases because of the finite precision of machine real arithmetic, and we accordingly get the
problematic situation of f (x+dx)− f (x) = 0. That is, for small enough values of dx, the derivative will be always
computed as zero, regardless of the rule of the function f . Using interval enclosures of the function f instead, we can
find a way out of this problem, by virtue the infinite precision of machine interval arithmetic. For further details on
interval enclosures of derivatives, see, e.g., [9] and [18].

Another problem of finite precision arises when truncating an infinite operation by a computable finite operation.
For example, The exponential function ex may be written as a Taylor series

ex = 1+
x2

2!
+

x3

3!
+ ...=

∞

∑
n=0

xn

n!
.

In order to compute this infinite series on a machine, we have to truncate it to the partial sum

Sk =
k

∑
n=0

xn

n!
,

for some finite k, and the truncation error then is |ex−Sk|. Using interval bounds for this error term, machine interval
arithmetic can provide a guaranteed enclosure of the exact value of the exponential function ex.

Moreover, in some practical situations, the numerical approximations provided by machine real arithmetic are not
beneficial. In robotics and control applications, for example, it is important to have guaranteed inclusions of the exact
values in order to guarantee stability under uncertainty.

The preceding sample examples shed light on the fact that taking the passage from machine real arithmetic to
machine interval arithmetic opens the way to the rich technicalities and the infinite precision of interval computations.
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5 Machine Realization of the Interval Operations

The arithmetic of intervals defined in section 3 may be called an exact interval arithmetic, in the sense that no rounding
or approximation is involved. However, when interval arithmetic is realized on a computer, we get some loss of accuracy
due to round-off errors. Therefore, due to the fact that there is only a finite subset M⊂ R of machine-representable
numbers, special care has to be taken to guarantee a proper hardware implementation of interval arithmetic. Thus, we
need a machine interval arithmetic in which interval numbers have to be rounded so that the interval result computed
by a machine always contains the exact interval result.

The algebraic operations of the classical theory of interval arithmetic are defined in such a way that they satisfy
the property of inclusion monotonicity (see theorem 3.2). An important immediate consequence of the inclusion
monotonicity is that given two interval numbers [x,x] and

[
y,y
]

with x ∈ [x,x] and y ∈
[
y,y
]
, then for any definable

unary operation � ∈ {−,−1 } and any binary operation ◦ ∈ {+,×}, the real and interval results shall satisfy

�x ∈ � [x,x] ,
x◦ y ∈ [x,x]◦

[
y,y
]

.

That is, guaranteed enclosures of the real-valued results can be obtained easily by computing on interval numbers.
The preceding formulas use the arithmetic of real numbers that are not machine-representable. However, using

outward rounding for interval numbers, we can obtain alternate formulas that use floating-point arithmetic, and still
satisfy the property of inclusion monotonicity.

Let n be a finite ordinal. Henceforth, we shall understand by a set of machine-representable real numbers with n
significant digits, any finite subset Mn of rational numbers that can be represented by n significant decimal digits. Two
definitions we shall need are those of the downward and upward rounding operators.

Definition 5.1 (Downward Rounding). Let x be any real number and let xm denote a machine-representable real number
with n significant digits. Then there exists a machine-representable real number5nx ∈Mn such that

5nx = sup{xm ∈Mn|xm ≤ x},

where5 is called the downward rounding operator.

Definition 5.2 (Upward Rounding). Let x be any real number and let xm denote a machine-representable real number
with n significant digits. Then there exists a machine-representable real number4nx ∈Mn such that

4nx = inf{xm ∈Mn|x≤ xm},

where4 is called the upward rounding operator.

Let, for instance, M2 be the set of machine-representable real numbers with two significant digits. Then,
52 (0.432) = 0.43 and42 (0.432) = 0.44.

In order to be able to do useful arithmetic with machine real numbers, next we characterize the notion of a sufficient
(or arithmetical) set of machine real numbers. This is made precise in the following definition.

Definition 5.3 (Arithmetical Machine Real Numbers). For a finite ordinal n, a sufficient (or arithmetical) set Mn of
machine real numbers is characterized as follows.

(i) Mn is finite,

(ii) xm ∈Mn⇔ (∃x ∈ R)(xm =5nx∨ xm =4nx),

(iii) 0 ∈Mn,

(iv) (∀xm)(xm ∈Mn⇒ (−xm) ∈Mn).

Hereafter, if confusion is unlikely, we shall usually drop the subscript n. Also, unless stated explicitly otherwise,
we shall understand by M an arithmetical set of machine real numbers.

The binary and unary operations for machine real numbers can be characterized in the following definition.

Definition 5.4 (Machine Real Operations). Let � be in {5,4}, and let � and ◦ be, respectively, in {−,−1 } and {+,×}.
For any two real numbers x and y, the unary and binary machine real operations are defined as

��x = �(�x) ,

x◦� y = �(x◦ y) .
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On the basis of these definitions, we can obtain a finite setM⊂ IR of machine interval numbers by rounding
interval numbers outward.

Definition 5.5 (Outward Rounding). Let [x,x] be any interval number. Then there exists a machine-representable
interval number � [x,x] such that

� [x,x] = [5x,4x] ,

where � is called the outward rounding operator.

Accordingly, the setM of machine interval numbers is

M= {Xm|(∃X ∈ IR)(Xm =�X)},

and obviously outward rounding is a function that maps elements of IR to the setM of machine interval numbers, that
is �n : IR 7−→Mn.

With outward rounding, a machine interval arithmetic can be defined such that the result of a machine interval
operation is a machine interval number which is guaranteed to contain the exact result of an interval operation. In this
manner, the classical interval operations can be redefined, in the language of machine interval arithmetic, as follows.

Definition 5.6 (Machine Interval Operations). Let [x,x] and
[
y,y
]

be interval numbers. The unary and binary machine
interval operations are defined as

(i) �(− [x,x]) = [5(−x) ,4(−x)],

(ii) 0 /∈ [x,x]⇒�
(
[x,x]−1

)
=
[
5
(

x
−1
)
,4
(

x
−1
)]

,

(iii) �
(
[x,x]+

[
y,y
])

=
[
5
(
x+ y

)
,4(x+ y)

]
,

(iv) �
(
[x,x]×

[
y,y
])

=
[
5
(
min{xy,xy,xy,xy}

)
,4
(
max{xy,xy,xy,xy}

)]
.

For simplicity of the language, throughout this article, we shall deploy the following abbreviations.

−� [x,x] =�(− [x,x]) ,

[x,x]−1� =�
(
[x,x]−1

)
,

[x,x]+�
[
y,y
]
=�

(
[x,x]+

[
y,y
])

,

[x,x]×�
[
y,y
]
=�

(
[x,x]×

[
y,y
])

.

Outward rounding of interval numbers involves performing computations with two rounding modes (upward and
downward). This can be much costlier than performing the computations with one single rounding direction. By virtue
of definition 5.3, we have

(∀xm)(xm ∈M⇒ (−xm) ∈M) ,

and accordingly
(∀x ∈ R)(5(−x) =−4 (x)) ,

which makes it possible to use upward rounding as one single rounding mode. In this manner, for instance, machine
interval addition can be reformulated as

�
(
[x,x]+

[
y,y
])

=
[
−4

(
(−x)− y

)
,4(x+ y)

]
.

Similar optimal roundings can be applied to other interval operations so that one can get more efficient implemen-
tations of interval arithmetic.

6 On Some Algebraic and Order-Theoretic Properties of Machine Intervals

By means of the notions prescribed in the preceding sections of this article, we shall now inquire into some algebraic
and order-theoretic theorems concerning machine interval arithmetic.

A first important result figures in the following theorem.

Theorem 6.1 (Symmetricity is Machine Monotonic). LetMS be the set of machine symmetric intervals. The machine
representation of a real symmetric interval X is always an element ofMS. That is

(∀X)(X ∈ IS⇒�X ∈MS) .
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Proof. Let [−x,x] ∈ IS. Then, by definition 5.3, � [−x,x] = [5(−x) ,4(x)] = [−4 (x) ,4(x)] ∈MS.

In contrast to symmetricity, singletonicity is not machine monotonic. This is established in the following theorem.

Theorem 6.2 (Singletonicity is not Machine Monotonic). LetM[x] be the set of machine point (singleton) intervals.
The machine representation of a real point interval X is not necessarily an element ofM[x]. That is

(∃X)
(
X ∈ I[x]∧�X /∈M[x]

)
.

Proof. Let [x,x] be an element of I[x]. According to definition 5.5, the machine representation of [x,x] is

� [x,x] = [5x,4x] ,

which is not necessarily a machine point interval.

The following example makes this clear.

Example 6.1. Let M2 be the set of machine-representable real numbers with two significant digits. The real point
interval [0.432,0.432] then has the machine representation

�2 ([0.432,0.432]) = [52 (0.432) ,42 (0.432)]
= [0.43,0.44] ,

which is not a machine point interval.

This property is not a problem of machine interval arithmetic; rather, it is a guarantee that the interval result
computed by a machine always contains the exact interval result.

Consequently, the following theorem is derivable.

Theorem 6.3 (Nontotality of Point Machine Operations). The machine interval operations are not total operations on
M[x]. That is for X and Y are elements ofM[x], the results of machine interval operations for X and Y are not always
elements ofM[x].

Proof. By virtue of the previously proved fact that outward rounding does not preserve singletonicity, the proof is
immediate from definition 5.6 and definition 2.8.

To illustrate this, we next give an example.

Example 6.2. Let M2 be the set of machine-representable real numbers with two significant digits. The result of
multiplying the two machine point intervals [2.26,2.26] and [2.27,2.27] is computed as

�2 ([2.26,2.26]× [2.27,2.27]) = [52 (5.1302) ,42 (5.1302)]
= [5.13,5.14] ,

which is not a machine point interval.

The questions of definability of the structure of machine point intervals is the subject of the following theorem.

Theorem 6.4 (Undefinability of Machine Point Algebra). The structure
〈
M[x];+�,×�

〉
of machine point intervals is

not definable with respect to the machine operations +� and ×�.

Proof. Since, by theorem 6.3, the machine interval operations +� and ×� are not total operations onM[x], it follows,
from definition 2.9, that the structure

〈
M[x];+�,×�

〉
is not definable.

The following theorem asserts that the set M of machine real numbers is not dense.

Theorem 6.5 (Nondensity of Machine Real Numbers). Let Mn be the set of machine real numbers with n significant
digits. The set Mn is not dense with respect to the strict real ordering <, that is

(∃xm ∈Mn)(∃ym ∈Mn)(xm < ym∧¬((∃zm ∈Mn)(xm < zm∧ zm < ym))) .

Proof. The statement of the theorem immediately follows, by definition 2.7, from the fact that the set of machine real
numbers is the closure of finite precision numbers under machine rounding.
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In order to clarify, let xm be an element of Mn. Then xm can be written as

xm = x0 +
x1

10
+

x2

102 + ...+
xn

10n =
n

∑
k=0

xk

10k ,

where x0,x1,x2, ...,xn are nonnegative integers.
Accordingly, if ym is an element of Mn such that

ym = x0 +
x1

10
+

x2

102 + ...+
xn +1
10n =

1
10n +

n

∑
k=0

xk

10k ,

then ym is the element of Mn exactly next to xm, and therefore, there is no zm ∈Mn such that xm < zm∧ zm < ym.
In consequence of theorem 6.5, the setM of machine intervals is also not dense, from the fact thatM is a proper

subset of the powerset of M.

Corollary 6.1 (Nondensity of Machine Intervals). LetMn be the set of machine interval numbers with n significant
digits. The setMn is not dense with respect to Moore’s strict partial ordering <M.

Let, for instance, M1 be the set of machine real numbers with one significant digit. Obviously, there is no zm ∈M1
such that 1.1 < zm < 1.2, and there is no Zm ∈M1 such that [1.1,1.1]<M Zm <M [1.2,1.2].

Moreover, unlike the sets R and IR, the sets M andM, of machine real numbers and machine interval numbers,
are countably finite. These are established in the following theorem and its corollary.

Theorem 6.6 (Countability of Machine Real Numbers). The set M of machine real numbers is countably finite.

Proof. The set M of machine real numbers is, by definition, a finite proper subset of the set Q of rational numbers.
Since Q is countably infinite, it follows, by definition 2.2, that the set M is countably finite.

This theorem, by the fact thatM is a proper subset of the powerset of M, has as a consequence the following
corollary.

Corollary 6.2 (Countability of Machine Intervals). The setM of machine interval numbers is countably finite.

Thus, we can easily determine the number of machine interval numbers between any two elements of M. This is
made precise in the following theorem.

Theorem 6.7 (Count of Machine Interval Numbers). Let Mn be the set of machine real numbers with n significant digits,
and let xm and ym be elements of Mn such that xm ≤ ym. Then the count of machine interval numbers between xm and
ym is given by

CM(xm,ym) =

CM(xm,ym)

∑
k=1

k =
C2
M(xm,ym)

+CM(xm,ym)

2
,

where
CM(xm,ym) = 10n× (ym− xm)+1,

is the count of machine real numbers between xm and ym.

Proof. Obviously, the count of singleton machine intervals between xm and ym is CM(xm,ym). The count of non-singleton
machine intervals is computed as follows. First, the count of machine intervals with a lower endpoint equal to xm
is CM(xm,ym)− 1. The count of machine intervals with a lower endpoint equal to the machine successor of xm is
CM(xm,ym)−2. Following this, the count of machine intervals with a lower endpoint equal to the machine predecessor
of ym is 1. Summing up, we have

CM(xm,ym) =CM(xm,ym)+
(
CM(xm,ym)−1

)
+
(
CM(xm,ym)−2

)
+ ...+1

=
CM(xm,ym)

(
CM(xm,ym)+1

)
2

,

and the theorem follows.

The following example makes this clear.
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Example 6.3 (Counting Machine Numbers). Let M2 be the set of machine real numbers with two significant digits. The
count of machine real numbers between 1.23 and 1.32 is

CM(1.23,1.32) = 102× (1.32−1.23)+1

= 10,

and the count of machine interval numbers between 1.23 and 1.32 is

CM(1.23,1.32) =
102 +10

2
= 55.

Now we turn to some important monotonicity properties of machine interval arithmetic. With the help of definitions
5.1 and 5.2, the following theorem is derivable.

Theorem 6.8 (Non-Strict Real Order is Machine Monotonic). The non-strict real ordering ≤ is monotonic with respect
to downward and upward roundings. That is, for any two real numbers x and y, we have

(i) x≤ y⇒5x≤5y,

(ii) x≤ y⇒4x≤4y.

However, in contrast to the case for ≤, the strict real ordering < is not machine monotonic. This is established in
the next theorem.

Theorem 6.9 (Strict Real Order is not Machine Monotonic). The strict real ordering < is monotonic with respect
neither to downward nor to upward roundings. That is, there exist two real numbers x and y such that

(i) x < y∧5x 6<5y,

(ii) x < y∧4x 6<4y.

Proof. To prove the theorem, it suffices to give a counterexample. Let M1 be the set of machine-representable real
numbers with one significant digit. For the two real numbers 0.92 and 0.93, we have 0.92 < 0.93.

Rounding the two numbers downward, we get5(0.92) =5(0.93) = 0.9, and accordingly5(0.92) 6<5(0.93).
Analogously, rounding the two numbers upward, we get4(0.92) =4(0.93) = 1.0, and accordingly4(0.92) 6<

4(0.93).
The strict real ordering < is therefore not machine monotonic.

Finally, by means of definition 5.6, it is not difficult to prove the well-known inclusion monotonicity theorem for
machine interval numbers.

Theorem 6.10 (Inclusion Monotonicity in Machine Intervals). Machine interval arithmetic is inclusion monotonic. That
is, for any two interval numbers X and Y , we have

(i) X ⊆ Y ⇒�X ⊆�Y ,

(ii) X ◦Y ⊆�(X ◦Y ),

(iii) �X ⊆�(�X).

Accordingly, we have as a consequence the following corollary.

Corollary 6.3 (Membership Monotonicity for Machine Intervals). Machine interval arithmetic is membership mono-
tonic. That is, for any two interval numbers X and Y with x ∈ X and y ∈ Y , we have

(i) �x ∈�(�X),

(ii) x◦ y ∈�(X ◦Y ).

Thus, outward rounding provides an efficient implementation of interval arithmetic, with the property of inclusion
monotonicity still satisfied.

To illustrate this, we give two numerical examples.

Example 6.4 (Monotonicity of Machine Intervals). Let M3 be the set of machine-representable real numbers with three
significant digits.
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(i) We have

�3 ([1,2]÷ [2,3]) = [53 (1/3) ,43 (1)]
= [0.333,1] ,

and
([1,2]÷ [2,3])⊂ [0.333,1] .

(ii) We have

�3 ([0,1]+ [2.7182,3.3841]) = [53 (2.7182) ,43 (4.3841)]
= [2.718,4.385] ,

and
([0,1]+ [2.7182,3.3841])⊂ [2.718,4.385] .

7 Conclusion

Interval arithmetic is based on the very simple and elegant idea that of expressing uncertain real-valued quantities as
real closed intervals. For the great degree of reliability it provides, interval arithmetic is usually a part of all other
methods that deal with uncertainty. Thus, in view of this computational power against error and imprecision, machine
implementations of interval arithmetic are of great importance. This article has been then devoted to investigating some
mathematical notions concerning the algebraic system of machine interval arithmetic. In the first place, after formalizing
some algebraic and order-theoretical ingredients of importance to our purpose, we gave a formal characterization of
an interval algebra over the real field. Next, we provided a discussion of the limitations of machine real arithmetic
along with a clarification of the need for the infinite precision of machine interval arithmetic. Thereupon, we gave
an algebraic characterization of the fundamental notions of machine real arithmetic and machine interval arithmetic.
Finally, we proved some algebraic and order-theoretic results concerning the structure of machine intervals.
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