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   with different k-mer sizes

Super-assembly and
   iterative gap closure

Decontamination and pro-
cessing of the inverted repeat
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Enrichment of plastid 
   reads by k-mer coverage 
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Scaling of data set based
   on CDS cluster coverage
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The relative content of plastid DNA is estimated from reads mapped 
with Bowtie2[1] onto clusters of plastid-gene coding sequences. The 
initial data set is scaled to an approximate 200-fold plastid coverage. 
Using k-mer frequencies counted with Jellyfish[2], the set is purged of 
host sequences by iterative removal of reads with low frequency k-mers. 

Primary assemblies are generated using Velvet[3] with k-mer sizes 
between 33 and 93. A contiguous super-assembly is calculated with 
Phrap[4]. Contig extensions and gap patches are obtained through a 
newly developed algorithm from paired end mapping information and 
local micro-assemblies. Contaminations are filtered by homology and 
the collapsed inverted repeat sequence is recovered. The final genome 
assembly is annotated with CpGAVAS[5] and visualized with OGDraw[6]. 

In times of large scale high troughput sequencing, novel plastid genomes mostly emerge from host genome 
sequencing projects. Here we present ChloroExtractor, a fully automated pipeline designed to generate high 
quality plastid assemblies from heterogeneous short read data.  By applying our software to 100 publicly available 
plant sequencing libraries, we salvaged 27 novel and complete plastid genomes across a wide range of plant taxa. 
Thus, we consider ChloroExtractor a valuable tool in the process of further unraveling plastid biology and evolution.
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ChloroExtractor: A fully automated plastid assembly 
pipeline reveals dozens of novel plastid genomes


