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Abstract
Adversaries in two-party computation may sabotage a protocol, leading to possible collapse of the information security 
management. In practice, attackers often breach security protocols with specific incentives. For example, attackers manage 
to reap additional rewards by sabotaging computing tasks between two clouds. Unfortunately, most of the existing research 
works neglect this aspect when discussing the security of protocols. Furthermore, the construction of corrupting two parties 
is also missing in two-party computation. In this paper, we propose an incentive-driven attacking model where the attacker 
leverages corruption costs, benefits and possible consequences. We here formalize the utilities used for two-party protocols 
and the attacker(s), taking into account both corruption costs and attack benefits. Our proposed model can be considered as the 
extension of the seminal work presented by Groce and Katz (Annual international conference on the theory and applications 
of cryptographic techniques, Springer, Berlin, pp 81–98, 2012), while making significant contribution in addressing the 
corruption of two parties in two-party protocols. To the best of our knowledge, this is the first time to model the corruption 
of both parties in two-party protocols.

Keywords Cost corruption · Incentive-driven adversary · Two-party computation

1 Introduction

Two-party protocols allow twodistributed anddistrustful par-
ties to jointly consider a general function with their private
inputs. Two-party protocols can be widely used in various
fields such as cloud computing (Gao et al. 2018; Tian et al.
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2018; Ibtihal et al. 2017; Zheng andWang 2018), file encryp-
tion (Yang et al. 2018), verifiable computation (Chen et al.
2016), keyword searching (Li et al. 2015) and trust evalua-
tion (Jiang et al. 2016, 2018; Jhaveri et al. 2018). Normally,
the security of two-party protocols is discussed with a single
external attacker, who is assumed to arbitrarily sabotage the
protocols by corrupting atmost one party. Inmost cases, how-
ever, a realistic attacker often sabotages the security protocols
with certain incentives instead of arbitrary purposes (Haddi
and Benchaïba 2015; Zhao et al. 2012;Wu et al. 2014). If the
attacker can justify his (or her) attacks, he (or she) will be
motivated to launch the corruption such that the protocols are
changed toward the way to benefit him (or her). On the other
hand, corruption is not free for any involved party.Otherwise,
any party will modify the protocols without any liability (Li
et al. 2018; Liu et al. 2018b; Gupta et al. 2016). The settings
of corrupting two parties are often missing, and it is less
important to discuss the security of a protocol with two cor-
rupted parties in two-party protocols. However, it has a great
potential to consider the case of corrupting both parties for
an incentive-driven attacker, who has to leverage corruption
costs and possible benefits. It is worth pointing out that semi-
honest and malicious adversaries may never reveal authentic
incentives (Li et al. 2017; Yu et al. 2018).
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In this paper, we revisit the problem of incentive-driven
attackers and corruption costs by significantly extending the
framework reported in Groce and Katz (2012). We propose
the new incentive-driven attacking model based on the intu-
ition that no party will participate in a protocol without any
benefit. Existing works assume parties are arbitrarily mali-
cious, which is not proper for reality attackers. Rational
parties take part into protocols to maximize their payoffs. It
is rarely considered to corrupt two parties at the same time.
However, currently corrupting two parties is in line with real-
ity. For example, one malicious attacker learns additional
information with respect to a protocol and can maximize his
profit when obtaining inputs of both parties. At the same
time, two parties in the protocol do not learn the additional
information and can only obtain their own specific payoff
when following the protocol. The malicious attacker has
incentives to bribe both parties with a price, which is higher
than the party’s specific payoff, but lower than the maximize
profit. On the other hand, the corrupted parties would like
to sell their inputs and receive the bribe money. Therefore,
we formalize this malicious attacker into an incentive-driven
attacker and discuss the conditions when the bribe is feasible.
The basic idea of this work is more or less similar to social
engineering (Hadnagy 2010; Abraham and Chengalur-Smith
2010). The main contributions of our work are summarized
below.

1. We propose a new incentive-driven attacking model for
costing the corruption of two-party protocols. Our pro-
posed model describes the price of an attack when the
attacker(s) sabotage the protocols. This cost computa-
tion influences the decision made for the launch of any
attack.

2. We extensively discuss the required utilities under three
corruption case studies. The significance of our work
is the consideration of corrupting both parties, different
from the other state-of-the-art techniques.

3. We instantiate the incentives of the attacker(s) by largely
extending the framework reported in Groce and Katz
(2012). We take into account the private inputs from
the parties involved in the protocols, which may lead to
different outcomes. We substantially investigate the pre-
conditions for the attacker(s) to successfully sabotage the
protocols’ security.

positive and negative outputs on two-party protocols. Groce
and Katz (2012) redefined utilities for rational parties. They
proved that negative outcomes described in Asharov et al.
(2011) can be avoided when rational parties were given
proper incentives. However, their work has not considered
the effects of costs on the corruption. Garay et al. intro-
duced an external attacker and transferred a protocol to a
two-party game (Garay et al. 2013). They also discussed
the relationship between the corruption cost and the utilities
when the attacker successfully broke privacy. However, they
failed to present specific utility definitions with respect to
the attacker’s incentives. Furthermore, they only considered
the corruption of partial parties instead of all the involved
parties. Recently, bitcoin and blockchain (Meng et al. 2018;
Lin et al. 2018; Liu et al. 2018a) are introduced as incentives
in multi/two-party computation for correctness (Kumaresan
andBentov 2014) and fairness (Bentov andKumaresan 2014;
Andrychowicz et al. 2014). Andrychowicz et al. (2014) sim-
ulated fairness in two-party computation, where the party
which does not learn the output may be awarded financial
compensation. Unfortunately, their work does not cover the
setting of corruption costs. Wang et al. (2018, 2016) pro-
pose rational secure two-party computation to describe the
attacking model toward the view of game theory. Adat et al.
(2018) propose an economic incentive-based risk transfer
mechanism, which can prevent denial of service attack Adat
et al. (2018) in Internet of Things. Their economic incentive-
based agreement can provide additional security for Internet
of Things if needed. Other attacking models consist of covert
channels (Zhang et al. 2018) and correlated fading chan-
nels (Fan et al. 2017), which are out of the scope of this
paper.

Our attacking model does not break the security of
protocols per se. The attacker corrupts parties by steal-
ing or bribing, which is the biggest difference from the
work reported in Groce and Katz (2012). For the proto-
cols, the attacker learns the output through cost estimation.
On the other hand, honest or corrupted parties either obtain
pecuniary compensation or certain beneficial outputs. We
compare our work against the other and show the compar-
isons in Table 1.

1.2 Outlines

Section 2 presents the proposed environmental model and
explains the used notions such as outcomes and expected
utility. Section 3 shows the attacking model and defines the
corresponding utility functions for different corruption cases.
At the end of Sect. 3, an instance based on the protocol of
Groce and Katz (2012) is presented to show the possibility
for an attacker to corrupt one party or both parties. Section 4
concludes this paper and presents future work.

1.1 Comparison against the state of the arts

Halpern and Teague (2004) introduced rational parties in 
secret sharing schemes and secure multi-party computation 
protocols, where rational parties have incentives to maxi-
mize their utilities. Asharov et al. (2011) presented formal 
definitions for the security of rational protocols with both
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Table 1 Comparations with
other works

Garay et al.
(2013)

Groce and
Katz (2012)

Asharov et al.
(2011)

Andrychowicz
et al. (2014)

Ours

Corruption cost � × × × �
Corrupt both parties × × × × �
Incentive-driven attacker � × × � �
Private types × × � × �

2 Environmental model

In this paper, we consider a general two-party computation
protocol π . Two distinct parties, who execute π , belong to
set P = {A, B,C, D, . . .}. Note that parties may be entities
such as hosts or machines. Let πP1P2 denote an instance of
π , where P1, P2 ∈ P execute π with their inputs. Each party
has his (or her) own identities such that they recognize each
other in the specific protocol. Two parties can learn an out-
put jointly with their inputs. LetA denote an attacker, either
internal or external. The internal attacker is one of the parties
inside the protocol and an external attacker outside the proto-
col. Note that the internal attacker belongs to P , who attacks
the other parties by providing proper incentives. Recall that
only external attackers are discussed in traditional two-party
computation. In this paper, we consider the possibility of the
internal attackers for simplicity. We will discuss this setting
in the following sections.

The main target of the attacker is to learn the output of
the protocol by attacking two parties in the protocol. The
attacker is assumed to have the following abilities: (1) he
(or she) controls the communication channel (like eaves-
drop) between parties A and B; (2) the corruption is not
free; (3) he (or she) may corrupt the parties to retrieve the
identities (and the private inputs) to play protocol π . Here,
corrupting one party has two styles. One is to steal inputs
and identities with necessary costs without paying any cost
for the corrupted parties. Another one is to bribe parties with
bribery funds, and the corrupted parties reward the attacker
afterward.

Let pA and pB denote the probabilities when the attacker
bribes parties A and B, respectively. The attacker may learn
the output by replacing the corrupted parties in protocol π

with the stolen or rewarded inputs and identities from the
corrupted parties. The difference between these two corrup-
tion styles is whether the corrupted parties are paid when
they lose their inputs and identities. Both corruption styles
are not free, and the costs are identical in both styles. Our
model can apply to secure two-party computation protocols,
where parties’ identities are authenticated. The attacker may
steal or bribe parties for their inputs and identities like session
keys.

Suppose two parties A and B execute protocol π . In
fact, any two parties belonging to P may execute the pro-

tocol. Let vectors oA = (o1A, o2A, o3A, . . . , onA) and oB =
{o1B, o2B , o3B, . . . , onB} denote all the possible outcomes for
A and B, respectively, where n denotes the number of the
possible outcomes. Let vectorsα = {α1, α2, α3, . . . , αn} and
β = {β1, β2, β3, . . . , βn} denote the distribution of the corre-
sponding outcomes. Let vectors uA = {u1A, u2A, u3A, . . . , unA}
and uB = {u1B, u2B, u3B , . . . , unB} denote the corresponding
utilities for A and B, respectively. Therefore, parties A and
B have the expected utilities U A = uAαT , UB = uBβT ,
respectively.

The approach proposed in this paper is distinct from the
established frameworks due to the incentives held by the
attacker. The attackerAmay not arbitrarily attack a protocol.
Instead, he (or she) sabotages a protocol with specific incen-
tives by paying necessary costs. We formulate the incentives
through utilities. That is, the attacker has incentives to sab-
otage a protocol if it brings positive utilities. Therefore, the
attacker should find additional criteria in the computation for
costs or losses. For example, the attacker has higher proba-
bility γ = {γ1, γ2, γ3, . . . , γn} and δ = {δ1, δ2, δ3, . . . , δn}
on the outcomes of parties A and B. In this case, the corre-
sponding outcome and utility of A are denoted as oA =
{o1A, o2A, o3A, . . . , onA} and uA = {u1A, u2A, u3A, . . . , unA},
respectively. Note that uA may be different under the cases
of corruptions A and B. For simplicity, in this paper, we only
use uA to denote the corresponding utility of A when one
party is corrupted. It will not exclude the case where both
A and B are corrupted, which is often ignored in two-party
computation protocols.

3 Attackingmodel and the corresponding
utility functions

The attacking model on two-party protocols consists of three
corruption cases: no one is corrupted, only one is corrupted
and both are corrupted. In this section, we only present defi-
nitions of the utility functions with respect to these cases. In
the following section, we instantiate the utilities by using a
concrete protocol.

No one is corrupted
A and B execute protocolπ .A corrupts no one. The expected
utilities are shown in Eq. (1).
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U A
AB = uAαT

U B
AB = uBβT (1)

UA
AB = f (m1,m2, . . . ,mn).

U A
AB , U

B
AB and UA

AB denote the expected utilities of A, B
and A, respectively, in the protocol πAB . The utility of A is
the function of the intermediate messages m1,m2, . . . ,mn

within protocol π . It is hard to measure the attacker’s utility
when he/she does not participate in the protocol. Therefore,
we assume a function f (·) with respect to the intermediate
messages to denote his utility.

One party is corrupted
We only present the expected utility of the case when A
is corrupted. The case when B is corrupted is analogously
defined. A corrupts A with cost cA. The corruption cost cA
should be at least U A

AB , otherwise A would not accept the
corruption. A participates in the protocol π with B instead
of A. The expected utilities are demonstrated in Eq. (2).

UA
AB = uAγ T − cA

U B
AB = uBβT

U A
AB = pAcA + ΔA.

(2)

the practical scenario. It is possible A can learn the output
by itself. The expected utilities are depicted in Eq. 3.

UA
AA = ΔA − cA − cB

U A
AA = cA + Δ′

A

U B
AA = cB + Δ′

B .

(3)

U A
AA,UB

AA andUA
AA denote the utilities for parties A, B

and A, respectively. ΔA denotes the utility when A learns
the output.Δ′

A is the utility when A does not learn the output.
Δ′

B denotes the utility when B does not learn the output.
We only list the utilities for general cases, and the con-

crete utilities depend on specific implements. An instance of
utilities are presented in the following section.

4 An instance for the proposed attacking
model

4.1 The basic framework of the hybrid protocol

We apply our proposed attacking model to the protocols
(Moran et al. 2009; Katz 2007; Gordon et al. 2008; Gordon
and Katz 2012; Groce and Katz 2012), which include a “pre-
processing” stage and a “share-exchanging” stage. Recall
that in the first stage, there exists a trusted party. We restate
the framework of Groce and Katz (2012) for completeness.

The first stage of our proposed framework

1. Two parties A and B present their private inputs xA
and xB to the trusted party, which correctly computes
f (xA, xB).

2. The trusted party selects i∗ (i∗ ∈ {1, 2, . . . , n}) according
to a geometric distribution p.

3. Random values r Ai and r Bi are chosen:

(a) r Ai and r Bi are randomly chosen in the domain of f (·)
when i < i∗ (i ∈ {1, 2, . . . , n}).

(b) r Ai and r Bi are set to be f (xA, xB) when i ≥ i∗.

4. Randomly values s Ai , s
B
i and t Ai , t

B
i (shares of r Ai and r Bi )

are chosen such that s Ai ⊕ t Ai = r Ai and sBi ⊕ t Bi = r Bi .
Message authentication codes (Black 2000) on values s Ai ,
sBi and t Ai , t

B
i are also generated to guarantee the validity

of the shares.
5. s Ai , s

B
i and t Ai , t

B
i with their corresponding message

authentication codes are presented to A and B, respec-
tively.

There are altogether n rounds in the second stage. A and
B exchange their shares in each round.

U AB , U B 
B and UA

CB  denote the expected utilities of A, B 

and
A
A, r

A
espectively, in the protocol π . ΔA denotes the utility

if A does not learn the output.

Both is corrupted
Generally, corruption of two parties is often neglected since 
it is less important to discuss security property in two-party 
computation (Goldreich 2009). In this paper, we consider 
the attacking model on parties instead of the protocol itself. 
That is, the protocol per se is secure. On the contrary, we 
allow the attacker to corrupt the two parties with double costs. 
The balance between the utility gained by the corruption and 
the costs may be much higher than 0, which refers to the 
incentives for the attacker. In the example of two millionaires 
(Yao 1982), we assume that the inputs of two millionaires are 
x and y, respectively. Let Greater( f (x, y)x>y) = (yes, no) 
if x > y, otherwise Greater( f (x, y)x>y) = (no, yes), where 
the first value is returned to the first millionaire and the second 
value to the second millionaire. It is identical for the attacker 
to corrupt one party and two parties if x > y or x < y. An
extreme case is x = y. If the attacker corrupts one party, he 
(or she) can learn which is of larger cost and the output of 
one party is either yes or no. However, if the attacker corrupts 
two parties, he (or she) may have the output (no, no), which 
means two millionaires have the same amount of money. If 
the attacker is another millionaire, the corruption of the two 
parties may infer additional information. In this paper, we 
include the case of the corruption of two parties and reason
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Table 2 Utility of Groce and Katz (2012)

Correct Incorrect

Correct (a1, a2) (b1, c2)

Incorrect (c1, b2) (d1, d1)

The second stage of our proposed framework

1. In the i th round,

(a) A firstly passes t Bi to B. B ensures the validity of
the shares using the corresponding message authen-
tication codes. B computes r Bi = t Bi ⊕ sBi and the
protocol moves to the second step.

(b) B passes s Ai to A. A verifies the validity of the
shares using the corresponding message authentica-
tion codes. A computes r Ai = t Ai ⊕ s Ai .

2. Each party considers its latest reconstructed value as its
final output.

3. If both parties do not abort in the i th round, the protocol
will move into the i + 1th round.

The utility matrix of Groce and Katz (2012) can be presented
in a matrix (ref. Table 2).

4.2 Analysis of the attackingmodel

We apply our attacking model to the protocol of Groce and
Katz (2012), where both parties A and B are rational without
the participation of an external/internal attackerA. There are
two stages in Groce and Katz (2012): A and B receive shares
of the result at the end of the first stage and exchange the
shares in the second stage to reconstruct the result. In this
paper, we consider practical settings and an attacking model
for the second stage.

1. Suppose A and B have private types: honest or
dishonest with incomplete information. Here, honest
means that the parties honestly pass shares in each round
and dishonest means that the parties abort in a certain
round. Note that we do not consider the case where par-
ties send fake shares since theywill be detected due to the
validity of message authentication codes (Black 2000).

2. A and B have a prior probability on the private types.
B treats A as honest with probability μ. A regards B as
honest with probability ν. Both parties hold the expected
utilities at the end of the protocol.

3. The practical attacker A owns some additional informa-
tion on the private types of A and B. A regards A as
honest with probability μ and B as honest with proba-
bility ν. We assume that η > μ and θ > ν. Otherwise,A

has no incentives to attack this protocol. Note that A and
B learn nothing about η and θ . Furthermore, they may
not even know that A own the additional information.

4. A may seek some advantage attacking one party or both
of them, which depends on the utility functions. Here,
when stating A corrupts the parties, we mean that A
bribes one party or both the parties with required costs
and participate the protocol with the replacement of the
party or both of them.

Table 2 shows that b1 > a1 ≥ d1 ≥ c1 and b2 > a2 ≥
d2 ≥ c2. Correct means that the party learns the correct
output, and Incorrect means that the party learns an incorrect
output. In Groce and Katz (2012), the utilities of A and B are
defined according to Table 2.

In this section,we list the expected utility ofA and analyze
the conditions forA to corrupt only one party. Consequently,
the conditions for the cases, no one or both are corrupted, can
be drawn based on the conditions mentioned above. That is,
A has incentives to corrupt one party if he gets advantages
for him compared with the case when no one is corrupted.
Therefore, we should first get the expected utilities U A and
UB whennoone is corrupted,which are detailed below.Here,
UH

X andUD
X denote the utility of X whenA treats his (or her)

opponent Y as an honest and dishonest ones, respectively,
where X , Y ∈ {A, B,A} and X �= Y [ref. Eq. (4)].

U A = νUH
A + (1 − ν)UD

A

= νa1 + (1 − ν)[ϕd1 + pc1 + (1 − p − ϕ)a1]
UB = μUH

B + (1 − μ)UD
B

= μ[ϕd2 + pb2 + (1 − p − ϕ)a2]
+ (1 − μ)[ϕd2 + pd2 + (1 − p − ϕ)a2].

(4)

Let cA = U A, cB = UB be the maximum costs for A to
corrupt A and B, respectively. LetUB

AB = UB
AB andU A

AA =
U A

AB [ref. Eq. (5)].

UA
AB = θUH

A + (1 − θ)UD
A − cA

= θa1 + (1 − θ)[ϕd1 + pc1 + (1 − p − ϕ)a1] − cA

= (θ − ν)[p(a1 − c1) + ϕ(a1 − d1)]
UA

AA = ηUH
A + (1 − η)UD

A − cB

= η[ϕd2 + pb2 + (1 − p − ϕ)a2]
+ (1 − η)[ϕd2 + pd2 + (1 − p − ϕ)a2] − cB

= (η − μ)p(b2 − d2).

(5)

Here, p denotes the probability of i = i∗, after which
round both parties reconstruct the output. However, B may
reconstruct the output, but A cannot achieve the samewhen B
receives the share and aborts in the i∗th round. Let ϕ denote
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the probability of i < i∗, where both parties reconstruct
random values. Recall that we assume θ > ν, η > μ, b1 >

a1 ≥ d1 ≥ c1 and b2 > a2 ≥ d2 ≥ c2. It satisfies that
UA
AB > 0, UA

AA > 0. That is, given necessary information
on the types of A and B, A has incentives to corrupt one
party or both of them since the advantages are positive.

Definition 1 The advantage is defined as the additional
income for an attacker, which is the attacker’s utility minus
the corruption cost.

The advantage is used for describing the attacker’s incen-
tives to corrupt parties. Recall that existing works malicious
attackers sabotage protocols without reason, whom are sim-
ply assumed to break the security of the protocols.

Proposition 1 The attacker has incentives to corrupt parties
if his advantage is positive.

In this paper,weutilize the notionof advantage tomeasure the
incentives for the attacker to corrupt the parties. For exam-
ple, the attacker has strong incentives to corrupt parties if
advantage is large enough.

Theorem 1 Given θ > ν, η > μ, b1 > a1 ≥ d1 ≥ c1 and
b2 > a2 ≥ d2 ≥ c2, it is possible for A to corrupt one or
two parties.

Proof (Brief:) The inequations θ > ν, η > μ mean that the
attacker has additional information with respect to the pri-
vate types of the parties. Each party learns little about the
private type of his opponent. Therefore, they are cautious
when they participate into the protocol. On the contrary, the
attackermastersmore information and hemay take adventur-
ous actions when he participate into the protocol. However,
he should first corrupt one or two parties. Equation (5) lists
the attacker’s advantages when he corrupts A and B, respec-
tively.

Given θ > ν, η > μ, b1 > a1 ≥ d1 ≥ c1 and b2 >

a2 ≥ d2 ≥ c2, it satisfies thatUA
AB > 0,UA

AA > 0. Thus, the
attacker has incentives to corrupt one or twoparties according
to Proposition 1. �	

Aswe havementioned above, the attackermay be an inter-
nal party. For example, B may bribe A in the protocol. That
is, B bribes Awith cost cA, has the input of A and then learns
the output. We assume the utility is still calculated referring
to Table 2. It can be derived that B has incentives to bribe A
if U A − b2 < cA < c1 −UB .

4.3 A random solution for the proposed attacking
model

system. Therefore, measures must be taken to prevent such
attack. The intuition is that two parties may resort to some
cryptographic primitives in order to identify the member-
ship of them. More specifically, two parties may request an
accumulator, a one-way function (Derler et al. 2015), with
probability ψ > 0 so as to enforce cooperation before they
exchange their shares. The function of the accumulator is
to proving a membership without leaking information with
respect to any individual members. Note that ψ is not neces-
sary to be 1 since the introduction of the accumulator through
the hybrid protocol may increase the computational com-
plexity. Therefore, we only choose a proper ψ to deter the
adversary and prevent attacking.

In the scenario where the adversary corrupts two parties,
one party (say A) has utility cA when he (or she) is corrupted
(bribed). Suppose A calls an accumulator and cooperates
with B with probability ψ , the expected utility is: ψa1 +
(1 − ψ)cA. It should satisfy ψa1 + (1 − ψ)cA > cA such
that the attack is prevented. It satisfies a2 > cB for the same
reason. Recall that in Eq. (2), uAγ T is at least a1 and uAδT is
at least a2. In Eq. (3),ΔA is at least a1 +a2, otherwiseA has
no incentives to corrupt one party or two parties. Therefore,
the conditions for the two parties to resist the attack, where
a1 > cA or (and) a2 > cB , are satisfied. That is, the adversary
A cannot conduct the attack mentioned in Sect. 4.2 when
ψ > 0.

5 Conclusion

Secure two-party computation protocols may avoid attacks
in the communication between two distributed parties in the
presence of adversaries. In general, these protocols should
satisfy specific security requirements like privacy, correct-
ness and fairness. However, the abilities for the adversary are
over-estimated and attacks to the system cannot be avoided in
the real world. Therefore, the discussion under such settings
can bemade for impractical protocols. In this paper,wefirstly
considered a security problem in a realistic scenario, which
cannot be directly solved by the existing two-party protocols.
We proposed a new attacking model, where the attacker has
asymmetrical information comparedwith the case of twopar-
ties. The attacker has incentives to corrupt one party or both
of them if he (or she) is awarded enough by corrupting the
protocols.We have derived the probability of corrupting both
parties by giving an instance based on the protocol reported
in Groce and Katz (2012). Finally, we compared our work
against the other techniques in six aspects and concluded that
our work has more better achievements than the others.

The future work includes the introduction of more intel-
ligent settings like stealing shares instead of bribing parties.
Furthermore,wewill also consider the collusion between two

The assumption on the adversary A is strong enough to cor-
rupt both the parties, where the adversary’s income is no 
less than cA + cB . However, we may have a sensible attack-
ing model in practice if the adversary dominates the entire
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parties or between the attacker and one party and demonstrate
its impact on the communication security.
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