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ABSTRACT

In his 1859 paper, Bernhard Riemann used the integral equation f f(x)x > 'dx todevelop an
0

explicit formula for estimating the number of prime numbers less than a given quantity. It is the
purpose of this present work to explore some of the properties of this equation.



Consider the integral equation given below
(1) F(s) = [f(x)x " "dx
0

Formula (1) is the the integral of f(x) times x °~' for x = 0 to o and the resulting function is a
function of s, say F(s) (or the transform of f(x)) . It must be assumed that f(x) is such that the integral
exists (it has finite value).

Example 1 Apply formula (1) to obtain the transform of f(x) = e™.

Solution. Substitute e™*to (1)

F(s)=[e™x* 'dx=T(-s), R (s)<0, since T'(s)=[e*x"dx, R(s)>0,
0 0
where T'(s) isthe gamma function and 9% (s) is the real part of the complex quantity s.
Unit Step Function (Heaviside Function)

The unit step function or Heaviside function p(x — a) is 0 for x < g, has a jump size 1 at x = a (where
it is usually consider as undefined), and is 1 for x > a, in a formula:

u(x—a) = |0 if x<a a=0.
1 if x>a

The transform of p(x — a) is

F(s) = J«x_s_l‘u(x—a)dx = fx_s_ldx = _); ;
0 a a

here the integration begins at x = a (>0) because u(x — a) is 0 for x < a. Hence

F(s) (a>0 and R(s)>0).

Example 2: The Riemann Zeta Function is given by

E(s) = 17°+2°+3 4+ .. = >.n* = Z% R(s)>1,



obtain the transform of Z u(x—n), n=1234,...
n=1

F(S):f{,U(X_1)+.U(X—2)+,u(x—3)+ xS Tlax = =X PR S i
0 S h S |2 S I3
= l(1+2_S+3_s+4_s+ lZl: ) R(s)>1.
S S o n

0.

Example 3: Obtain the transform of 7(x) = D, u(x—p) , where p is a prime number, p = 2, 3, 5, 7,

p

11, ....
F(s) = [1D ulx—p)x~'dx|= [ [u(x=2)+u(x=3)+ u(x—5) + u(x=7) + .. |x " "dx
0 p 0
1 -5 -5 -5 s 1 S —s
ﬂ(s):;(Z +37°45 T+ 7 °+...) = ;Zp R(s)>1.

Dirac’s Delta Function

Consider the function

fx—a) = 1/t if aS.xSa+r
0 otherwise.

Its integral is

a+t

:.Tfrx adx—fldx—l
0

We let now let T becomes smaller and smaller and take the limit as 7— 0 (r > 0). This limit is denoted
by 6(x — a), that is,

d(x—a) = limf,(x—a).

70

and obtain



S(x—a) =
(X a) 0 otherwise

o if x=a and fé(x—a)dx =1
0

6(x — a) is called the Dirac delta function or the unit impulse function. For a continuous function f(x)
one uses the sifting property of §(x — a),

o3

f(x)o(x—a)dx = f(a).
To obtain the transform of §(x — a), we write

fx—a)= %{Au(x—a) — u(x—(a+71)),

and take the transform

F(s) = [ f.(x—a)x*"dx = —[a_s—(a+ r)_s] = a*—9 | 4>0 and R(s)>0.
. s Ts

Take the limit as 7— 0. By I’Hopital’s rule, the quotient on the right has the limit 1/a. Hence, the right
side has the limit a®*". The transform of §(x — a) define by this limit is

F(s)=[ 6(x—a)x*'dx=a a>0.

© —3

x_s_ldx=§:n_S = &(s), R(s)>1,

n=1

Example 4 Obtain the transform of Y x5(x—n) and Y8 (x—n) .
> xd(x—n)

f[z 5(x—n)

n=1

—_

X ldx=>n" = g(s+1), R(s)>0.

n=1




The Riemann Transform

Many common functions like sinx, cosx, Inx, etc., when applied to formula (1) won’t have finite
integrals. But if the lower limit for (1) starts at x = 1, then there are suitable functions such that the
integral in (1) exist.

If f(x) is a function defined for all x> 1, its Riemann transform is the integral of f(x) times x°~'
for x = 1 to o. It is a function of s, say F(s), and is denoted by R{f} ; thus

@) F(s)=R{f}]=])f(x)x* "dx.

-8

The given function f(x) in (2) is called the inverse transform of F(s) and is denoted by R'{F}; that is,

Example 5 Let f(x)=1, find F(s).

Solution. From (2) we obtain by integration

o0

R(fl=R(1)= f = —Li

_1
s

1

Example 6 Let f(x)=x" , whereais a constant. Find F(s).

Solution. From (2),

= — (R(s—a)>0).

THEOREM 1 Linearity of the Riemann Transform

The Riemann transform is a linear operation; that is, for any functions f(x) and g(x) whose transforms
exist and any constants a and b the transform of af(x) + bg(x) exists, and

Riaf(x)+bg(x)} = aF(s) + bG(s).




Example 7 Find the transforms of cosh (alnx) and sinh (alnx).

Solution. Since cosh(alnx)zg(x“ + x ‘) and sinh(alnx):%(x“ — x ), we obtain from

Example 6 and Theorem 1,

_l a —a _ l 1 1 _ S
R{cosh(alnx)}= 2(R(x) + R(x %) = e o
. _l ay —a _ l 1 _ 1 a
R{sinh(alnx)}= 2(R(x) R(x™)) = sca seal "oz

Example 8 Let f(x)=x", where i is the imaginary operator (i=v—1) . Find F(s).
Solution. From Example 6
R{Xai} — 1 _ 1 S+ al S .

. . .= 2 2+l
S— ol S—al S+ ol S +a

2 2°
S o

Example 9 Cosine and Sine

Derive the formulas

Rlcos(alnx) = — and R{sin(alnx)} = =%—.
L ( )J 52+a2 { ( )} 52+a2

Solution. From Example 8 and Theorem 1

ai

x“" = cos(alnx) + isin(alnx)

R{x“} = R{cos(alnx)} + iR{sin(alnx)] , thus

R{cos(alnx)] = —— and R{sin(alnx)] = %,
s*ta s+

THEOREM 2 s-Shifting Theorem

If f(x) has the transform F(s) (where s > k for some k), then x° f(x) has the transform F(s — a)

(where s —a > k). In formulas,

R(x'f(x)} = F(s—a)




or, if we take the inverse on both sides

PROOF We obtain F(s — a) by replacing s with s — a in the integral in (1), so that

F(s—a) = ]jx(sa)lf(x)dx = fxis*l[xaf(x)]dx = R{xf(x)}.

1

Example 10 From Example 9 and the s-Shifting theorem one can obtain the Riemann
transform for

R{x‘cos(alnx)} = ——— and R|x‘sin(alnx)} = —%— .

Existence and Uniqueness of Riemann Transforms

A function f(x) has a Riemann transform if it does not grow too fast, say, if for all x > 1 and some
constants M and k it satisfies

3) If(x) < Mx".

THEOREM 3 Existence Theorem for Riemann Transforms

If f(x) is defined and piecewise continuous on every finite interval on x > 1 and satisfies (3) for all
x > 1 and some constants M and k, then the Riemann transform R{f} exists for all s > k.

PROOF Since f(x) is piecewise continuous, x *f(x) is integrable over any finite interval on the
X-axis,

IA

x)xldx < | MxX*xldx = l
T ()
1 s—k

— g

Uniqueness. If the Riemann transform of a given function exists, it is uniquely determined and if two
continuous functions have the same transform, they are completely identical.



Transforms of Derivatives and Integrals

THEOREM 4 Riemann Transform of Derivatives

The transforms of the first and second derivatives of f(x) satisfy
X R(f') = (s+1)F(s+1) — f(1)
© R(f') = (s+2)(s+1)F (s+2) = (s+1)f (1) —=f'(1)

Formula (4) holds if f(x) is continuous for all x > 1 and satisfies (3) and f’(x) is piecewise continuous on every finite

interval for x > 1. Formula (5) holds if f and f’ are continuous for all x > 1 and satisfy (3) and f" is piecewise continuous
on every finite interval for x > 1.

PROOF Using integration by parts on formula (4)

o0

fr(x)xdx = [f(x)x*7|7 + (s+1)ff(x)x_s_2dx = —f(1) + (s+1)F(s+1).

1

R{f} =

»—lfﬁg

The proof of (5) now follows by applying integration by parts twice on it, that is

o0

o lx e = [F x0T+ (s+1)] F(0xa

1

R{f"} =

— g

0

= (1) + (s+1)| )X+ (s+2)] Floxan

1

= —f(1) - (s+1)f(1) + (s+2)(s+1)F(s+2).

Repeatedly using integration by parts as in the proof of (5) and using induction, we obtain the
following Theorem.

THEOREM 5 Riemann Transform of the Derivative f* of Any Order

Letf,f’, ..., "V be continuous for all x> 1 and satisfy (2). Furthermore, let f” be piecewise continuous on every
finite interval for x > 1. Then the transform of f satisfies

R(f™) = (s+n)(s+n—1)---(s+1)F(s+n) — (s+n—1)(s+n—=2)---f(1) —

(s#n=2)(s+n=3)--f'(1) — = f" V(1)




Example 11 Let f(x) = x°. Then f(1) = 1, f(x) = 2x, f(1) = 2, f’(x) = 2. Obtain

R{f}, R{f’}, and R{f”}.

Solution. R{f} = F(s) = F(s+1) = F(s+2) = % Hence, by formulas (4)
and (5),

THEOREM 6 Riemann Transform of Integrals

Let F(s) denote the transform of a function f(x) which is piecewise continuous for x> 1 and satisfies
formula (3). Then, fors > 0,s >k, and x > 1,

X

[f(x)dr

1

(6) R = %F(s—l), thus iﬂ T)dt = R_l[%F(s—l)].

PROOF Let the integral in (6) be g(x) then g’(x) = f(x). Since g(1) =0 (the integral from 1 to 1 is zero),

R{f(x)} = R{g'(x)} = (s+1)G(s+1) — g(1) = (s+1)G(s+1) = F(s),
replace sby s—1, ([s—1]+ 1)G([s—1]+1) = F(s—1) = sG(s) = F(s—1).

Division by s and interchange of the left and right side gives the first formula in (6), from which the
second follows.

Example 12 Let f(x) =x. Obtain R{g(x)} = R

then G(s) =

Solution. F(s) = R{x| = s%l’ F(s—1) = 5%2’ s(s—2)°

Differentiation and Integration of Transforms

Differentiation of Transforms

Given a function f(x), the derivative F’(s) = dF/ds of the transform F(s) = R{f} can be obtained by
differentiating F(s) under the integral sign with respect to s. Thus, if



F(s) =

—

f(x)x*'dx, then F'(s) = —Tlnx f(x)x°tdx.

Consequently, if R{f} = F(s), then
R{lnxf(x)] = —F'(s) and R '{F'(s)}] = —Inxf(x),

where the second formula is obtained by applying on both sides of the first formula. In this way,
differentiation of a function in the s-domain corresponds to the multiplication of the function in the
x-domain by -Inx.

Example 13 Obtain the transform of Inxsin(alnx) and Inxcos(alnx) .

Solution.
) 20
R{Inxsin(alnx)} = B f{az (&2 + o)
dl s (s+a’)=25"  §'—d
Rilnxcos(alnx)l = —— - = :
[ ( >} dS 52+O{2 (SZ + 0{2)2 (SZ+O(2)2

Integration of Transform

Given a function f(x), and the limit of f(x)/Inx, as x approaches 1 from the right, exists, then for s > k,

flx) TF(a)da] - [

o0

R = [F(o)do  hence R

Inx Inx

N

In this way, integration of the transform of a function f{(x) corresponds to the division of f(x) by Inx.
From the definition it follows that




Integration of x ¢ with respect to o gives x °/(-In x). Hence the integral over o on the right equals
x */In x. Therefore,

T T -sif(x) f(x)
F(o)do = | x " 'I——=dx = R|—= > k).
J; (0)do !X Inx Inx (5>k)
2 SZ+ aZ
Example 14: Find the inverse transform of In|1+%-| = In|~—
s s
Solution. Denote the given transform by F(s). Its derivative is
, d 2s 2s
F'(s) = %[ln(sz+a2)—lns2l = AL
Taking the inverse transform, we obtain
R'F'(s) = R 225 s - Z’ = 2cos(alnx)—2 = —Inxf(x).
s +a S

Hence the inverse f(x) of F(s) is

f(x) = ﬁ{l —cos(alnx)].

Alternatively, if we let

2S 2 hen g(x) = R'G} = —2[1— cos(aInx)].

G(S) = 2+l s

From this and using the integral of transform we get,

2 2
S+«
2
S

R 'lIn

Inx _ Inx

_ Rll]jG(s)ds] __glx) 2 [1—cos(anx)].

The Riemann Transform and the Laplace Transform

The Laplace transform is the integral of f(y) times e from y = 0 to o where f(y) is defined for all y > 0.
It is denoted by L{f},



(7) Lif} = [ fy)e™dy.

The Riemann transform is given below

o0

(€)) R{f} = ff(x)x_s_ldx.

1

Replace x = ¢’ ( or y = Inx) in formula (8) and since x = 1 to o, y = 0 (In1) to oo (In).

fly)e¥dy,

= C—g

Flx)x " tdx = ]:f(ey)esyyd(ey) —

o 3

which is formula (7).

The Bilateral Laplace Transform
Formula (7) is usually called the Unilateral Laplace transform since the integral is evaluated from

0 to c. The integral below is known as the Bilateral Laplace transform because the integral is taken
from -co to oo,

©) Bif} = [ f(y)e™dy.

— 00

Now, consider the integral equation
(10) JFx)x="dx,
0
Replace x = ¢’ ( or y =Inx) in formula (4) and since x = 0 to o, y = -00 to oo, thus

o0

oJ:f(x)esxdx = _.[of(ey)efysfyd(ey) =

g8

fly)e ¥dy,

which is (9).



Riemann Transform: General Formulas

Formula

Name

F<s>=R{f<x>}=jf(x)x-s-ldx

Definition of Transform

Inverse Transform

Linearity

s-Shifting Theorem

R(f') = (s+1)F(s+1) — f(1)

R(f") = (s+2)(s+1)F(s+2) — (s+1)f(1) —f'(1)

Differentiation of Function

Integration of Function

Differentiation of Transform

Integration of Transform




Table: Some Riemann Transforms

f(X):R_l{F<S)} F(s):T f(x)x_s_ldx
1
1 1 1
s
2 x B
s—1
3 x¢ 1
s—a
4 X 1
s—ai
5 cos( arInx) s
s‘+a’
6 sin(aInx) e >
s‘+a
7 cosh (aInx) s
2 2
s°—a
8 sinh(aln x) a
s’—a’
9 x’cos( aInx) s—b
(s=bf +a’
10 Psin(al _a
x’sin(alnx) (bfr o
11 L[ — 1 S2+a2
1 cos(aInx), In =
12 1 . arctan %
——sin(aln x) s
nx
13 2 | s —a’
il cosh(alnx),| In .
14 1 b a s—a
(=) In| =
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