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‘Breathing Life’ into Membrane Protein Structures  
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How many Membrane Protein Structures are there?  

Newport TD, Sansom MSP & Stansfeld PJ (2019) Nucleic Acids Research

X-ray: 83%
NMR: 6%

Cryo EM: 11%

By 2028: ~10,500 
Membrane Protein Structures

Tom 
Newport
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Figure 2.1: MemProtMD data processing overview
IMP structures identified in the Protein DataBank (PDB) are inserted into a coarse-
grained lipid bilayer using CGSA which is then converted to atomistic representation
using the MemProtMD pipeline. Metadata and annotations from several external
databases are loaded and deposited along with results of simulation analysis into the
MemProtMD database. These data are then used to provide sequence alignments,
automated classifications, text search tools and ensemble analyses. Analysis data
can be accessed through the MemProtMD web server, and is rendered using the
MemProtMD web application.
The MemProtMD pipeline (grey dashed box) was developed by Stansfeld et al. [5].
Data sources indicated with a (†) represent external databases.
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Automated Membrane Protein Simulations  

Newport TD, Sansom MSP & Stansfeld PJ (2019) Nucleic Acids ResearchStansfeld PJ et al. (2015) Structure



CG Self-assembly
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Stansfeld PJ (2015) Structure. 
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Figure 2.1: MemProtMD data processing overview
IMP structures identified in the Protein DataBank (PDB) are inserted into a coarse-
grained lipid bilayer using CGSA which is then converted to atomistic representation
using the MemProtMD pipeline. Metadata and annotations from several external
databases are loaded and deposited along with results of simulation analysis into the
MemProtMD database. These data are then used to provide sequence alignments,
automated classifications, text search tools and ensemble analyses. Analysis data
can be accessed through the MemProtMD web server, and is rendered using the
MemProtMD web application.
The MemProtMD pipeline (grey dashed box) was developed by Stansfeld et al. [5].
Data sources indicated with a (†) represent external databases.
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The MemProtMD Database

http://memprotmd.bioch.ox.ac.ukNewport TD, Sansom MSP & Stansfeld PJ (2019) Nucleic Acids Research

6EMX – Reba & Erik 5FGN – Karmen 3FID – Alexandre

http://memprotmd.bioch.ox.ac.uk/


The MemProtMD Database
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Figure 2.9: Examples of secondary structure topology visualisations
Two examples of secondary structure topology visualisations produced by the Mem-
ProtMD web application are shown for PDB:5g53 and PDB:2j1n. a-helices are shown
in blue whilst b-strands are shown in green. The curvature and angle of the secondary
structure element relative to the membrane normal is preserved. Breaks in the pro-
tein sequence are indicated by dashed lines. Start and end residue numbers are shown
by small labels. An inset image shows a 3D representation of the same topological
features.

Topology visualisation

The MemProtMD web application is able to show protein topology relative to the

membrane in a simplified 2D representation, preserving curvature and tilt angles of

individual secondary structure elements. Example topologies of a b-barrel membrane

protein and a-helical IMP are shown in Figure 2.9. The secondary structure topology

plot can be used to quickly identify unusual secondary structure elements, such as

kinked or bent a-helices or b-strands with an unusual tilt. The curvature of the

sixth helix of the GPCR shown in Figure 2.9 can be easily identified by simple visual

inspection. Where b-strands form a bsheet, their direction is alternated to indicate

interactions between adjacent strands. This can be seen in the outer membrane

protein in Figure 2.9, where several b-strands interact with adjacent bstrands to form

several b-sheets.
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Figure 2.2: Pre-rendered images produced by MemProtMD
A number of pre-rendered images for a TMEM16 scramblase protein (PDB-4wis)
are shown. A The protein is shown aligned to the membrane normal in cartoon
representation. Further images show the addition of B coarse-grained lipid head-
groups and C atomistic lipids. The protein is shown with a mean bilayer surface in
D top-down, E side-on and F bottom-up orientation relative to the bilayer. Areas
of membrane thinning are shown in red, whilst areas of membrane thickening are
shown in blue. The protein is shown shaded according to contacts with G,J lipid
head groups, H,K lipid tails and I,L solvent molecules in both G,H,I cartoon and
JKL surface representations.
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Molecular Imagery



Lipid-Protein Interactions

Newport TD, Sansom MSP & Stansfeld PJ (2019) Nucleic Acids Research



A Comparison of Lipid Interactions: GPCRs
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A Consensus of Lipid Interactions: GPCRs



Amino Acid Interactions within the Membrane

Newport TD, Sansom MSP & Stansfeld PJ (2019) Nucleic Acids Research

Scales of Interaction Residue Membrane Distribution



WebGL
visualisations
of PDB | 4wis Ca2+ activated lipid scramblase

NGL Viewer (RCSB PDB)
Coloured by temperature factor

PV (MemProtMD web server)
Coloured by simulation lipid contacts

LiteMol (PDBe)
With 1.5 σ 2Fo - Fc isosurface

Figure 1.10: WebGL visualisations using NGL Viewer, PV and LiteMol
Images of a structure of the Ca2+ activated lipid scramblase (PDB:4wis) rendered by
three WebGL protein viewers are shown. From left to right: cartoon representation
coloured by temperature factors, overlaid with surface representation, rendered by the
RCSB PDB web application using NGL Viewer [192]; cartoon representation coloured
by simulation lipid contacts (blue: solvent, red: lipid head-groups, yellow: lipid tails)
rendered by the MemProtMD web application using PV [191]; cartoon representation
overlaid with a 1.5 s 2Fo-Fc isosurface rendered by the PDBe web application using
LiteMol (http://webchemdev.ncbr.muni.cz/Litemol/).

capabilities, such as the ability to play back simulation trajectories and estimate

protein surfaces. LiteMol (http://webchemdev.ncbr.muni.cz/Litemol/) extends

these capabilities even further with the ability to view electron density isosurfaces

from both X-ray crystallography and Cryo-EM experiments.

The use of web applications and web servers has many pitfalls, however, in terms

of reproducibility, reliability, transparency and compatibility with other software tools

when compared to freely distributed, locally installed software. Web server software

is often released as closed-source, is often modified, sometimes without clear version

numbering, and may become temporarily or permanently unavailable with failure or

maintenance of host machines or networks. Where distribution of source code and

executable binaries is precluded by software licensing, transparent version control is

essential to ensure research is transparent and reproducible. The web server paradigm

also complicates the development of high-throughput software tools such as bioinfor-

matics pipelines, with the majority of web servers requiring considerable expertise

in computer networking to integrate with other applications. A well documented

Application Programming Interface (API) and usage policy can substantially reduce

barriers to integration with other applications.
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Assembling the Tat Subunits

Alcock, Stansfeld et al. eLife 2016
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