Design and Formal Verification of a Safe Stop
Supervisor for an Automated Vehicle

Jonas Krook, Lars Svenssaon, Yuchao Li, Lei Feng, Martin Fabian

krookj[@chalmers.se, larsvens(akth.se, yuchao

Safe transportation; can we STOP here?

The scenario considered is when an
automated vehicle is parked in a spot
at parking lot A, and it receives a
transport mission where it needs to
drive to and park in a goal spot at
parking lot B. To do this, it first has to
plan a path connecting the two park-
ing lots via the road network. Then it
needs to generate a path from a point
in A to the road network. When it
arrives at parking lot B it needs to
construct a path from the road to the
goal parking spot.

Transition Point 2

There is no driver so the vehicle
itself needs to ensure safe driving,
which means that the vehicle always
should be able to reach a safe state
while driving, if an error occurs. For
driver assistance functions the safe
state is usually to cede all control to
the driver, but for automated vehi-
cles we cannot let the vehicle con-
tinue to move uncontrolled. So the
safe state has to include being sta-
tionary. However, the vehicle cannot
stop just anywhere.

Success /Fail ~ N

Structured Area
Path Planner [SPP]

Unstructured Area
Path Planner (UPP])

[Lucalizatiun

E‘rajectury Plannea

Trajectory +

Success /Fail

Safe Stop Trajectur\]

=

Planner [SSTP])

Trajectory

Vehicle

—

Fig. 1: System architecture.

Fig. 2: Example mission with paths
and transition points.

Going for SPIN [What the maodel checker proves)

The model checker SPIN is used to formally prove the following requirements
when the supervisor is interacting with the rest of the system:

o The supervisor and the four concurrent planners shall never stop at invalid

end states.

o There is always a future state in whic

n the vehicle is stationary.

 When arriving at the goal position, all paths must have been generated.

o If the vehicle passes the end point of a path then the next path must be

known already.

o If the vehicle stops safely then a failure must have occurred and the SSTP

cannot have failed.

o If the vehicle stops by emergency braking then a failure must have occurred

and the SSTP must have failed.

o If a failure occurs then the vehicle must be stopped safely by SSTP. If SSTP
fails then the automatic emergency brake must perform an emergency stop

SPIN also produces a counterexample when trying to prove that it is not possi-
ble to reach the goal, showing that the supervisor can successfully coordinate

a transport mission.

https://github.com/krooken/wasp-des-rcv

https://research.chalmers.se/publication/509469

(uestions for a safe stop supervisor:

« What safety benefits are achieved by formally verifying the software?
« What requirements can be proven? Which cannot be?
 How is nominal functionality included in the architecture and methods?

akth.se, Ifeng(akth.se, fabian[@chalmers.se

One Supervisor to rule them all

To accomplish the transport mission,
a supervisor brings together the two
nominal path planners UPP and SPP,
and makes sure that the SSTP stops
the vehicle in a safe spot (e.g. on the
shoulder) if and only if an error oc-
curs. The supervisor is implemented
using model based design and inte-
grated in a ROS environment.

The proposed supervisor can handle
GPS sensor failures and path gener-
ation failures. Extensions for addi-
tional types of failures can be accom-
modated with relative ease.

Formal verification requires a model
of the vehicle and the software, so a
verification model of the supervisor
is derived from its implementation.
Only key aspects of the other soft-
ware components in Fig. 1 are mod-
elled. The vehicle is modelled as a
standard discrete-time vehicular lon-
gitudinal dynamic system along the
length of the path.

Going for a spin

% Initial position
O Failure detected
---------- Planned path
— — —Road boundary
Parking lot
Safe stop area
FromParking
TransitionToSPP
WaitToLeaveTp1
RoadToRoad
SSTP

N/
\VAW/

Y-position [m]

w
o
o
T T T T
A — ——,—— —_——_—..

80 100 120 140 160 180 200 220
X-position [m]

0 20

Fig. 4: Position and state during a
simulation with a GPS failure.

-260 -

B O Failure detected \
T Planned path [
— — —Road boundary | T — 11
Safe stop area
RoadToRoad

SSTP

NN
N o
o O

[]

Y-position [m]

NN N
® © =~
oS o;

180 190 200 210 220 230 240 250 260
X-position [m]

Fig. 5. Position and state during a
drive with injected GPS failure.

https://vimeo.com/319427372

AVAV/ANS ol

N

WaitForTransforms

TransformReady

NewGoal

NewGoal

pos=Goal

GoToGoal

E pus>Tp2+thd*

SppRequest

SppFail

CallForPlan

WaitToLeaveTp2

pns>Tp2f

TransitionToUPP2

""""" SppSuccess |
UppRequest ,

: UppFail

ParkingToRoad

NewPath
UppSuccess

CloseToTransition2

A

" UppFail UppRequest

FromParking

A

E pos>Tpe2-thd

RoadToRoad —

TransitionToSPP

pos > Tp1+thd

¢ pos>Tpl

WaitToLeaveTp1

UppSuccess E
NewPath E
pos>Tpl-thd ;
NewPath E

SSTP

SstpSuccess

speed=0

et S s
SensorFailure
SstpRequest

Automatic
EmergencyBrake

]

X SstpFail speed=0
SafeStop EmergencyStop

Fig. 3: The proposed supervisor.

Take-aways

o Itis possible to formally verify the
implementation and not only the
design, giving more confidence of
correct software.

e Implementation with verification
in mind encourages safer coding.

e Only key abstract aspects of the
nominal functionality need to be
modelled for verification.

o It is difficult to formally verify re-
quirements on nominal function-
ality with the chosen method.

e Verification requires modelling of
software, which is manual and er-

ror prone.

e The current design may fall back
on automatic emergency braking
to stop. Future research should

look at strategies that ensures the
availability of SSTP.

https://doi.org/10.5281/zenodo.2651006

WALLENBERG Al
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

