
Design and Formal Verification of a Safe Stop
Supervisor for an Automated Vehicle
Jonas Krook, Lars Svensson, Yuchao Li, Lei Feng, Martin Fabian
krookj@chalmers.se, larsvens@kth.se, yuchao@kth.se, lfeng@kth.se, fabian@chalmers.se

Questions for a safe stop supervisor:
• What safety benefits are achieved by formally verifying the software?
• What requirements can be proven? Which cannot be?
• How is nominal functionality included in the architecture and methods?

Safe transportation; can we STOP here?
The scenario considered is when an
automated vehicle is parked in a spot
at parking lot A, and it receives a
transport mission where it needs to
drive to and park in a goal spot at
parking lot B. To do this, it first has to
plan a path connecting the two park-
ing lots via the road network. Then it
needs to generate a path from a point
in A to the road network. When it
arrives at parking lot B it needs to
construct a path from the road to the
goal parking spot.

There is no driver so the vehicle
itself needs to ensure safe driving,
which means that the vehicle always
should be able to reach a safe state
while driving, if an error occurs. For
driver assistance functions the safe
state is usually to cede all control to
the driver, but for automated vehi-
cles we cannot let the vehicle con-
tinue to move uncontrolled. So the
safe state has to include being sta-
tionary. However, the vehicle cannot
stop just anywhere.

A

B

Structured Path
Transition Point 1

Unstructured Path 2

Unstru
ctured Path 1

Transition Point 2

Fig. 1: System architecture.

Fig. 2: Example mission with paths
and transition points.

One Supervisor to rule them all
To accomplish the transportmission,
a supervisor brings together the two
nominal path planners UPP and SPP,
and makes sure that the SSTP stops
the vehicle in a safe spot (e.g. on the
shoulder) if and only if an error oc-
curs. The supervisor is implemented
using model based design and inte-
grated in a ROS environment.

The proposed supervisor can handle
GPS sensor failures and path gener-
ation failures. Extensions for addi-
tional types of failures can be accom-
modated with relative ease.

Formal verification requires a model
of the vehicle and the software, so a
verification model of the supervisor
is derived from its implementation.
Only key aspects of the other soft-
ware components in Fig. 1 are mod-
elled. The vehicle is modelled as a
standard discrete-time vehicular lon-
gitudinal dynamic system along the
length of the path.

Fig. 3: The proposed supervisor.

Going for a spin

0 20 40 60 80 100 120 140 160 180 200 220

X-position [m]

300

320

340

360

380

400

420

Y
-p

os
iti

on
 [m

]

Initial position
Failure detected
Planned path
Road boundary
Parking lot
Safe stop area
FromParking
TransitionToSPP
WaitToLeaveTp1
RoadToRoad
SSTP

Fig. 4: Position and state during a
simulation with a GPS failure.

180 190 200 210 220 230 240 250 260

X-position [m]

-285

-280

-275

-270

-265

-260

Y
-p

os
iti

on
 [m

]

Failure detected
Planned path
Road boundary
Safe stop area
RoadToRoad
SSTP

Fig. 5: Position and state during a
drive with injected GPS failure.

Going for SPIN (What the model checker proves)

Themodel checker SPIN is used to formally prove the following requirements
when the supervisor is interacting with the rest of the system:

• The supervisor and the four concurrent planners shall never stop at invalid
end states.

• There is always a future state in which the vehicle is stationary.

• When arriving at the goal position, all paths must have been generated.

• If the vehicle passes the end point of a path then the next path must be
known already.

• If the vehicle stops safely then a failure must have occurred and the SSTP
cannot have failed.

• If the vehicle stops by emergency braking then a failure must have occurred
and the SSTP must have failed.

• If a failure occurs then the vehicle must be stopped safely by SSTP. If SSTP
fails then the automatic emergency brake must perform an emergency stop

SPIN also produces a counterexample when trying to prove that it is not possi-
ble to reach the goal, showing that the supervisor can successfully coordinate
a transport mission.

Take-aways

• It is possible to formally verify the
implementation and not only the
design, giving more confidence of
correct software.

• Implementation with verification
in mind encourages safer coding.

• Only key abstract aspects of the
nominal functionality need to be
modelled for verification.

• It is difficult to formally verify re-
quirements on nominal function-
ality with the chosen method.

• Verification requires modelling of
software, which is manual and er-
ror prone.

• The current design may fall back
on automatic emergency braking
to stop. Future research should
look at strategies that ensures the
availability of SSTP.

https://github.com/krooken/wasp-des-rcv https://research.chalmers.se/publication/509469 https://vimeo.com/319427372 https://doi.org/10.5281/zenodo.2651006


