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Pozuelo de Alarcón, Spain
consuelo.gonzalo@upm.es

4th Roberto Garrido Garcı́a
Centro de Tecnologı́a Biomédica

Universidad Politécnica de Madrid
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Abstract—Alzheimer’s disease (AD) is characterized by a
progressive deterioration of cognitive and behavioural functions
as a result of the atrophy of specific regions of the brain. It is
estimated that by 2050 there will be 131.5 million people affected.
Thus, there is an urgent need to find biological markers for its
early detection and monitoring. In this work, it is present an
analysis of textural radiomics features extracted from a gray
matter probability volume, in a set of individual subcortical
regions, from a number of different atlases, to identify subject
with AD in a MRI. Also, significant subcortical regions for AD
detection have been identified using a ReliefF relevance test.
Experimental results using the ADNI1 database have proven
the potential of some of the tested radiomic features as possible
biomarkers for AD/CN differentiation.

Index Terms—Alzheimer’s disease, Radiomics, Support vector
machines, Magnetic resonance imaging

I. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease
that leads to a progressive deterioration of cognitive and
behavioural functions. This disorder is characterized by an ac-
cumulation of beta-amyloid plaques and neurofibrillary tangles
associated with loss of synapses and degeneration of neurons,
causing atrophy in specific regions of the brain [1]. According
to Alzheimer’s Disease International (ADI) in its 2016 World
Alzheimer’s Report, only 50% of people with dementia are
being diagnosed, a figure that drops to 10% in less developed
countries. It is estimated that in 2015 there were 46.8 million
people with dementia and that by 2050 there will be 131.5
million people.

To this day, the diagnosis of Alzheimer’s disease remains
essentially clinical, meaning that it cannot be detected until
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the first symptoms appear, or even later, when the neuropatho-
logical damage is already significant. It is estimated that the
evolution of this disease normally takes between 20 and 30
years from its pre-clinical stage, until recognisable and conclu-
sive symptoms are presented for the diagnosis of Alzheimer’s
disease [2]. At an intermediate stage in this evolution, the first
cognitive symptoms appear, in which subjects show only a
slight deterioration in memory, but do not meet the criteria for
dementia [3]. This stage is called Mild Cognitive Impairment
(MCI) and, although not all patients with MCI develop AD,
studies show that between 10% and 15% of MCI cases
progress to AD per year [4]. Thus, there is an acute need
to find biomarkers for detection and follow-up for the AD.

Among the set of possible biomarkers for Alzheimer’s
disease, those based on the analysis of the different modal-
ities of medical imaging of the brain have demonstrated a
considerable potential. Medical imaging offers the ability to
visualize degenerative histological and methabolical changes,
which occur long before the neurodegenerative disorder is
clinically detectable [5]. The commonly used imaging modal-
ities in dementia diagnosis include the magnetic resonance
imaging (MRI), positron emission tomography (PET), and
single-photon emission computed tomography (SPECT). As
a result, the use of medical imaging for early diagnosis of AD
has grown significantly in the last years, especially the use
of MRI, given its non-invasive nature, wide availability and
relative absence of discomfort for the patient.

There is a large amount of published research on possi-
ble biomarkers for MRI neuroimaging-based computer-aided
detection of AD [6]. In general, most of these features are
based on variations in density of the whole brain [7] or use
subtle changes on thickness extracted at the vertex level on the
cortical surface [8]. In the last decade, radiomic approaches [9]



to the analysis of medical images have become widespread.
The concept of radiomics involves the conversion of digital
medical images into high-dimensional minable data, using
a large panel of phenotypic features, such as those based
on shape, intensity or texture. This process is motivated by
the idea that a biomedical image contains information that
reflects possible underlying pathophysiological anomalies and
these can be unveiled using image characterization algorithms.
Although radiomic techniques are primarily used in oncolog-
ical studies, several types of radiomic textural features have
demonstrated their relevance in the detection and quantifica-
tion of Alzheimer’s disease, as can be seen in [10] and [11].

Taking into account prior knowledge of the magnitude and
spatial pattern of the evolution of AD, it is possible to focus
studies on areas of the brain that have been shown to contain
discriminatory information related to AD (i.e. [12]). The main
approach in these methods implies the use of biomarkers
extracted from the hippocampus [13] as volume, shape or
textural features. Work on other cerebral areas has been done
in [14], in which a diffeomorphometry study has been carried
out in a number of regions, including the right and left
hippocampus, thalamus, and lateral ventricles, in order to
perform a linear discriminant analysis for AD prediction.

The generation of biomarkers based on specific areas of the
brain relies on the partitioning of the original MRI volumes
in a set of cortical regions using an existing atlas template.
However, despite the existence of multiple atlases of the brain,
both anatomical and functional, there is no accepted standard
for the partitioning of the cortex and subcortical structures,
or for the assignment of labels to the resulting regions [15].
There is a considerable lack of agreement among the avail-
able parceling schemes [16], which represents a considerable
problem when it comes to selecting regions of interest in
the study of discriminatory features extracted from specific
cerebral regions.

This article deals with the analysis of textural radiomic
features on a set of individual subcortical regions, selected
for their relevance in distinguishing subjects with AD from
healthy subjects. Given the existing discrepancies between
atlases, a comparison will be made between the results ob-
tained from diferents brain parcelations. So far, radiomic
studies of Alzheimer’s disease have focused on extracting
features from the MRI volume intensity values. However,
the inherent variability of brain tissues [17] and the various
textural patterns resulting from the model and configuration
of the MRI hardware can significantly affect textural analyses
based on the intesities of the MRI volume [18].

As can be seen in [19] the result of a brain tissue seg-
mentation will tend to show poorly classified areas in regions
of the brain where the neuronal atrophy associated with AD
tends to manifest. This especially affects areas of grey matter,
where such atrophy is particularly apparent [20]. Much in the
same way as can be seen in [21], we will take advantage of
this fact. Therefore in this work, a volume that represents the
probability that, in a MRI, a voxel corresponds to grey matter
is used as a base for features extraction.

II. MATERIALS AND METHODS

In this work, we present an analysis of textural radiomics
features in a set of individual subcortical regions, from a
number of different atlases, selected for their relevance in
classifying subjects with Alzheimer’s disease from healthy
subjects. At the same time, a significance test has been carried
out to identify which areas in relation to which atlases and
features show significant differences between AD and CN
subjects. Unlike related studies, a volume representing the
probability that each voxel of an MRI volume corresponds
to grey matter will be used as a base for feature extraction.

The analysis process presented is divided into three stages.
In the first stage, the MRIs are processed in order to carry out
bias correction and spatial normalization of the data set, using
the Clinica software platform. Also at this stage a segmentation
of the MRIs representing the probability of being white matter,
grey matter and cerebrospinal fluid is obtained. In the second
stage, from the volume of grey matter, a set of textural features
are extracted from the areas of interest. Finally, the resulting
vectors for each feature and atlas are used to train classification
models based on SVM. These vectors are tested to check the
relevance of each of the areas of interest selected in each atlas
by using a ReliefF test [22].

The subjects included in this study were obtained from the
Open Access Series of Imaging Studies Alzheimer’s Disease
Neuroimaging Initiative database.

A. ADNI dataset

Launched in 2003 as a public-private partnership and
led by Principal Investigator Michael W. Weiner, MD, the
Alzheimer’s Disease Neuroimaging Initiative1 is a project
aimed at testing whether different modalities of medical
imaging such as MRIs and PETs, image based biomarkers,
and clinical and neuropsychological evaluation data can be
combined to assess the progression of MCI and early AD.

The population of this study during the its three main phases
(ADNI1, ADNI GO and ADNI2) consists of 1650 subjects,
with a total of 3193 magnetic resonance images, of which
350 are control subjects (CN) 900 are MCI patients and the
remaining 400 subjects are diagnosed with AD.

B. MRI volume pre-processing

In the first stage, the dataset is processed in order to carry
out bias correction and spatial normalization, and to generate
a white matter/grey matter/cerebrospinal fluid segmentation.

To work with a standardized preprocessing workflow, com-
patible with multiple neuroimaging databases, volume prepro-
cessing and overall data set management is performed using
Clinica software platform (version 0.1.0). Clinica is a software
platform developed by the ARAMIS lab2, for research stud-
ies in clinical neurosciences, specialized in multimodal data
(neuroimaging, clinical and cognitive evaluations, genetics,
etc.). Clinica is developed with Python and is designed, using

1adni.loni.usc.edu
2www.clinica.run/www.aramislab.fr



Fig. 1: Example of tissue segmentation, from a volume part of the pre-processed ADNI dataset. Original MRI slice (left), grey
matter probabilities (center left), white matter probabilities (center right), cerebrospinal fluid (right)

Nipype, as a modular architecture. Before beginning the pre-
processing process, Clinica performs the conversion of the
dataset to the BIDS format [23].

The Clinica software pre-procesing pipeline involves the
SPM [24] segmentation procedure that performs all pre-
processing processes simultaneously, in a procedure known
as ”Unified Segmentation” [25]. The pipeline then calcu-
lates a group template by applying DARTEL (Diffeomorphic
Anatomical Registration Through Exponentiated Lie. Algebra
[26]) DARTEL is based on the idea of producing a bidirec-
tional ”flow field” as the nucleus for the ”deformation” of
the image in the image registration process. An example of a
pre-processed, segmented volume slice can be seen in 1.

Finally the volumes are normalized usign the space defined
by the Montreal Neurological Institute (MNI) template. Clinica
also offers a modular way to perform a classification based on
automatic learning by combining different inputs, algorithms
and validation strategies. These modules are based on scikit-
learn [27].

The Clinica pre-processing pipeline has been modified to
generate the normalized atlases for each subject, in the form
of a volumetric image labelled with the different regions of
the parcelation.

C. Feature extraction

Taking into account the particularities of the volume of grey
matter probability, composed mainly of homogeneous zones
where tissue degeneration is presented as a degradation in
intensity, 10 textural features have been selected. As general
textural features, from the grey level co-occurrence matrix
(GLCM), autocorrelation, cluster tendency, correlation, Sum
Average, Sum Entropy and Sum of Squares or Variance are
retrieved, from each region of interest. As specific textural fea-
tures for the evaluation of the homogeneity if the distribution
of intensities, using the grey-level size zone matrix (GLSZM),
the Small Area Low Grey Level Emphasis (SALGLE), the
Small Area High Grey Level Emphasis (SAHGLE), the Large
Area Low Grey Level Emphasis (LALGLE) and the Large
Area High Grey Level Emphasis (LAHGLE) are retrieved,

from each region of interest. An in-depth definition of these
features can be found in [28] and [29].

These features are extracted using the PyRadiomics [30]
platform. PyRadiomics provides a flexible analysis platform
with a simple and convenient back-end interface that allows
automation in data processing, feature definition and batch
management. PyRadiomics is also implemented in Python.

From the results presented in [5] and [12], 9 subcortical
regions (for right and left hemispheres) have been chosen
as regions of interest: the hippocampus, the parahippocampal
gyri, the amygdala, the middle temporal gyri, the superior
temporal gyri, the lateral orbital gyri, the medial orbital gyri,
the cingulate gyri and the precuneus.

Four anatomical atlases and one functional atlas will be
tested. Although these atlases cover the entire cortex and the
main subcortical structures, it is possible that some parce-
lations may not be present in some atlases, or may appear
over-parceled. As a result, the size of the vectors of extracted
features changes according to the atlas.

• AAL2 [31]: Anatomical atlas manually created from
volumes of a single subject. AAL2 is composed of 120
anatomical regions. In this atlas, it has not been possible
to identify the equivalents to the amygdala, the lateral
orbital Gyrus or the medial orbital Gyrus, so the feature
vectors for this atlas represent 12 partitions.

• Hammers [32]: Anatomical atlas created manually from
MRI volumes of 30 healthy subjects. This atlas is com-
posed of 69 regions. The feature vectors produced with
this atlas represent a total of 18 partitions.

• LPBA40 [33]: Anatomical atlas created manually from
volumes of 40 subjects previously transformed into MNI
space. LPBA40 consists of 56 regions. It has not been
possible to identify in this atlas the equivalents to the
amygdala or the medial orbital gyrus, so the feature
vectors for this atlas represent 14 partitions.

• Neuromorphometrics 3: Anatomical atlas created manu-
ally from MRI volumes of 30 healthy subjects, previously
transformed into MNI space. 140 regions have been

3Neuromorphometrics Inc, Building a Model of the Living Human Brain.
http://www.neuromorphometrics.com/



parcelated in this atlas. The feature vectors generated with
this atlas represent a total of 18 partitions.

• AICHA [34]: Functional atlas created using functional
magnetic resonance images from 281 subjects. AICHA
represents 345 regions. Many of the regions of interest
in this atlas appear over-partitioned, resulting in feature
vectors of representing 78 partitions.

D. Classification and significance analysis

The regions of interest selected for this study have shown
their importance in the evolution of Alzheimer’s disease.
However, taking into account the differences in shape and
position of regions of interest between atlases, and the different
stages of the evolution of AD, it is not possible to guarantee
the relevance of a specific region for a specific feature on a
specific atlas. In this work, the relevance of the association
between feature and region of interest is tested using the
ReliefF algorithm [22]. The ReliefF algorithm generates a
vector of weights for each feature in order to find the pos-
sible contributionof a feature to a classification, by finding
neighbors from the same class (near-hit) and from the other
class (near-miss) using the L1 norm. ReliefF algorithm do
not assume conditional independency of the attributes, takes
into account contextual information and is able to work with
problems with strong dependencies between attributes [35].

To perform the categorization of MRI volumes, in order to
separate Alzheimer’s disease patients from normal cognitive
patients (CN),a Support Vector Machine (SVM) [36] classifier
has been selected to generate the classification model. The
use of SVMs generally yields reliable models, robust against
biases or problems of variance in the data [37].

III. RESULTS

The experiments were carried out using the healthy subjects
and subjects diagnosed with Alzheimer’s disease of the ADNI1
phase of the ADNI dataset. After converting these ADNI1 data
to the BIDS standard, using the Clinica Software’s conversion
pipeline, the population is reduced to 72 subjects, 44 CN and
28 AD. This reduction may be due to multiple causes, from
corrupted images to duplicate or unrelated metadata in the
dataset.

We apply a 10-fold cross-validation methodology. As per-
formance measures, accuracy, negative prediction value, posi-
tive prediction value, sensitivity, specificity, balanced accuracy
and F-score are reported. A detailed description of this mea-
sures can be found in [38]. Models generation and testing is
performed using WEKA; relevance heatmaps and significance
tests are carried on using MATLAB.

Fig. 2 shows the heatmaps of subcortical brain region
relevance for each atlas and radiomic textural feature, where
each square represents the weight assigned to this specific
feature/subcortical region combination by ReliefF. In order
to maintain consistency between the different heatmaps, the
regions absent in some atlases (AAL2 and LPBA40) are
still shown (coloured in grey) and, in the atlases with over-
partitioned regions (AICHA), it is displayed the mean of the

weights assigned by refiefF to each region. As can be seen,
among the regions, the hippocampus and the amygdala (where
it is present in an anatomical atlas) are the most dominant
regions for most radiomic features. This result is consistent
with previous studies [10]. To a lesser extent, the tempo-
ral, middle and parahippocampal gyri are also noteworthy,
especially in the case of the features of correlation, sum of
averages, and LAHGLE, although there is no full agreement
between the different atlases. This suggests that there are
substantial differences in how these regions have been defined.

The results of the classification experiments are summarized
in Table I. As a baseline, provided by Clinica, we show
the results obtained with a model generated from the mean
intensity of each region of the complete parcelation of the
brain, for each atlas. Among the set of tested features, the
features LAHGLE (for atlases AAL2, Hammers, LPBA40
and Neuromorphometrics), autocorrelation and sum averages
(for atlases AAL2, Hammers and Neuromorphometrics) show
significant improvements for most of the proposed evaluation
metrics (McNemar test p <0.05), compared to the baseline
classification model. Although these features also show im-
provements in relation to the baseline model in the rest of
the atlases, it is not possible to claim significance for these
results using the McNemar test. On the other hand, features
as SALGLE, SAHGLE, LALGLE and correlation result in
significantly worse classifiers models than those obtained with
the baseline features (McNemar test p <0.05) for many of
the tested atlases. The rest of the features (sum entropy, sum
squares and cluster tendency) generate models with similar or
worse results than the baseline model, although again is not
possible to claim significance.

Tested textural features show consistent behaviour between
atlases; features that produce good results in one atlas produce
good results in others, and vice versa (with the exception
of SHAGLE). As can be seen from the analysis of the
performance measures, the classification errors have a bias
towards false negatives, for almost all features and atlases. In
general, the existence of relevant regions associated with a
feature indicates a good performance of the model generated
with it, although it is not a guarantee, as can be seen, for
example, for the feature correlation.

IV. CONCLUSIONS

The results presented in this work show the potential of
some of the tested radiomic features (i.e LAHGLE) as possible
biomarkers in the detection of AD. As in previous studies,
it was found that the hippocampus and the amygdala are
the most dominant regions for MRI AD/CN differentiation.
Finally this works suggest that, taking into account only the
overall performance measures for the different features, both
Neuromorphometrics and Hammers have a slight advantage
over the rest as the best suited atlases for the Alzheimer’s
disease detection, although performance differences are, in
general, small.

The results obtained for some of the tested features suggest
the extension of the study to other cases, such as discrimination



between normal and mild cognitive impairment, as well as the
extension of the group of study subjects using other databases.
Also, the possibility of narrowing the set of used subcortical
regions is considered, as well as to improve the discrimination
capacity of the models using multi-features vectors.

REFERENCES

[1] A. Serrano-Pozo, M. P. Frosch, E. Masliah, and B. T. Hyman, “Neu-
ropathological alterations in alzheimer disease,” Cold Spring Harbor
perspectives in medicine, vol. 1, no. 1, p. a006189, 2011.

[2] M. Weiner, D. Veitch, P. Aisen, and C. N. Beckett lA, “green rc,” Harvey
D, Jack Cr, Jagust W, liu e, Morris JC, Petersen rC, Saykin AJ, Schmidt
Me, Shaw l, Siuciak JA, Soares H, Toga AW, Trojanowski JQ, 2012.

[3] B. Dubois and M. L. Albert, “Amnestic mci or prodromal alzheimer’s
disease?” The Lancet Neurology, vol. 3, no. 4, pp. 246–248, 2004.

[4] R. C. Petersen, R. O. Roberts, D. S. Knopman, B. F. Boeve, Y. E. Geda,
R. J. Ivnik, G. E. Smith, and C. R. Jack, “Mild cognitive impairment:
ten years later,” Archives of neurology, vol. 66, no. 12, pp. 1447–1455,
2009.

[5] K. A. Johnson, N. C. Fox, R. A. Sperling, and W. E. Klunk, “Brain
imaging in alzheimer disease,” Cold Spring Harbor perspectives in
medicine, p. a006213, 2012.

[6] S. Rathore, M. Habes, M. A. Iftikhar, A. Shacklett, and C. Davatzikos,
“A review on neuroimaging-based classification studies and associated
feature extraction methods for alzheimer’s disease and its prodromal
stages,” NeuroImage, vol. 155, pp. 530–548, 2017.

[7] S. Klöppel, C. M. Stonnington, C. Chu, B. Draganski, R. I. Scahill, J. D.
Rohrer, N. C. Fox, C. R. Jack Jr, J. Ashburner, and R. S. Frackowiak,
“Automatic classification of mr scans in alzheimer’s disease,” Brain, vol.
131, no. 3, pp. 681–689, 2008.

[8] S. Li, X. Yuan, F. Pu, D. Li, Y. Fan, L. Wu, W. Chao, N. Chen, Y. He, and
Y. Han, “Abnormal changes of multidimensional surface features using
multivariate pattern classification in amnestic mild cognitive impairment
patients,” Journal of Neuroscience, vol. 34, no. 32, pp. 10 541–10 553,
2014.

[9] V. Kumar, Y. Gu, S. Basu, A. Berglund, S. A. Eschrich, M. B. Schabath,
K. Forster, H. J. Aerts, A. Dekker, D. Fenstermacher et al., “Radiomics:
the process and the challenges,” Magnetic resonance imaging, vol. 30,
no. 9, pp. 1234–1248, 2012.

[10] A. Chaddad, C. Desrosiers, and T. Niazi, “Deep radiomic analysis of mri
related to alzheimers disease,” IEEE Access, vol. 6, pp. 58 213–58 221,
2018.

[11] F. Feng, P. Wang, K. Zhao, B. Zhou, H. Yao, Q. Meng, L. Wang,
Z. Zhang, Y. Ding, L. Wang et al., “Radiomic features of hippocampal
subregions in alzheimers disease and amnestic mild cognitive impair-
ment,” Frontiers in aging neuroscience, vol. 10, 2018.

[12] L. K. McEvoy, C. Fennema-Notestine, J. C. Roddey, D. J. Hagler Jr,
D. Holland, D. S. Karow, C. J. Pung, J. B. Brewer, and A. M. Dale,
“Alzheimer disease: quantitative structural neuroimaging for detection
and prediction of clinical and structural changes in mild cognitive
impairment,” Radiology, vol. 251, no. 1, pp. 195–205, 2009.

[13] L. Sørensen, C. Igel, N. Liv Hansen, M. Osler, M. Lauritzen, E. Rostrup,
M. Nielsen, A. D. N. Initiative, the Australian Imaging Biomarkers, and
L. F. S. of Ageing, “Early detection of alzheimer’s disease using m ri
hippocampal texture,” Human brain mapping, vol. 37, no. 3, pp. 1148–
1161, 2016.

[14] X. Tang, D. Holland, A. M. Dale, L. Younes, M. I. Miller, A. D. N.
Initiative et al., “Baseline shape diffeomorphometry patterns of subcorti-
cal and ventricular structures in predicting conversion of mild cognitive
impairment to alzheimer’s disease,” Journal of Alzheimer’s Disease,
vol. 44, no. 2, pp. 599–611, 2015.

[15] A. C. Evans, A. L. Janke, D. L. Collins, and S. Baillet, “Brain templates
and atlases,” Neuroimage, vol. 62, no. 2, pp. 911–922, 2012.

[16] J. W. Bohland, H. Bokil, C. B. Allen, and P. P. Mitra, “The brain atlas
concordance problem: quantitative comparison of anatomical parcella-
tions,” PloS one, vol. 4, no. 9, p. e7200, 2009.

[17] F. Kruggel, J. S. Paul, and H.-J. Gertz, “Texture-based segmentation of
diffuse lesions of the brains white matter,” NeuroImage, vol. 39, no. 3,
pp. 987–996, 2008.

[18] L. R. Schad, “Problems in texture analysis with magnetic resonance
imaging,” Dialogues in clinical neuroscience, vol. 6, no. 2, p. 235, 2004.

[19] D. V. Callaert, A. Ribbens, F. Maes, S. P. Swinnen, and N. Wen-
deroth, “Assessing age-related gray matter decline with voxel-based
morphometry depends significantly on segmentation and normalization
procedures,” Frontiers in aging neuroscience, vol. 6, p. 124, 2014.

[20] P. M. Thompson, K. M. Hayashi, G. De Zubicaray, A. L. Janke, S. E.
Rose, J. Semple, D. Herman, M. S. Hong, S. S. Dittmer, D. M. Doddrell
et al., “Dynamics of gray matter loss in alzheimer’s disease,” Journal
of neuroscience, vol. 23, no. 3, pp. 994–1005, 2003.

[21] C. Toro, C. Gonzalo-Martı́n, A. Garcı́a-Pedrero, and E. Menasal-
vas Ruiz, “Supervoxels-based histon as a new alzheimers disease imag-
ing biomarker,” Sensors, vol. 18, no. 6, p. 1752, 2018.
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(a) Neuromorphometrics atlas (b) AAL2 atlas

(c) Hammers atlas (d) LPBA40 atlas

(e) AICHA atlas

Fig. 2: Heatmaps showing the relevance of the subcortical brain regions in relation to the radiomics textural features, for
each atlas and radiomic textural feature. Each square represents the weight assigned to this specific feature/subcortical region
combination by ReliefF. Regions absent are shown coloured in grey.



TABLE I: Classification results showing a comparison between the evaluation metrics proposed for the different atlas and
radiomics textural features. The best results for each atlas are highlighted in bold.

Feature Accuracy Balance accuracy NPV PPV Sensitivity Specificity F-measure
AAL2

Mean (Clinica) 0.7909 0.7803 0.8165 0.7616 0.7222 0.8385 0.7418
Autocorrelation 0.8611 0.8579 0.9091 0.7857 0.8462 0.8696 0.8148

Cluster Tendency 0.7361 0.7230 0.8182 0.6071 0.6800 0.7660 0.6415
Correlation 0.6806 0.7222 0.9545 0.2500 0.7778 0.6667 0.3784

Sum Average 0.8611 0.8646 0.9318 0.7500 0.8750 0.8542 0.8077
Sum Entropy 0.7083 0.7321 0.9318 0.3517 0.7692 0.6949 0.4878
Sum Squares 0.7639 0.7519 0.8182 0.6786 0.7037 0.8000 0.6909

SALGLE 0.6944 0.6852 0.8636 0.4286 0.6667 0.7037 0.5217
SAHGLE 0.6806 0.6648 0.8409 0.4286 0.6316 0.6981 0.5106
LALGLE 0.7083 0.7857 0.9773 0.2857 0.8889 0.6825 0.4324
LAHGLE 0.93060 0.9296 0.9545 0.8929 0.9259 0.9333 0.9091

AICHA
Mean (Clinica) 0.8385 0.7927 0.8054 0.8415 0.6778 0.9077 0.7508
Autocorrelation 0.8333 0.8247 0.8636 0.7857 0.7857 0.8636 0.7857

Cluster Tendency 0.7778 0.7708 0.8636 0.6429 0.7500 0.7917 0.6923
Correlation 0.7361 0.7222 0.7955 0.6429 0.6667 0.7778 0.6545

Sum Average 0.8472 0.8407 0.8864 0.7857 0.8148 0.8667 0.8000
Sum Entropy 0.7778 0.7708 0.8636 0.6429 0.7500 0.7917 0.6923
Sum Squares 0.8056 0.8091 0.9091 0.6429 0.8182 0.8000 0.7200

SALGLE 0.6389 0.6171 0.7273 0.5000 0.5385 0.6957 0.5185
SAHGLE 0.7639 0.7518 0.7955 0.7143 0.6897 0.8140 0.7018
LALGLE 0.6528 0.6305 0.8409 0.3571 0.5882 0.6727 0.4444
LAHGLE 0.8611 0.8539 0.8864 0.8214 0.8214 0.8864 0.8214

Hammers
Mean (Clinica) 0.7909 0.7940 0.8652 0.7193 0.8111 0.7769 0.7625
Autocorrelation 0.9028 0.9000 0.9320 0.8571 0.8889 0.9111 0.8727

Cluster Tendency 0.8472 0.8455 0.9091 0.7500 0.8400 0.8511 0.7925
Correlation 0.7639 0.7536 0.8409 0.6429 0.7200 0.7872 0.6792

Sum Average 0.8889 0.8880 0.9318 0.8214 0.8846 0.8913 0.8519
Sum Entropy 0.8611 0.8539 0.8864 0.8214 0.8214 0.8864 0.8214
Sum Squares 0.8611 0.8646 0.9318 0.7500 0.8750 0.8542 0.8077

SALGLE 0.7361 0.7363 0.8864 0.5000 0.7368 0.7358 0.5957
SAHGLE 0.8194 0.8111 0.8636 0.7500 0.7778 0.8444 0.7636
LALGLE 0.7083 0.7321 0.9318 0.3571 0.7692 0.6949 0.4878
LAHGLE 0.9028 0.8962 0.9091 0.8929 0.8621 0.9323 0.8772

LPBA40
Mean (Clinica) 0.8545 0.8513 0.8856 0.8463 0.8333 0.8692 0.8398
Autocorrelation 0.9028 0.9068 0.9545 0.8214 0.9200 0.8936 0.8679

Cluster Tendency 0.8056 0.8021 0.8864 0.6786 0.7917 0.8125 0.7308
Correlation 0.7500 0.7723 0.9318 0.4643 0.8125 0.7321 0.5909

sum Average 0.8750 0.8851 0.9545 0.7500 0.9130 0.8571 0.8235
sum Entropy 0.8472 0.8407 0.8864 0.7857 0.8148 0.8667 0.8000
sum Squares 0.8056 0.8021 0.8864 0.6786 0.7917 0.8125 0.7308

SALGLE 0.6944 0.7167 0.9318 0.3214 0.7500 0.6833 0.4500
SAHGLE 0.7222 0.7222 0.8864 0.4643 0.7222 0.7222 0.5652
LALGLE 0.7222 0.7667 0.9545 0.3571 0.8333 0.7000 0.5000
LAHGLE 0.9444 0.9416 0.9555 0.9286 0.9286 0.9545 0.9286

Neuromorphometrics
Mean (Clinica) 0.8136 0.8064 0.8510 0.8016 0.7667 0.8462 0.7838
Autocorrelation 0.8889 0.8880 0.9330 0.8214 0.8846 0.8913 0.8519

Cluster Tendency 0.7917 0.7815 0.8409 0.7143 0.7407 0.8222 0.7273
Correlation 0.7361 0.7596 0.9318 0.4286 0.8000 0.7193 0.5581

Sum Average 0.8611 0.8646 0.9318 0.7500 0.8750 0.8542 0.8077
Sum Entropy 0.8611 0.8579 0.9091 0.7857 0.8462 0.8696 0.8148
Sum Squares 0.8194 0.8095 0.8409 0.7857 0.7586 0.8605 0.7719

SALGLE 0.7361 0.7230 0.8182 0.6071 0.6800 0.7660 0.6415
SAHGLE 0.8333 0.8333 0.9091 0.7143 0.8333 0.8333 0.7692
LALGLE 0.6667 0.6576 0.8864 0.3214 0.6429 0.6724 0.4286
LAHGLE 0.9028 0.9000 0.9318 0.8571 0.8889 0.9111 0.8727


