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Abstract—People living in highly-populated cities increasingly
suffer an impoverishment of their quality of life due to pollution
and traffic congestion. With the objective of reducing the number
of circulating vehicles, we investigate a novel approach to boost
ride sharing opportunities based on the knowledge of the human
activities behind individual mobility demands. We observe that in
many cases the activity motivating the use of a private car (e.g.,
going to a shopping mall) can be performed in many different
places. Therefore, when there is the possibility of sharing a
ride, people having a pro-environment behavior or interested
in saving money can accept to fulfill their needs at an alternative
destination. We thus propose ACTIVITY-BASED RIDE MATCHING
(ABRM), an algorithm aimed at matching ride requests with
ride offers possibly reaching alternative destinations where the
intended activity can be performed. By analyzing two large
mobility datasets extracted from a popular social network, we
show that our approach could largely impact urban mobility by
resulting in an increase up to 54.69% of ride-sharing opportuni-
ties with respect to a traditional destination-oriented approach.
Due to the high number of ride possibilities found by ABRM
we introduce and assess a subsequent ranking step to provide
the user with the top-k most relevant rides only. We discuss how
ABRM parameters affect the fraction of car rides that can be
saved and how the ranking function can be tuned to enforce
pro-environment behaviors.

Index Terms—carpooling, ride sharing, flexibility, green mo-
bility.

I. INTRODUCTION

The increase of the fleet of vehicles in highly-populated
cities brings detrimental consequences on the traffic congestion
and the citizens’ quality of life while the environment is
harmed with the emission of dangerous pollutants. According
to the International Business Times [1], large cities such as
Beijing (China), Delhi (India) and Patna (India) are today
smoggy places where pollution caused by industry and vehic-
ular traffic has soared to hazardous levels around 20 times the
limit recommended by the World Health Organization (WHO).
A recent study by TomTom [2] shows how the traffic situation
is often critical and heavily affects people mobility in cities
like Istanbul (Turkey), Mexico City (Mexico), Rio de Janeiro
(Brazil) and Moscow (Russia). Istanbul results to be the worst
city in this unenviable ranking with a daily average delay of
29 minutes for a 30 minutes commute.

Large metropolitan areas have several problems and com-
plexities but it is widely recognized that our individual be-
haviors have a substantial impact on the environment either
in the positive and negative direction. Even a slight change in
our mass mobility habits can lead to a large reduction of the
number of circulating vehicles. The sharing of car journeys
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in which a group of people commute together, commonly
known as Ride sharing or Carpooling [3], [4] is one of
the practices that can most benefit the reduction of urban
traffic [5], [6], [7], [8], [9]. Worthily, carpooling recently
started to attract the interest of car industries themselves1. Car
manufacturers see, in fact, in the diffusion of this practice
a challenging opportunity to make profit in modern urban
transportation scenarios according to novel Car-as-a-Service
business models.

Traffic congestion is increasingly becoming a crucial factor
of decision in the people’s life. When planning their daily
activities people carefully consider where to go, which time
to go and how to go, by considering how much delay they
will incur given the expected traffic conditions. In addition,
recent studies of human mobility highlight from one hand
the significant potential for continued and future uptake of
sustainable forms of urban mobility [10], [11], and, from the
other hand, that the tendency to be regular or not in choosing
the places where to perform some activities is an individual
characteristic of people [12], [13].

Based on these observations, we hypothesize that changing
habits can be rewarding under some aspect, and flexible people
can accept to fulfill their mobility needs reaching alternative
destinations when there is the possibility of sharing a ride
thus saving time/money or enforcing their pro-environment
behavior [11]. For example, a person may decide to go
shopping in the morning after experiencing hassling traffic
jams in the late afternoon, or even to go to a different shopping
mall that is more easily reachable from her home or work
place.

In this paper we investigate how to take advantage of
a similar flexibility by proposing ACTIVITY-BASED RIDE
MATCHING (ABRM), an algorithm aimed at matching ride
requests with ride offers possibly reaching alternative destina-
tions where the intended user activity can be performed. By ex-
ploiting the knowledge of the activity motivating ride requests,
ABRM can boost at a high rate users’ mobility demands
by means of existing ride offers. The approach proposed is
completely orthogonal and possibly complementary to popular
ride sharing services like BlaBlaCar, UberPool and Lyft Line
([14], [15], [16]). Indeed, providing the user with activity-
based ride options could enable novel business strategies to
be incorporated in these services. For example, the service
could support user’s flexibility and increase her engagement by
proposing the most convenient rides to alternative destinations
where the intended activity can be performed.

Analyzing two large mobility datasets extracted from the
FourSquare social network, we discovered that ABRM in-

1see for example: goo.gl/d3tHdZ
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creases up to 78% the number of rides potentially satis-
fied with respect to traditional destination-oriented carpooling
approaches. Note that the number of ride offers possibly
matching an activity-based alternative destination varies on the
basis of the generality and the characteristics of the activity
performed. For example, the activity “shopping in a mall” may
result in several different destinations, while daily activities
such as “go to work place” or “go home” cannot benefit in
any way from the proposed approach and are not considered
as flexible ride requests in the experiments.

This paper extends our previous work on activity-based
carpooling presented in [17], [18]. In [17] we firstly introduced
the idea that carpooling can be based on the activity to
be performed instead of a fixed destination, while in [18]
we proposed a working demo and a mobile app providing
an efficient implementation of the system. The relevant and
original contributions of this paper, compared to these previous
works and the state of art, are listed below:
• we propose a novel and improved version of the matching

algorithm presented in [17]. While in previous work the
algorithm used a approximate grid-based approach to
model trips and temporal intervals, the current version
precisely represents the information about the spatial
location and temporal dimension.

• we propose a ranking model based on a linear com-
bination of ride matching features and we assess it by
investigating how the weighted combination of features
compares with extreme scenarios where one of the fea-
tures prevails over all the others.

• we design and run extensive experiments exploiting
two new large-scale mobility datasets extracted from
FourSquare in New York City and Tokyo2. We detail
the methods used to build the datasets and enrich them
with information coming from heterogeneous sources
(FourSquare, Google maps, OpenStreetMap); Although
the datasets used do not involve real ride sharing re-
quests/offers, they are representative of real user activities
and mobility demands for these activities at a large scale.

• we analyze and discuss in depth the potential environ-
mental impact of our ABRM solution and we show how
the ranking algorithm can be tuned to enforce the pro-
environment behavior of users.

The rest of the paper is organized as follows. Section II
discusses related works. Section III introduces some concepts
used through the paper and define our activity-based alterna-
tive destinations ride problem. In Section IV we describe the
algorithm for matching ride requests with alternative destina-
tions and discuss the ranking model adopted. We discuss the
experiments in Section V and draw conclusions envisioning
future works in Section VI.

II. RELATED WORKS

Ride sharing is a mode of transportation consisting of two
(or more) persons sharing a vehicle to move along similar
itineraries and time schedules [19], [20], [21]. A particular

2The datasets and the associated metadata will be made publicly available
upon acceptance of the submission.

kind of ride sharing is carpooling, where one of the user share
her own car with other passengers.

Ride 
Offers

Ride 
Requests

Ride 
Matching

Ride 
Allocation

User
Acceptance Finish

No

Yes

Fig. 1: A Ride sharing conceptual schema

A ride sharing system can be described by the schema
showed in Figure 1. The system takes in input two sets: ride
offers of users willing to share their trips, and ride requests
of users searching for a lift to a destination. A Ride Matching
algorithm is used to find a subset of ride offers that may supply
a ride to given ride request. In this phase the system finds
all matchings that are compatible with spatial and temporal
constraints specified by the user. After the possible matchings
have been identified, the Ride Allocation phase use some
criteria to allocate ride requests to offers, limited by the vehicle
capacity and based on the matchings.

Since it is desirable that both passengers and drivers find
a ride matching that best meets individual preferences, the
User Acceptance phase checks which suggestions have been
accepted by the users and, in case of rejection, looks for
an alternative allocation repeating the previous step of Ride
Allocation. To maximize the probability of successfully match-
ing, it is crucial to provide the Ride Allocation phase with
a large set of candidates. A largely adopted solution for
reaching this objective consists in relaxing spatio-temporal
constraints of ride offers and requests [19], [22], [20], [23].
Our approach, as most of the works in the literature, focuses
on the matching phase. A common approach to increase the
number of matchings is to consider some temporal flexibility
in the participants (driver and rider) requests: the participants
specify an earliest possible departure time and latest possible
arrival time. A recent work showed that even a small flexibility
in terms of desired departure time or maximum detour time,
can significantly impact the expected matching rate, especially
when the number of ride offers in the system is not large [19].

Analogously, other approaches explore the spatial flexi-
bility of users in terms of ride detours or walking distance
to catch the ride. Detour ride sharing considers a scenario
where the driver accept to make a detour from her original
itinerary if this brings a satisfactory ride matching[22], [20],
[19]. Geisberger et. al in [22] propose an innovative detour
route planning algorithm able to find a reasonable match for
more than 60% of the requests not satisfied by traditional
matching strategies. Orthogonally, some works investigated
the possibility that the passenger could walk to a meeting
point to join a ride [21], [24], [25]. This approach is also
known as slugging. In [21], the authors formally define the
slugging problem and propose a close to optimal heuristic
for the the matching problem considering vehicle capacity
constraints. They performed experiments using real taxi cabs
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trips in Shanghai, and reported a saving up to 70% in the
total distance traveled by vehicles. Minett and Pearce [26]
investigate the impact of slugging in gasoline consumption.
They estimate that slugging in San Francisco can save from 1.7
to 3.5 million liters of gasoline per year, much of which comes
from the indirect impact on the rest of the traffic. In [27] a
solution that exploits slugging in areas with High-Occupancy
Vehicle lanes (HOV) is proposed. The authors also address
some shortcomings associated with casual carpooling such as
personal safety, the free-rider problem, and the maximization
of the number of passengers sharing a ride. Other works
investigate how to combine more than one ride offer to supply
a single ride request. The results discussed in [28] show
that such multi-hop ride sharing can significantly increase
the number of requests satisfied. A multi-modal ride sharing
approach considering a combination of multi-hop and slugging
is considered in [24]. Experiments are conducted on real taxis
trips in New York and report a reduction up to 40% in the
number of trips. In this paper, compare to the ones presented
above, we try to further increase the matching possibilities
exploiting not only the spatial and temporal flexibility but also
the alternative destinations based on the user desired activity.

Most of related works do not consider in their models the
activity as a flexibility attribute, except the work by Cho et
Al. [29] that first addresses activity-based carpooling. The
authors propose the use of an ontology in an activity-based
microsimulation. While no explicit evidence is presented, the
focus of the paper is recognizing that the ontology is a useful
and appropriate method for activity-based microsimulation
research. Indeed, only a conceptual design and framework are
suggested, and this study is a clearly preliminary step.

Social aspects are considered in [30], [31]. The authors of
[31] propose a recommender system for carpooling services
that leverages on learning-to-rank techniques to automatically
derive a personalized ranking model for each user from the
history of her choices (i.e., the type of accepted or rejected
shared rides). The system builds the list of recommended
rides by maximizing the estimated success rate of the offered
matches extracted from Foursquare check-in information.

Finally, it is worth discussing the allocation problem aimed
at maximizing the number of matchings by considering spatio-
temporal and vehicle capacity constraints. Although the alloca-
tion problem is very important for the deployment of an actual
ride sharing system (see for example [32], [33], [34], [7], [35]),
it is not addressed in this paper. We note, in fact, that the
allocation task asks for choosing a small subset of ride offers
potentially satisfying a given request. The ABRM algorithm
largely increases the number of candidate rides and it is not
clear, in this new context, how to address ride allocation
without making very strong and unrealistic assumptions on
users’ flexibility. Similar to [31] we preferred, instead, to adopt
a ranking-based solution which orders the potential ride-offers
on the basis of a weighted combination of a set of features
modeling the different aspects of user flexibility. An advantage
of this solution is that by sweeping these weights we can study
and better understand the effect of user flexibility in accepting
changes involving the three dimensions considered: the desired
departure time, the distance of the pick up point and, more

importantly, the destination proposed.

III. BASIC CONCEPTS AND PROBLEM FORMULATION

We introduce here the formulation of our ACTIVITY-BASED
RIDE MATCHING problem and some basic concepts and nota-
tions used through the paper. A trajectory (or trip) represents
the spatio-temporal movement evolution of a traveling object.
It is generally detected by a tracking device into samples thus
bringing a discrete representation of the movement. A more
formal definition is given below.

Definition 1 (trajectory): A trajectory represents a finite se-
quence of spatio-temporal points assigned to a moving object
and denoted by <objId, < x1, y1, t1 >, . . . < xn, yn, tn >>,
where objId is the identifier of the moving object, xi, yi, ti
represent the spatial and temporal coordinates of the sample
points.

Trajectories may have stops at venues or Points Of Interest
(POIs), e.g., a shop, a bar, a restaurant or a gym [36]:

Definition 2 (Point Of Interest (POI) or venue): A POI is
a geographical object, usually associated to a human activity,
that is interesting for a specific application. We define a POI
as a tuple < s, n, c > where s is the representative spatial
point, n is the name of the POI and c is its category drawn
from a defined taxonomy C.

A trajectory can pass or stop close to a set of POIs
where some activity (e.g., shopping, visiting, eating, working,
exercising) can be performed.

Definition 3 (Activity): An Activity defines a task that
can be performed at a POI. We assume that activities are
related to specific POI categories and viceversa. Thus there
is a mapping between a given activity a and a set of POI
categories. For example, the activity eating is related to POI
categories Restaurants and Pizzerie. Viceversa the POI cate-
gory Restaurants is related to activities eating and drinking.

Given a POI p, we thus assume to be able to find a number
of alternative venues where the activity performed in p can
be performed as well. We call these POIs the alternative
destinations for p.

Definition 4 (Alternative Destination): Given a POI p,
the set of alternative destinations for p is a set of POIs
< p1, . . . pn > where it is possible to perform the same
activity as in p. These alternative destinations can be all the
POIs belonging to the same category of p or a subset of them
selected on the basis of some criterium, e.g., those most similar
to p, or the most popular, or the ones preferred by the user.

The ABRM problem addressed assumes that a ride request
for going to a POI p from a given spatial location loc at a
given time t can be served with ride offers respecting the time
and starting location constraints of the request and possibly
dropping the user to one of the alternative destinations for p.
We formally define ride requests and ride offers as follows.

Definition 5 (Ride Request): A Ride Request q is a tuple: <
u, loc, venueDest, time,w dist, delay >, where u identifies
the requesting user, venueDest is the POI to be reached, loc
and time are the starting location and the preferred departure
time, while w dist is the maximum walking distance the user
is willing to walk to get the ride and delay the maximum time
the user is willing to anticipate or delay the departure.
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Definition 6 (Ride Offer): A ride offer rt is a tuple:
< u, orig, dest, time, path > where u is the driver, orig and
dest are the fixed origin and destination of the ride offered by
u, time is the departure time, and path is the route followed
by the vehicle offering available seats. These seats can be
offered to passengers traveling from origins to destinations
that are reachable along the vehicle route.

It is worth noticing that our definition of ride offer is inten-
tionally generic to encompass different ride-sharing scenarios:
the vehicle with available seats following a fixed route at a
fixed time could be a private car (e.g., routinely going home
from work at 5pm of working days), or a shared taxi serving
a ride. We can now proceed in formulating our ACTIVITY-
BASED RIDE MATCHING problem:

Definition 7 (ACTIVITY-BASED RIDE MATCHING): Given
a set of ride offers RT and a ride request q =<
u, loc, venueDest, time,w dist, delay >, the ABRM prob-
lem asks to find all the matchings < m1, . . .mk > between
q and the ride offers in RT that allow the passenger to reach
p or an alternative destination for p within the maximum
walking distance w dist and the maximum departure delay
or anticipation delay.

IV. ACTIVITY-BASED RIDE MATCHING

The example in Figure 2 illustrates a simple instance of
our matching problem. The request q of user u is for POI v1
starting from location p at time t with a maximum walking
distance of 500mt and a temporal flexibility of 30 min. The
alternative destinations for v1, preserving the activity to be
done, are POIs v2, v3, v4, v5. The circles around the POIs
represent the area within the walking distance the user set in
her request (e.g., 500 meters). The set RT does not offer any
ride to v1, v2 and v3 satisfying the time and starting location
constraints of u. There is, however, a ride offer rt ∈ RT that
intersects the circles around p, v4, or v5 in the order.

v3

v5

Ride request q 

matching venues

v4

not matching venues

Buffer(v1, 500mt) does 
not intersect the 
routine trip rt

Buffer(v2, 500mt) does not 
intersect the routine trip rt

Buffer(v3, 500mt) doesn’t intersect the 
routine trip rt (wrong direction) 

rt

pickupLoc

dropLoc

dropLoc

Request q = (u, p, v1 , t, 500mt, 30 min)
Alternative destinations are: {v2,v3,v4,v5}

p

v1

v2

Fig. 2: A ride matching example

We have thus two possible matches: one possibility is
to pick up the ride rt from pickupLoc to v4 and another

Algorithm 1: ACTIVITY-BASED RIDE MATCHING

Input : q = (u, loc, venueDest, time,w dist, delay) % ride request
RT % set of ride offers
V % set of POIs

Output: M % set of matchings
1 begin
2 M← ∅;
3 altVenues ← AlternativeDest(q.venueDest, V);
4 foreach rt ∈ RT do
5 if Distance(q.loc, rt.traj) ≤ q.w dist then
6 m.pickupLoc = closestPoint(q.loc, rt.traj);
7 m.pickupTime = timeAt(rt.traj, m.pickupLoc);
8 if (|q.time−m.pickupTime| ≤ q.delay) then
9 foreach vdest ∈ altVenues do

10 if Distance(vdest.s, rt.traj) ≤ q.w dist then
11 m.dropLoc = closestPoint(vdest.s, rt.traj);
12 m.droptime = timeAt(rt.traj, m.dropLoc);

13 if m.droptime > m.pickupTime then
14 m.dest = vdest;
15 M←M + m;

16 return M

possibility is take the same ride up to v5. We call these ride
possibilities the matchings. We note that a request may have
different matchings, not only with different ride offers but
also with the same ride to different alternative destinations.
Each matching has a destination venue altDestination, a
pickup location pickupLoc and time pickupT ime, a drop-off
location dropLoc and time dropT ime. We specify that our
approach is not based on the detour of the ride that remain
fixed and the driver does not change her path to pickup the
passenger. It is the passenger who moves from the location
of the request to the pickupLoc point of the matching. The
constraint is that pickupLoc and dropLoc have distances from
loc and altDestination lower than the walk distance w dist
specified in q. The pseudocode in Algorithm 1 illustrates
the steps that find all the matchings M for a user request
q = (u, loc, venueDest, time,w dist, delay) in a set RT of
ride offers.

The algorithm starts by finding the alternative destinations
for venueDest with function AlternativeDest(). This function
can be instantiated in several ways. A simple solution is
to select all the POIs whose category is the same as the
requested POI. For example, when the user requests a ride to
a supermarket the alternative POIs are all the venues labeled
with the ”supermarket” category. Since the POIs in a given
category can be many, we can restrict the number of alternative
venues by choosing the k most popular ones or the k most
similar to venueDest according to some similarity function.

The algorithm then iterates over the ride offers (line 4)
checking if the starting location q.loc is within the walking
distance from the path of a ride offer (line 5). In this case, the
algorithm sets as pick up location the closest point between the
offered ride path and the request location (line 6). Accordingly,
the pick up time is computed as the time at which the offered
trip passes in the pick up location (line 7). Then, if the
candidate ride does not respect the time delay constraint for
pick up it is discarded (line 8).

A similar computation is done for the drop point. The
algorithm checks if the candidate ride passes within distance
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w dist from one of the alternative destinations (line 9-12) and
checks that the direction of the ride is correct (line 13). In this
case, the candidate ride is added to the matchings set (line 15).

Finally, the algorithm returns the set of matchings discov-
ered (line 16).

Since the cardinality of this set can be high, we introduce
a subsequent ranking step to order the matchings on the basis
of an estimation of their relevance for the passenger (or on
the basis of other criteria such as the saving of CO2). In the
next section we discuss the ranking features and how we can
combine them in a ranking function.

A. Ranking Model

In order to rank the matchings returned by Algorithm 1 we
consider four features. The objective of these features is to
measure how effectively a matching m fits a ride request q.
The four features are:
Time delay (fdly). The anticipation or delay of the trip respect
to the intended time specified in the request.
Distance to walk (fwld). The distance the passenger has
to walk in order to get the ride and arrive at the proposed
destination. It is computed as the sum of the distance between
the passenger location and the pick-up point, plus the distance
between the drop off point and the destination venue.
Ride duration (fdur). The estimated duration of the ride from
the user location to the proposed destination.
Ride length (flen). The estimated length of the candidate ride.

These features are first rescaled in the range [0-1] on a ride-
request basis by considering all the values occurring in the set
of matchings M. M is then sorted by decreasing value of
function Rank(m):

Rank(m) = 1−
∑
i

wifi

where wi ∈ [0, 1],
∑

i wi = 1 is the weight associated
with feature fi ∈ {fdly, fwld, fdur, flen}. By properly setting
the weights wi in the above linear combination of features,
we can tune the importance of the different features. For
example, we can reward rides with the shortest distance to
reduce the emission of pollutants, or favor the passengers by
ranking higher rides with the lowest walks and/or duration. Of
course we are aware that more sophisticated ranking models
considering different and complex aspects could be adopted
(see for example [31]). However, the goal of this work is
investigating the impact on carpooling of user flexibility and
not studying application-specific rankers. We will see in the
following how this simple ranking model allows us to sweep
weights in order to understand their effect on the user and the
environment.

V. EXPERIMENTAL EVALUATION

In this section we present the experiments conducted to as-
sess ABRM in terms of kilometers, liters of gasoline and CO2

potentially saved with respect to a traditional, destination-
oriented, carpooling approach. Note that in the following
we do not deal with the allocation problem neither consider
the number of seats available in the cars offering the rides.

TABLE I: Datasets Statistics

Dataset Checkins Users Venues Categories
New York (NYC) 227,428 1,083 38,333 251
Tokyo (TKY) 573,703 2,293 61,858 247

Ride request-offer allocation is a well-known optimization
problem, orthogonal to this proposal. Any scheduling solution
addressing this problem for destination-oriented carpooling fits
also our activity-based approach. Since the same assumptions
hold for the destination-oriented solution used as baseline, we
believe that the choice of not considering allocation does not
constitute a limitation of the work. Thus, below we investigate
the potential impact of ABRM and of the settings of the
ranking function in the reduction of the number of circulating
vehicles, of pollutant emissions and consequent improvement
of quality of the urban environment. The experiments con-
ducted aim to answer comprehensively the following research
questions:

RQ1: To what extent can ABRM increase ride sharing
opportunities?
RQ2: How well the matchings discovered by ABRM fit the
constraints in the ride request?
RQ3: What is the impact of tuning the weights used by
the ranking function on the number of requests potentially
supplied?
RQ4: Which are the most favorable activities for exploiting
the alternative destinations approach?

A. Experimental setup

Our experiments are conducted on two semi-synthetic
datasets of ride requests and ride offers, obtained by processing
and enriching two publicly-available Foursquare datasets [37].
These datasets record the check-ins of Foursquare users in
New York City (NYC) and Tokyo (TKY) for about 10 months
(from 12 April 2012 to 16 February 2013). Each check-in is
associated with a time stamp, the GPS coordinates of the POI
and a fine-grained venue-category. Table I summarizes the total
number of check-ins, the number of distinct users and distinct
venues, and the number of possible categories for venues. For
both datasets we consider only the users with at least 100
check-ins.

We enriched the above datasets by gathering the POI
information using the Venue3 and Similar4 Foursquare
APIs.Specifically, we gathered for each POI in our datasets
the number of check-ins performed at the POI (popularity),
the number of “likes” received (favorite), and the top−5 most
similar venues according to an unknown Foursquare similarity
measure.

We emphasize that the datasets used for the experiments
provide only a simulation of a traffic scenario and are not
representative of a general mobility graph. In these datasets the
urban traffic flow is surely under-represented as most actual
trips are likely not to be between two FourSquare destinations
checked-in by the drivers. Nevertheless, this dataset has the

3https://developer.foursquare.com/docs/venues/venues
4https://developer.foursquare.com/docs/venues/similar
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important advantage that the activity performed by the users
is explicitly reported as check-ins and this is crucial for our
activity-based ride sharing approach. Rather than representing
a general urban traffic flow, we simulate using these datasets
the activity-based ride requests and offers. In the previous
preliminary work [17], we experimented the use of actual
GPS traces of cars and we faced the non trivial problem of
associating the raw GPS points to the performed activity at
stops. Also, we had strong privacy problems and we could
not make the dataset public. Therefore we privileged here
the use of datasets that, although semi-synthetic and with
clear limitations, are public and representative of a large-scale
activity-based scenario.

We exploit the above datasets of Foursquare check-ins to
build two semi-synthetic datasets representing disjoint sets of
Ride Requests and Ride Offers. By matching the ride requests
with the ride offers by means of the ABRM algorithm and
the baseline, we assess our proposal by considering the set of
requests potentially satisfied by ABRM but not by the baseline
algorithm.

We identify the ride offers as the trips of each user between
the two most frequently visited venues va and vb. The intuition
behind this choice is that the rides between the most frequently
visited locations constitute a reasonable surrogate of routine
trips a user could offer as driver. This is also supported by
a manual inspection of the data that shows that very often
people have their most frequent check-ins at venues such as
home, work place, university, school [12].

The exact procedure followed for each user u to populate
the set RT of ride offers is detailed below:

1) Let va and vb be the two POIs most frequently visited
by user u, and rtab and rtba the candidate routine trips
from va to vb and from vb to va, respectively.

2) rtab and rtba are added to set RT for all the days of the
week in which there is at least a check-in of u in both
the places. The arrival time in va and vb for the above
two ride offers are computed as the median among the
timestamps associated with the check-ins in va and vb.

3) For each ride offer rt obtained with steps 1-2 we
compute a representative trajectory of the fastest car
route from the departure to the arrival locations by using
Google Maps 5. In addition, the arrival time tarrival of
rt is used to estimate the duration of the ride, its length
and the time of departure tdeparture.

By following the above procedure we obtained 11,426 and
25,306 ride offers for NYC and TKY respectively. Figure 3
shows a geospatial visualization of a sample of ride offers from
the Tokyo dataset. Each color represents a single trajectory. As
we can see, the ride offers cover main streets and avenues of
the city, particularly in the city center characterized by a higher
density.

For the extraction of the set Q of ride requests, we focus
instead on the venues least frequently visited by each user.
The insight is that occasionally visited venues are the ones
for which a user is most likely to be open to accept a ride
for an alternative destination. For example, venues like bars,

5developers.google.com/maps/documentation/directions/

Fig. 3: Samples of ride offers extracted from the Tokyo dataset.

restaurants, pubs, markets, cinemas are in general places not
routinely visited for which we expect that users can be more
flexible [12]. Based on this idea, we extract the ride requests
for user u as follows. We first remove from the check-ins of u
the check-ins in the two most frequently visited venues (see the
previous procedure) and all the check-ins in venues belonging
to the following categories: ’Home (private)’, ’Office’, ’Air-
port’, ’Subway’, ’Neighborhood’, ’Road’, ’Building’, ’Resi-
dential Building (Apartment / Condo)’, ’Government Build-
ing’, ’Train Station’, ’Road’, ’Bus Station’, ’Hotel’, ’City’
and ’Bridge’. We assume in fact that the activities associated
to these categories of POIs can difficulty be performed in
alternative places. For example, a passenger could not be
dropped to a different airport from the one she has the flight,
or to a different hotel. Then, for each remaining check-in c
we create a ride request q considering as starting location the
place most frequently visited by the user. The destination is
obviously the same of the check-in, while the departure time is
inferred from the check-in time and the travel time needed to
reach the destination from the starting location (as estimated
by Google map). Resulting ride request corresponding to rides
shorter than 1 km are discarded.

In addition, unless differently specified, we set in all the
ride requests 60 minutes and 500 meters as the maximum
delay and the maximum walk distance, respectively. We also
consider 5.0 km/h as average walking speed [38]. The resulting
datasets contain 98,008 and 160,271 ride requests in NYC and
TKY, respectively.

B. Evaluation metrics

The acceptance of a ride offer is an absolutely subjective
decision whose modeling is out of the scope of the present
work. Thus, given the set of ride requests Q and the set of
ride offers RT in the NYC and TKY datasets, we assess
our proposal by simply considering the potential matchings
returned by ABRM and the destination-oriented baseline,
if any. In order to minimize the effect of differences in
the implementations, the destination-oriented solution used as
baseline is a simple modification of our implementation where
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the requested destination in the ride request is considered
fixed in the matchings. All the other parameters (including the
maximum walking distance and time delay) are set exactly to
the same values in order to directly measure the boost in the
number of requests potentially supplied by our activity-based
approach versus the destination-based counterpart.

Let us indicate with Qs the subset of all ride requests Q
satisfied by at least one ride offer. |Qs| is the number of ride
requests potentially satisfied and |Qs|/|Q| the ratio (measured
in percentage) between the number of requests supplied and
the total number of requests in Q.

In order to estimate the potential impact of carpooling
solutions on the reduction of kilometers traveled by cars,
we assume ride requests are satisfied by the ride offer most
highly ranked retrieved by ABRM and by the baseline, if any.
We clearly assume a user can avoid to take its own vehicle
when a ride possibility is offered. Every satisfied request thus
corresponds to a vehicle less in circulation.The number of
kilometers potentially saved is thus:

Kmsaved(Qs) =
∑
q∈Qs

D(q.pickupLoc, q.dropLoc)

where D(q.pickupLoc, q.dropLoc) is the length of the
route connecting the pickup and the (alternative) drop off
locations estimated by the Google maps service.

C. RQ1: boosting ride sharing opportunities

In this section we address the first research question by
comparing the number of ride sharing requests potentially
satisfied by ABRM and the baseline. We varied the method
used by ABRM to choose the set of alternative venues.
Specifically we experimented the following variations: (a) all
alternative destinations, the passenger can accept to go to any
alternative destination where she could perform the desired
activity (all the venues in the same category of the requested
POI); (b / c) liked / popular, the passenger can accept to go to
one of the k most liked / visited POIs in the same category;
(d) preferred, the passenger can accept to go to one among her
k most preferred destinations. Since we do not have user-level
preference information in our datasets, we simulate this case
by randomly selecting k POIs in the same category for each
user; (e) Foursquare similarity, the passenger can accept to go
to one of the venues most similar to the requested destination
according to the FourSquare black-box similarity function.
We remark that for the liked, popular and preferred criteria
we experimented values of k equal to 5, 10 or 20. For the
Foursquare similarity case, given the implementation of the
APIs, at most 5 alternative POIs are returned even if in many
cases a lower number of similar venues is suggested.

Table II reports the number (|Qs|) and percentage
(|Qs|/|Q|) of ride requests potentially supplied, the improve-
ment of ABRM compared to the destination-oriented baseline
(gain), and the impact for the environment in terms of poten-
tially saved kilometers (Kmsaved).

As expected, we observe that the all alternative destinations
method, due to the higher number of possible destinations,

reaches the best results with a gain of 44.46% and 54.69%,
compared to the baseline, for NYC and TKY, respectively.
In general, we measured a higher performance in the Tokyo
dataset compared to New York, probably due to the higher
number of ride offers and alternative destinations. Another
general trend we can note is that the number of requests po-
tentially satisfied increases when more flexibility is assumed,
i.e., when the number k of possible alternative destinations
increases. On the other side, we observed similarly that
ABRM remarkably increases also the number of ride offers
matched to some ride requests. For example, in the NYC
case, considering the most flexible criteria (i.e. all alternative
destinations), 63% of the ride offers are matched to at least
one ride request against 30% measured with the baseline.

TABLE II: Ride requests matched with the baseline and
ABRM on the NYC and TKY datasets.

NYC |Qs| |Qs|/|Q| gain Kmsaved

baseline 9,288 9.48% - 35,901
all alt. destinations 52,864 53.94% 44.46% 388,293

likes (k=5) 18,378 18.75% 9.27% 117,027
likes (k=10) 24,534 25.03% 15.56% 157,840
likes (k=20) 32,483 33.14% 23.67% 213,254

popular (k=5) 20,268 20.68% 11.20% 129,702
popular (k=10) 25,011 25.52% 16.04% 160,634
popular (k=20) 32,614 33.28% 23.80% 213,908
preferred (k=5) 20,157 20.57% 11.09% 130,523

preferred (k=10) 28,627 29.21% 19.73% 190,249
preferred (k=20) 36,628 37.37% 27.90% 250,761

Foursquare similarity 12,642 12.90% 3.42% 55,783
TKY |Qs| |Qs|/|Q| gain Kmsaved

baseline 36,695 22.90% - 213,838
all alt. destinations 124,356 77.59% 54.69% 1,014,079

likes (k=5) 74,674 46.59% 23.70% 566,748
likes (k=10) 89,326 55.73% 32.84% 690,604
likes (k=20) 98,782 61.63% 38.74% 773,103

popular (k=5) 74,329 46.38% 23.48% 565,492
popular (k=10) 87,908 54.85% 31.95% 678,237
popular (k=20) 98,839 61.67% 38.77% 775,156
preferred (k=5) 67,044 41.83% 18.94% 513,269

preferred (k=10) 85,236 53.18% 30.29% 662,167
preferred (k=20) 97,223 60.66% 37.77% 764,810

Foursquare similarity 48,844 30.48% 7.58% 317,694

Table II also shows the estimated amount of kilometers
traveled potentially saved by the corresponding carpooling
solution. Once more we recall that the figures reported here
are upper-bound estimates computed on the basis of the
assumptions made on the flexibility and willingness of users
to accept shared rides possibly at alternative destinations.
From these values we can easily approximate the liter of
fuel (e.g. gasoline) saved and consequently the saved amount
of CO2. For the sake of simplicity, in this computation we
assume each car consumes in average 1 liter of gasoline for
7.449 Km as reported in the official statistics of the Bureau
of Transportation6. By assuming the passengers are flexible
enough to change their requested location, the estimate for
the number of kilometers saved in our test cities amount to
388.293 in NYC and 1,014,079 in Tokyo. These values in
turn correspond to 52,120 and 136,117 less liters of gasoline
and to 99.4 tons and 259.60 tons less CO2 emission for New
York and Tokyo, respectively. The baseline based on fixed

6goo.gl/ClDSfL
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destinations may save in NYC 35,786 Km only (corresponding
to 4,803 gasoline liters and 1.22 CO2 tons). For TKY we
estimate instead that the baseline can save 213,838 Km (28,703
gasoline liters and 7.34 CO2 tons).

On both the datasets, the method based on all the alternative
destinations significantly outperforms the other methods. On
the TKY dataset the average number of matches for each ride
request is 690 for ABRM and only 3.02 for the baseline.
Slightly similar figures are measured on the NYC datasets.
The ride request in TKY with the highest number of alternative
destinations counts about 23k matches against the 45 achieved
by the baseline. Such high numbers motivates the need of a
ranking model later discussed in the sections V-D and V-E.

In conclusion, in relation to RQ1, we observe that the results
reported prove the potential boost of ride sharing services
involving the offers of rides to alternative destinations. The
next step is to investigate how much these possibilities fit
the passenger requests and the public good. These aspects are
discussed in the next sections.

D. RQ2: How well the user requests meet the ride offers to
alternative destinations?

In this section, we address our second research question,
related to the contribution of the ride features to the ranking
method defined in Section IV-A. With these features we intend
to model how much the rides to alternative destinations can
meet the requirements specified in the user request. Figure
4 supports this study. Each plot shows eight curves reporting
the cumulative distribution of |Qs|/|Q| for the baseline, the all
alternative destination criterion and the popular (k=5,10,20)
and preferred (k=5,10,20) ones. The four plots for NYC
(TKY) report each the effect on |Qs|/|Q| of varying the value
of one of the features fdly, fwld, fdur, and flen by keeping
all the other fixed.

We computed the cumulative distributions by considering
the fraction of supplied ride requests having a value for the
feature considered lower than the one reported in the x axis.
In this way we can see how the fraction of supplied requests
changes when the feature value increases. Looking at the plots,
specifically for the TKY dataset and the temporal shift feature
fdly, we see that even when we consider matches with only
10 minutes shift, more than half of the requests could be
potentially satisfied with a ride offer to an alternative POI with
the all alternative destinations method. A similar consideration
can be done for the plot analyzing the variation on the walk
distance feature fwld.

For the trip length feature flen, we report on the x axis
the ratio between the matched ride offer having the shortest
length and the shortest car distance to the requested destination
computed by the Google Maps service. By looking to the plot
corresponding to the NYC dataset we observe that more than
20% of the ride requests can be supplied to an alternative
destination with a trip which is half in duration or shorter than
the trip originally requested. We observe even better results on
the TKY dataset. Similarly, for the duration feature fdur we
report on the x axis the ratio between the estimated duration
to reach the alternative POI and the travel time to arrive at the

requested destination computed by the Google Maps service.
On both the NYC and TKY datasets we can see that ABRM
proposes to passengers rides to alternative destinations that
are in most of the cases shorter in duration than the ones to
the requested destination offered by the destination-oriented
baseline. We can conclude this section by considering that
independently from the feature considered, and thus from the
subjective importance given by the user to the carpooling
aspect modeled by the specific feature (time shift, walking
distance, ride duration and ride length) ABRM is likely to
provide a better carpooling service to flexible users accepting
to reach alternative destinations for performing the intended
activities.

E. RQ3: Effectiveness of the Ranking Method

ABRM returns the set of candidate Ride offers matching
a given Ride Request. The ranking model defined in IV-A
order the candidate offers on the basis of a linear combination
of weighted. The purpose of the ranking step is helping the
users to choose the most relevant rides among a possibly
large set of offers. Since no golden standard recording user
preferences is available to optimize the weights, we consider
here a uniform weighting schema giving the same importance
to all the features and we compare such setting with four
extreme scenarios where we prefer one features over all the
others by setting, in turn, the corresponding weight to 1 and
the others to zero. Given the order of features previously
used, we identify the uniform weighting schema with the
vector w = [1/4, 1/4, 1/4, 1/4] while the scenario giving, for
example, only importance to ride duration (feature fdur) corre-
sponds to vector w = [0, 0, 1, 0]. We chose the all alternative
destinations as alternative destination criteria since it is the
one providing the highest numbers of matchings, not biased
by other parameters (like number of likes, popularity, etc.). As
in the previous section, flen and fdur are normalized based on
the ratio between the estimated length and temporal duration
to reach the alternative POI and the requested destination. For
both datasets the top-1 offer returned by the ranking model
was compared with the best values of the extreme approach
giving importance to only that feature. Figure 5 shows the
cumulative distribution of value |Qs|/|Q| considering the top-
ranked result for each of these five configurations of vector
w.

As expected, the highest values for |Qs|/|Q| are achieved in
all the plots for the extreme weighting schema considering the
associated feature only. However, the curves corresponding to
the uniform weighting schema are in all the plots but the two
in the most right hand side the closest to the highest curves,
thus showing in general a very good performance. Uniform
weighting performs as third solution under the considered
metric only when the ride length aspect is analyzed, and the
curves result to be very close to the second one. We observe
in fact that the third and fourth features, ride duration and
length, are highly correlated. On the other hand, the other two
features, time delay and walking distance, are more selective
on the generation of candidates. This suggest us that delay
and walking distance are strong constraints to the matching
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Fig. 4: Cumulative distribution of |Qs|/|Q| by varying each feature in isolation.

of candidate offers, whereas the other two features may be
weighted differently to try to optimize user acceptance on one
hand and to improve public goodness by minimizing the total
distance traveled by cars.

F. RQ4: Activities mostly favored by ABRM

We conclude the experiments by addressing RQ4, namely
discussing which activities most favor the ride sharing in the
alternative destination scenario. In other words, we analyze
our ride matching results in the two datasets for understanding
which activities have the larges boost in terms of number of
ride matches.

We identified the most frequent ride requests by intended
activity and, from them, we analyze the possible matches.
Table III reports, for both datasets the top-10 activities that
result in the largest number of ABRM ride matchings. We
report the number of requests |Q|, the percentage (|Qs|/|Q|)
of ride requests potentially supplied with the baseline and the
improvement in percentage obtained with ABRM. We use
the popular with k = 5 (more restrictive) and all alternative
destinations (less restrictive) as alternative destination criteria.
We observe for NYC a boost on ride-sharing possibilities
mainly for activities related to “ Italian Restaurant” and “Bar”
with an improvement of +58.02% and +57.86% respectively.
In turn, for TKY, activity “Food & Drink Shop” achieves the
highest boost with +64.28%. This insight confirm our intuition

that entertainment or eating are in general the activities that
can most benefit from the proposed approach. The specific
results reported in the table are however also correlated to a
combination of factors such as the number of venues for each
categories in the cities and their location.

TABLE III: Activities favoring ABRM boosting.
NYC |Qs| Bas. |Qs|/|Q| ABRM pop., k = 5 ABRM all alt. dest.

Italian Restaurant 1,315 13.08% +12.97% +58.02%
Bar 11,242 10.60% +13.64% +57.86%

Music Venue 1,027 9.45% +25.61% +55.50%
Coffee Place 918 8.06% +20.59% +54.68%

Chinese Restaurant 932 10.41% +10.73% +53.33%
Deli / Bodega 1,621 5.31% +15.48% +52.81%

Bakery 899 10.23% +20.91% +51.72%
Park 3,015 11.21% +16.80% +50.95%

American Restaurant 2,681 14.58% +21.04% +50.09%
Mexican Restaurant 1,468 13.42% +19.69% +49.11%

TKY |Qs| Bas. |Qs|/|Q| ABRM pop., k = 5 ABRM all alt. dest.
Food & Drink Shop 6,766 15.05% +29.83% +64.28%

Convenience Store 7,360 16.28% +23.63% +63.93%
Park 4,026 14.83% +27.81% +63.88%

Fast Food Restaurant 3,698 18.33% +27.96% +60.28%
Chinese Restaurant 2,804 20.97% +29.81% +60.06%

Japanese Restaurant 9,365 25.46% +15.07% +59.62%
Ramen / Noodle House 10,618 22.29% +32.59% +59.12%

Mall 6,185 20.03% +26.89% +57.83%
Coffee Shop 4,756 23.91% +27.02% +56.79%

Bar 8,051 26.89% +33.21% +55.21%

VI. CONCLUSIONS

In this paper we proposed and discussed the ABRM algo-
rithm aimed at matching users’ carpooling requests with ride
offers reaching alternative destinations where the intended user
activity can be performed. Experiments conducted on two large
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Fig. 5: Comparison by ride feature between the Top-1 ranked ride and the best result by feature

semi-synthetic datasets recording mobility demands and the
categories of POIs visited (extracted from Foursquare checkins
and made publicly available to favor the reproducibility of
our results) showed that ABRM can boost to up 54.69% the
percentage of carpooling request satisfied with compatible ride
offers with respect to traditional destination-oriented carpool-
ing. Since the number of carpooling opportunities provided
by ABRM can be very large we proposed and analyzed
in detail how the candidate ride offers can by ranked in
order to better meet user expectations or to enforce their pro-
environment behaviors in order to maximize the beneficial
impact of carpooling on the environment in terms of CO2

emissions saved. Our analysis is based on the assumption that
users might be flexible in their mobility habits and provided
interesting insights on the extent to which a ride-sharing
service could take advantage of this spontaneous attitude. We
notice however that an ad-hoc study with real users would be
necessary to have a reliable measure of the actual acceptance
of ride offers towards alternative destinations. We leave such
assessment as future work together with the study of the ride
allocation problem in the ABRM context.
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