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Concept-Based and Event-Based Video Search in Large
Video Collections
Foteini Markatopoulou, Damianos Galanopoulos, Christos Tzelepis, Vasileios
Mezaris, Ioannis Patras

Video content can be annotated with semantic information such as simple concept
labels that may refer to objects (e.g., “car” and “chair”), activities (e.g., “running”
and “dancing”), scenes (e.g., “hills” and “beach”), etc.; or more complex (or high-
level) events that describe the main action that takes place in the complete video.
An event may refer to complex activities, occurring at specific places and times,
which involve people interacting with other people and/or object(s), such as “chang-
ing a vehicle tire”, “making a cake”, or “attempting a bike trick”, etc. Concept-based
and event-based video search refers to the retrieval of videos/video fragments (e.g.,
keyframes) that present specific simple concept labels or more complex events from
large-scale video collections, respectively. To deal with concept-based video search,
video concept detection methods have been developed that automatically annotate
video-fragments with semantic labels (concepts). Then, given a specific concept a
ranking component retrieves the top related video fragments for this concept. While
significant progress has been made during the last years in video concept detection,
it continues to be a difficult and challenging task. This is due to the diversity in form
and appearance exhibited by the majority of semantic concepts and the difficulty to
express them using a finite number of representations. A recent trend is to learn fea-
tures directly from the raw keyframe pixels using deep convolutional neural networks
(DCNNs). Other studies focus on combining many different video representations
in order to capture different perspectives of the visual information. Finally, there are
studies that focus on multi-task learning in order to exploit concept model sharing,
and methods that look for existing semantic relations e.g., concept correlations. In
contrast to concept detection, where we most often can use annotated training data
for learning the detectors, in the problem of video event detection we can distinguish
two different but equally important cases: when a number of positive examples, or no
positive examples at all (“zero-example” case), are available for training. In the first
case, a typical video event detection framework includes a feature extraction and a
classification stage, where an event detector is learned by training one or more classi-
fiers for each event class using available features (sometimes similarly to the learning
of concept detectors), usually followed by a fusion approach in order to combine dif-
ferent modalities. In the latter case, where solely a textual description is available
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for each event class, the research community has directed its efforts towards effec-
tively combining textual and visual analysis techniques, such as using text analysis
techniques, exploiting large sets of DCNN-based concept detectors and using various
re-ranking methods, such as pseudo-relevance feedback, or self-paced re-ranking. In
this chapter, we survey the literature and we present our research efforts towards im-
proving concept- and event-based video search. For concept-based video search, we
focus on i) feature extraction using hand-crafted and DCNN-based descriptors, ii) di-
mensionality reduction using accelerated generalised subclass discriminant analysis
(AGSDA), iii) cascades of hand-crafted and DCNN-based descriptors, iv) multi-task
learning (MTL) to exploit model sharing and v) stacking architectures to exploit con-
cept relations. For video event detection, we focus on methods which exploit positive
examples, when available, again using DCNN-based features and AGSDA, and we
also develop a framework for zero-example event detection that associates the textual
description of an event class with the available visual concepts in order to identify the
most relevant concepts regarding the event class. Additionally, we present a pseudo-
relevant feedback mechanism that relies on AGSDA.

1.1
Introduction

Video understanding is the overall problem that deals with automatically detecting
what is depicted in a video sequence. This problem can be divided into two separate
sub-problems that focus at different levels of video analysis. Concept-based video
search that works at video fragment-level, i.e., assigning one or more semantic con-
cepts to video fragments (e.g., video keyframes) based on a predefined concept list
(e.g., “car”, “running”) [1], and event-based video search that works at the complete
video level, i.e., detecting the main event that is presented on the overall video se-
quence. These two sub-problems share some video pre-processing techniques. For
example, video representation and dimensionality reduction are typically the same.
However, they are overall treated as two separate tasks because the different video
analysis level that each of them focuses at requires different detection and recognition
mechanisms.
Video concept detection is an important video understanding problem that facili-

tates many applications such as semantics-based video segmentation, video event de-
tection and concept-based video search. The latter, which is the problem investigated
in this section, refers to the retrieval of videos/video fragments (e.g., keyframes) that
present specific simple concept labels. In a typical video concept detection process,
the video is initially segmented into meaningful fragments called shots, and each shot
may be represented by one or more characteristic keyframes that are subsequently an-
notated. This is a multi-label classification problem (one keyframe may be annotated
with more than one semantic concepts), that can be treated as multiple independent
binary classification problems, where for each concept a model can be learned to
distinguish keyframes that the concept appears from those that the concept does not
appear. Given feature-based keyframe representations that have been extracted from
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different keyframes and also the ground-truth annotations for each keyframe (i.e. the
concepts presented) any supervised machine learning algorithm that solves classi-
fication problems can be used in order to learn the relations between the low-level
image representations and the high-level semantic concepts. It has been shown that
combining many different keyframe representations (e.g. SIFT, RGB-SIFT, DCNN-
based) for the same concept, instead of using a single feature (e.g. only SIFT), im-
proves the concept detection accuracy. Multi-task learning, which refers to methods
that learn many tasks together at the same time, is another category of methods that
aim to improve concept detection accuracy. Finally, exploiting label relations, the
relations between concepts within a video shot (e.g., the fact that sun and sky will
appear in the same video shot for the most of cases) is a third category of concept
detection methods towards accuracy improvement. We will focus on three general
learning areas towards improved concept-based video search:

• Combination of video representations using cascades (Section 1.3.2).
• Multi-task learning for concept-based video search (Section 1.3.3).
• Exploiting label relations using a two-layer stacking architecture (Section 1.3.4).

Event detection, the second sub-problem we tackle, facilitates applications such as
event-based video search, i.e. the retrieval of videos that present a specific event. As
a video event we consider a complex activity involving people interacting with other
people and/or objects, e.g.,“Renovating a home”. A typical video event detection
pipeline starts with a feature extraction stage, which usually generates a plethora of
low-, intermediate-, and high-level features from the different available modalities
(visual, audio, and/or textual). Then, a classification stage follows, where an event
detector has been learned by training one or more classifiers for each event class us-
ing some or all of the extracted video features and positive video examples (under
the assumption that such examples are available). Finally, a fusion approach may
be followed in order to combine different modalities. A slightly different and more
challenging problem related to video event detection is the zero-example event detec-
tion, which refers to the case that solely a textual description of the event is available
without any positive training examples. Typically, a zero-example system starts by
analysing the textual event description so as to transform it to a meaningful set of
keywords. At the same time, a predefined set of concepts is used, on the one hand to
find which of these concepts are related to the extracted keywords and consequently
to the event description, and on the other hand, to train visual concept detectors (i.e.,
using concept detection approaches as those presented in Section 1.3) that will be
used to annotate the videos with these concepts. Regarding event-based video search
we will present:

• Methods for video event detection when positive training examples are available
(Section 1.4.2).

• Methods for video event detection when solely a textual description of the event is
given (Section 1.4.3).
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1.2
Video pre-processing and machine learning essentials

1.2.1
Video representation

A variety of visual, textual and audio features can be extracted to represent each
piece of visual information; a review of different types of features can be found in
[1]. Despite the fact that audio features have also been shown to be useful in visual
understanding problems [1], in this work we focus mostly on visual features. Visual
features are typically extracted from representative keyframes or similar 2D image
structures [2], or from sequences of frames (e.g. motion features). We can distin-
guish two main categories of (static, i.e. non-motion) visual features: hand-crafted
features and features based on Deep Convolutional Networks (DCNN-based). With
respect to hand-crafted features, binary (ORB [3]) and non-binary (SIFT [4], SURF
[5]) local descriptors, as well as color extensions of them [6] have been examined
for video concept detection. Local descriptors are aggregated into global image rep-
resentations by employing feature encoding techniques such as Fisher Vector (FV)
[7] and VLAD [8]. With respect to DCNN-based features, one or more hidden lay-
ers of a pre-trained DCNN are typically used as a global image representation [9].
Several DCNN software libraries are available in the literature, e.g., Caffe [10], Mat-
ConvNet, and different DCNN architectures have been proposed, e.g., CaffeNet [11],
GoogLeNet [12], VGGConvNet [9]. DCNN-based descriptors present high discrim-
inative power and generally outperform the local descriptors [13], [14].
A DCNN can be trained on a large-scale dataset and then can be used in two dif-

ferent ways to annotate new test keyframes with semantic concepts. a) As standalone
classifier: Each test keyframe is forward propagated by the network and the network’s
output is used as the final class distribution assigned to the keyframe [9, 11], a pro-
cess a.k.a. direct classification. b) As feature generator: The training set is forward
propagated by the network and the features extracted from one or more layers of the
network are used as feature vectors to subsequently train one supervised classifier
(concept detector) per concept. Then, each test keyframe is firstly described by the
DCNN-based features and subsequently served as input to the trained classifiers.
DCNN training requires the learning of millions of parameters, which means that

a small-sized training set, which is the case for video datasets, could easily over-fit
the DCNN on the training data. It has been proven that the bottom layers of a DCNN
learn rather generic features, useful for different domains, while the top layers are
task-specific [15]. Transferring a pre-trained network in a new dataset by fine-tuning
its parameters is a common strategy that can take advantage of the bottom generic
layers and adjust the top layers to the target dataset and the new target concepts.
Fine-tuning is a process where the weights of a pre-trained DCNN are used as the
starting point for a new target training set and they are modified in order to adapt the
pre-trained DCNN to the new target dataset [16].
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1.2.2
Dimensionality reduction

Dimensionality reduction in multimedia understanding problems, such as those of
concept- and event-based video search has been proven to be very useful, since in
such domains the data representations are typically high-dimensional. To this end,
non-linear discriminant analysis (NDA) approaches [17], which aim at identifying
a discriminant subspace of the original high-dimensional input space, and GPU im-
plementations of computationally intensive algorithms, are recently getting increas-
ing attention in large-scale video analysis problems [18, 19, 20]. For instance, gen-
eralised subclass discriminant analysis (GSDA) combined with linear support vec-
tor machines (LSVMs) achieved excellent performance in multimedia event detec-
tion [19], while in [18, 21] GPU accelerated machine learning algorithms obtain
substantial speedups.
In this work, for performing dimensionality reduction efficiently, we use a non-

linear discriminant analysis technique called accelerated generalised subclass dis-
criminant analysis (AGSDA) [17] along with its GPU implementation [22, 23]. This
method identifies a discriminant subspace of the input space in three steps: a) Gram
matrix computation, b) eigenvalue decomposition of the between subclass factor ma-
trix, and c) computation of the solution of a linear matrix system with symmetric
positive semidefinite (SPSD) matrix of coefficients. Based on the fact that the com-
putationally intensive parts of AGSDA, i.e. Gram matrix computation and identifi-
cation of the SPSD linear matrix system solution, are highly parallelisable, a GPU
implementation of AGSDA is employed [23]. The experimental evaluation of this
method (GPU-AGSDA) on large-scale datasets of TRECVID for concept and event
detection show that, combined with LSVM, outperforms LSVM alone in training
time, memory consumption, and detection accuracy.

1.3
Methodology for concept detection and concept-based video search

1.3.1
Related work

Video concept detection is a multi-label classification problem (one keyframe may
be annotated with more than one semantic concepts), that is typically treated as mul-
tiple independent binary classification problems; one per concept. Given feature-
based keyframe representations that have been extracted from different keyframes
and also the ground-truth annotations for each keyframe (i.e. the concepts present-
ed) any supervised machine learning algorithm that solves classification problems
can be used in order to train a concept detector. It has been shown that combining
many different keyframe representations (e.g. SIFT, RGB-SIFT, DCNN-based) for
the same concept, instead of using a single feature (e.g. only SIFT), improves the
concept detection accuracy. The typical way of combining multiple features is to



6

train several supervised classifiers for the same concept, each trained separately on a
different feature. When all the classifiers give their decisions, a fusion step computes
the final confidence score (e.g. by averaging); this process is known as late fusion.
Hierarchical late fusion [24] is a more elaborate approach; classifiers that have been
trained on more similar features (e.g. SIFT and RGB-SIFT) are firstly fused togeth-
er and then, more dissimilar classifiers (e.g. DCNN-based) are sequentially fused
with the previous groups. A second category of classifier combination approaches
performs ensemble pruning to select a subset of the classifiers prior to their fusion.
For example, [25] uses a genetic algorithm to automatically select an optimal subset
of classifiers separately for each concept. Finally, there is a third group of popu-
lar ensemble-based algorithms, namely cascade architectures, that have been used in
various visual classification tasks for training and combining detectors [26], [27]. In
a cascade architecture, e.g., [28], the classifiers are arranged in stages, from the less
computationally demanding to themost demanding ones (or may be arranged accord-
ing to other criteria such as their accuracy). A keyframe is classified sequentially by
each stage and the next stage is triggered only if the previous one returns a positive
prediction (i.e. that the concept or object appears in the keyframe). The rationale
behind this is to rapidly reject keyframes that clearly do not match the classification
criteria and focus on those keyframes that are more difficult and more likely to depict
the sought concept. Cascades of classifiers have been mainly used in object detec-
tion tasks, however they have also been briefly examined for video/image concept
detection [26], [28].
Independently training concept detectors is a single-task learning (STL) process,

where each task involves recognizing one concept. However, video concept detec-
tion can be treated as a MTL problem where the different tasks (one per concept) can
be learned jointly by letting the sharing of knowledge across them. The main differ-
ence between MTL methods is the way they define task relatedness, i.e., the type of
knowledge that should be shared. Some methods identify shared features between
different task and use regularization to model task relatedness [29]. Others identify
a shared subspace over the task parameters [30, 31]. The methods above make the
strong assumption that all tasks are related; some newer methods consider the fact
that some tasks may be unrelated [32, 33].
Two main types of methods that exploit label relations have been adopted in the

literature: a) Stacking-based approaches that collect the scores produced by a base-
line set of concept detectors (in a first layer) and introduce a second learning step
in order to refine them (in a second layer), b) Inner-learning approaches that fol-
low a single-step learning process, which jointly considers low-level visual features
and concept correlation information [1]. Assuming that we firstly train a set of SVM-
based or LR-based independent concept detectors either using a cascade architecture,
or using other typical fusion schemes (e.g., late fusion in terms of arithmetic mean),
and secondly we apply this set of concept detectors to new test keyframes, stacking
approaches aim to refine the initial predictions on the test set by detecting depen-
dencies among concepts in the last layer of the stack. For example, Discriminative
Model Fusion (DMF) [34] obtains concept score predictions from the individual con-
cept detectors in the first layer, in order to create a model vector for each shot. These
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Figure 1.1 (a) Block diagram of the developed cascade architecture for one concept. (b)
Stage combining many base classifiers trained on different features. (c) Stage with one
base classifier trained on a single feature.

vectors form a meta-level training set, which is used to train a second layer of inde-
pendent concept detectors. Correlation-Based Pruning of Stacked Binary Relevance
Models (BSBRM) [35] extends the previous approach by pruning the predictions of
non-correlated concept detectors before the training of each individual classifier of
the second-layer models. Similarly to DMF, the Baseline CBCF (BCBCF) [36] forms
model vectors, in this case using the ground truth annotation, in order to train second-
layer BR models. Furthermore, the authors of [36] note that not all concepts can take
advantage of CBCF, so their method refines only a subset of them. Another group
of stacking approaches are the graph-based ones, which model label correlations ex-
plicitly [1]. Multi-Cue Fusion (MCF) method [37] uses the ground truth annotation
to build decision trees that describe the relations among concepts, separately for each
concept. Initial scores are refined by approximating these graphs. Inner-learning ap-
proaches, on the other hand, make use of contextual information from the beginning
of the concept learning process. For example, the authors of [38] propose methods
that simultaneously learn the relation between visual features and concepts and al-
so the correlations among concepts. However, inner-learning approaches suffer of
computational complexity. For example, [38] has complexity at least quadratic to
the number of concepts, making it inapplicable to real problems where the number
of concepts is large (e.g. hundreds or thousands).

1.3.2
Cascades for combining different video representations

A cascade architecture, for example the one we developed in [39], can be used to
effectively combine many base classifiers that have been trained for the same concept
(Figure 1.1). Each stage j of the cascade encapsulates a stage classifier Dj that
either combines many base classifiers (B1, B2, ..., Bfj , Fig. 1.1: (b)) that have been
trained on different types of features or contains only one base classifier (B1) that
has been trained on a single type of features (Fig. 1.1: (c)). In the first case, the
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Figure 1.2 Threshold assignment and stage ordering of the proposed cascade
architecture (Fig. 1.1).

output of fj base classifiers is combined in order to return a single stage output score

Dj(I) =
1

fj

∑fj
i=1Bi(I), fj ≥ 1 in the [0,1] range. The second case is a special

case where fj = 1. Let I indicate an input keyframe; the classifier Dj+1 of the
cascade will be triggered for it only if the previous classifier does not reject the input
keyframe I . Each stage j of the cascade is associated with a rejection threshold,
while a stage classifier is said to reject an input keyframe ifDj(I) < θj . A rejection
indicates the classifier’s belief that the concept does not appear in the keyframe. Let
D = {D1, D2, ..., Dn} be a set of n independently trained classifiers for a specific
concept.
The rest of this Section presents an advanced algorithm that sets the ordering of

cascade stages (i.e. the ordering of stage classifiers) and assigns thresholds to each
stage in order to instantiate the proposed cascade of Fig. 1.1. The ordering of stages
and the threshold assignment is performed towards the optimization of the complete
cascade and not the optimization of each stage separately from the other stages.

1.3.2.1 Problem Definition and Search Space
Let S = [s1, s2, ..., sn]

> denote a vector of integer numbers in [−1, 0)∪[1, n]. Each
number represents the index of a classifier from D and appears at most once. The
value -1 indicates that a classifier fromD is omitted. Consequently, S expresses the
ordering of the pre-trained classifiers D1, ..., Dn. For example, given a pre-trained
set of 4 classifiersD = {D1, D2, D3, D4}, the solution S = [2, 1, 3,−1]> denotes
the cascade D2,1,3,−1 : D2 → D1 → D3, where stage classifier D4 is not used at
all. In addition, let θ = [θ1, θ2, ..., θn]

> denote a vector of rejection thresholds for
the solution S and let T= {xi, yi}Mi=1, where yi ∈{±1}, be a set of annotated training
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samples for the given concept (xi being the feature vectors and yi the ground-truth
annotations). The problem we aim to solve is finding the pair of the index sequence
S (that leads to the cascade DS : Ds1 → Ds2 → ... → Dsn ) and the vector of
thresholds θ = [θ?1 , θ

?
2 , ..., θ

?
n]
> that maximizes the expected ranking gain on the

finite set T . The implied optimization problem is given by the following equation:

(S?,θ?) = argmax
(S,θ)

{F (DS, T,θ)}, (1.1)

where the ranking function F (DS, T,θ) can be defined as the expected ranking gain
ofDS on T , that is

FAP (DS, T,θ) = AP@k(rank(y), rank(DS(T,θ)),

where, rank(y) is the actual ranking of the samples in T (i.e., samples with yi = 1
are ranked higher than samples with yi = −1), and rank(DS(T,θ)) the predicted
ranking of the samples of cascade DS,θ on T . AP@k is the average precision in
the top k samples.
Let l ≤ n refer to the number of variables sj ∈ Swhose value is different from−1

(i.e., l is the number of cascade stages that solution S implies). The size of the search
space related to the ordering of cascade stages is

∑n
l=1

(n
l

)
l! (i.e. all index sequences

for l = 1, all permutations of index sequences for l = 2, and similarly for all higher
values of l, up to l = n). Furthermore,Θ ⊂ Rn is the search space that consists of all
the possible rejection thresholds for each stage of the cascade. To collect candidate
threshold values, we apply each stage classifier on the training set T . Each of theM
returned probability output scores constitutes a candidate threshold. The size of the
search space equals toMn. Considering that this is a large search space, exhaustive
search cannot be practically applied. To solve the problem we propose the greedy
search algorithm described below.

1.3.2.2 Problem Solution
Our algorithm finds the final solution by sequentially replacing at each iteration a
simple solution (consisting of a cascade with a certain number of stages) with a
more complex one (consisting of a cascade with one additional stage). Algorithm
1 presents the proposed greedy search algorithm that instantiates the proposed cas-
cade (Fig. 1.1). Fig. 1.2 presents graphically the algorithm’s steps. Let S =
[s1, s2, ..., sn]

>, and θ = [θs1 , θs2 , ..., θsn ]
>, represent a solution. Each variable

s1, s2, ..., sn can take n possible values, from 1 to n or the value -1 which indicates
that a stage is omitted. Each variable θs1 , θs2 , ..., θsn can takeM possible values.
Initially we set, sj = −1 for j = 1, ..., n and θ = [0, 0, ..., 0]> where |θ| = n.
In the first step the algorithm optimizes S with respect to sn (Alg. 1: States 1-3) in
order to build the solution:

S0 = [−1,−1, ..., sn]>,θ0 = [0, 0, ..., 0]>,

where according to (1.1),

s?n = argmax
sn

{FAP (DS0
, T,θ0)}. (1.2)



10

and θ?0 = [0, 0, ..., θ?sn ], θ
?
sn = 0. This can be interpreted as the optimal solution of

l = 1, that maximizes (1.1). Then the algorithm, in iteration j (Alg. 1: States 4-7),
assumes that it has solution with l = j, that is:

S?j−1 = [s?1, s
?
2, ..., s

?
j−1,−1,−1, ..., s?n]>,

θ?j−1 = [θ?s1 , θ
?
s2 , ..., θ

?
sj−1

, 0, 0, ..., θ?sn ]
>,

and finds the pair of Sj and θj in one step as follows. It optimizes the pair of S?j−1
and θ?j−1 with respect to sj and θj , respectively, in order to find the solution:

Sj = [s?1, s
?
2, ..., s

?
j−1, sj ,−1,−1, ..., s?n]>,

θj = [θ?s1 , θ
?
s2 , ..., θ

?
sj−1

, θsj , 0, 0..., θ
?
sn ]
>.

According to (1.1):

(s?j , θ
?
sj ) = argmax

(sj ,θsj )

{FAP (DSj
, T,θj)}. (1.3)

The algorithm finds the pair of (sj , θsj ) that optimizes (1.1). The complexity of
this calculation equals to (n− j)×M . This corresponds to n− j possible values
that variable sj can take in iteration j and M possible threshold rejection values
that variable θsj can take for every different instantiation of sj . Finally, the optimal
sequence S? equals to

S? = argmax
S∈{S?

0 ,S?
1 ,...,S?

n−1}
{FAP (DS, T,θ)}, (1.4)

which is the sequence that optimizes (1.1) within all the iterations of the algorithm
(Alg. 1: States 6-7). The optimal threshold vector θ? is the vector connected to the
optimal sequence S?. Our algorithm focuses on the optimization of the complete
cascade and not the optimization of each stage separately from the other stages. This
is expected to give a better complete solution. Furthermore, the algorithm can be
slightly modified to make the search more efficient. For example, at each iteration
we can keep the p best solutions. However, this would increase the computational
cost.

1.3.3
Multi-task learning for concept detection and concept-based video search

Having seen in the previous section the way that different video representations can
be combined in a cascade architecture to improve the accuracy of the individual con-
cept detectors, in this section we will focus on the way that more accurate individual
concept detectors can be built by sharing knowledge across the concepts. MTL fo-
cuses exactly on the sharing of knowledge across different tasks. Assuming that some
groups of concepts are expected to be related through some underlying structure, we
can train a MTL classifier instead of single-task learning (STL) ones (e.g., SVMs).
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Algorithm 1 Cascade stage ordering and threshold search
Input: Training set T= {xi, yi}Mi=1, yi ∈{±1}; n trained classifiersD = {D1, D2, ..., Dn}
Output: i) An index sequence S?, of the ordering of cascade stages: D?S : D?s1 → D?s2 →
...→ D?sn . ii) A vector of thresholds θ? = [θ?s1 , θ

?
s2
, ..., θ?sn ]

>

Initialize: S = [s1, s2, ..., sn]>, sj = −1, j = 1, ..., n, θ = [0, 0, ..., 0]>, |θ| = n,
1. s?n = argmaxsn{FAP (DS0 , T,θ0)} (1.1),
S0 = [−1,−1, ..., sn]>, θ0 = [0, 0, .., 0]>

2. maxCost = FAP (DS?0
, T,θ?0),

S?0 = [−1,−1, ..., s?n]>, θ?0 = [0, 0, ..., θ?sn ]
>, θ?sn = 0

3. S? = S?0 , θ? = θ?0
for j = 1 to n− 1 do

4. (s?j , θ?sj ) = argmax(sj ,θsj )
{FAP (DSj , T,θj)} (1.1),

Sj = [..., sj ,−1, ..., s?n]>, θj = [..., θsj , 0, ..., θ
?
sn

]>

5. cost = FAP (DS?j
, T,θ?j ),

S?j = [..., s?j ,−1, ..., s?n]>, θ?j = [..., θ?sj , 0, ..., θ
?
sn

]>

if cost>maxCost then
6. maxCost = max(cost, maxCost)
7. S? = S?j , θ? = θ?j

end if
end for

MTL is expected to improve the concept-based video search accuracy. TrainingMTL
algorithms is similar to the training of the STL alternatives. Specifically, each type
of features serves as input to the MTL algorithm in order to train a MTL models.
The scores returned from the MTL models for the same concept are fused using any
existing fusion-scheme e.g, late fusion (averaging), cascades etc.
We choose the following MTL algorithms in order to examine different assump-

tions of task relatedness. The first method makes the strong assumption that all tasks
are related. The next two methods consider the fact that some tasks may be unrelat-
ed [32, 33].:

• TheL1-norm (or Lasso) regularized methods are widely used to introduce sparsity
into the model and achieve the goal of reducing model complexity and feature
learning [40]. An implementation that extends the L1-norm regularized STL to
MTL formulations is proposed in [41]. A common simplification of Lasso in MTL
is that the parameter controlling the sparsity is shared among all tasks, assuming
that different tasks share the same sparsity parameter. We will refer to this MTL
method as Lasso-MTL in the sequel.

• The clustered MTL algorithm (CMTL) [32] uses a clustering approach to assign
to the same cluster parameters of tasks that lie nearby in terms of their L2 distance

• The adaptive MTL (AMTL) [33] decomposes the task parameters into a low-rank
structure that captures task relations, and a group-sparse structure that detects out-
lier tasks.
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1.3.4
Exploiting label relations

Figure 1.3 A two-layer stacking architecture instantiated with the LP [42] multi-label
classification algorithm.

For further improving the accuracy of a video concept detection system we can
use a stacking architecture that exploits the concept relations in the last layer of the
stack. Specifically in this Section we present a two-layer stacked model, initially
proposed in [43], which uses appropriate multi-label classification methods able to
capture concept relations. To build concept detectors the two-layer concept detection
system presented in Fig. 1.3, is employed. The first layer builds multiple independent
concept detectors, either using STL or MTL approaches 1.3.3. In the second layer
of the stacking architecture, the fused scores from the first layer are aggregated in
model vectors and refined using a multi-label learning algorithm that incorporates
concept correlations. We choose the Label powerset (LP) [42] transformation that
models correlations among sets of more than two concepts. The typical stacking
methods learn concept relations only by using the meta-level feature space. I.e, the
learning of each concept in the second layer is still independent of the learning of the
rest of the concepts. In contrast, our stacking architecture learns concept relations
in the last layer of the stack both from the outputs of first-layer concept detectors
and by modelling relations directly from the ground-truth annotation of the meta-
level training set. This is achieved by instantiating our architecture with the LP [42]
algorithm that searches for subsets of labels that appear together in the training set
and consider each set as a separate class in order to solve a multi-class problem.
Of course, different multi-label classification algorithms that model different types
of concept relations could also be used such as Calibrated Label Ranking (CLR)
algorithm that model relations between pairs of concepts and ML-kNN algorithm
[44] that models multiple relations in the neighbourhood of each testing instance.
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1.3.5
Experimental study

1.3.5.1 Dataset and Experimental Setup
TRECVID Semantic Indexing (SIN) task [45] is a popular benchmarking activity
that provides a large-scale dataset for video concept detection. The task is as fol-
lows. Given a set of shot boundaries for the SIN test dataset and a pre-defined list of
concepts, participants are asked to return for each concept, the top 2000 video shots
from the test set, ranked according to the highest possibility of depicting the concept.
The presence of each concept is assumed to be binary, i.e., it is either present or ab-
sent in the given standard video shot. If the concept was true for some frame within
the shot, then it was true for the shot. This is a simplification adopted for the benefits
it affords in pooling of results and approximating the basis for calculating recall. A
list of 346 concepts is provided that has been collaboratively annotated by the partic-
ipants and by Quaero annotators. In this study our experiments were performed on
the TRECVID 2013 SIN dataset [45] that provides the following materials:

• a development set that contains roughly 800 hours of Internet archive videos com-
prising more than 500000 shots;

• a test set that contains roughly 200 hours of videos, comprising 112677 shots;
• shot boundaries (for both sets);
• a set of 346 concepts for training;
• elements of ground-truth: some shots were collaboratively annotated.

TRECVID 2013 SIN task was evaluated for 38 semantic concepts by calculat-
ing the Mean Extended Inferred Average Precision (MXinfAP) at depth 2000 [46].
MXinfAP is an approximation of the Mean Average Precision (MAP) that has been
adopted by TRECVID [45] because it is suitable for the partial ground-truth that
accompanies the TRECVID dataset [45].
In section 1.3.5.2 we evaluate the developed methods for each of the three gen-

eral learning areas that aim to improve concept-based video search. I.e., cascades
of classifiers (Section 1.3.2), multi-task learning (Section 1.3.3) and exploiting la-
bel relations (Section 1.3.4). In our experiments we extracted the following fea-
tures: Three binary descriptors (ORB, RGB-ORB and OpponentORB) and six non-
binary descriptors (SIFT, RGB-SIFT and OpponentSIFT; SURF, RGB SURF and
OpponentSURF). All of them were compacted using PCA and were subsequently
aggregated using the VLAD encoding. In addition, we used features based on the
pre-trained CaffeNet-1k, GoogLeNet-1k and 16-layer deep ConvNet [9] networks
trained on 1000 ImageNet [47] categories. We applied each of these networks on
the TRECVID keyframes and we used as a feature i) the output of the second last fc
layer of ConvNet (fc7), which resulted to a 4096-element vector, ii) the output of the
last fc layer of CaffeNet-1k (fc8), which resulted to a 1000-element, iii) the output
of the last fc layer of GoogLeNet-1k (loss3/classifier). We refer to these features as
CONV, CAFFE and GNET in the sequel, respectively. To train our base classifiers
(i.e., LSVMs), for each concept, the TRECVID training set was used.
Firstly,we compared the developed cascade (Section 1.3.2) with five different en-
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semble combination approaches: i) Late-fusion with arithmetic mean [24]. ii) The
ensemble pruning method proposed by [25]. iii) The simple cascade proposed by
[28] with fixed ordering of the stages in terms of classifier accuracy. We refer to
this method as cascade-thresholding. iv) A cascade with fixed ordering of the stages
in terms of classifier accuracy, and the offline dynamic programming algorithm for
threshold assignment proposed by [48]. In contrast to [48] that aims to improve the
overall classification speed, we optimize the overall detection performance of the
cascade in terms of AP. We refer to this method as cascade-dynamic in the sequel. v)
A boosting-based approach (i.e., the multi-modal sequential SVM [49]). We refer to
this method as AdaBoost. For all the methods, except for the Late-fusion that does
not require this, the training set was also used as the validation set. With respect to
the developed method we calculated the AP for each candidate cascade at three dif-
ferent levels (i.e., for k=50,100 and equal to the number of the training samples per
concept) and we averaged the results. Secondly, we assessed the usefulness MTL,
presented in Section 1.3.3, instantiated with different MTL algorithms and compared
it with the typical single-task learning approach. The MALSAR MTL library [41]
was used as the source of the MTL algorithms. Thirdly, we assessed the usefulness
of the stacking architecture, presented in Section 1.3.4. For this we further used the
TRECVID 2012 test set (approx. 200 hours; 145634 shots), which is a subset of the
2013 development set, as a validation set to train our multi-label classification algo-
rithm for the second layer of the stack. Finally, we evaluate jointly all the proposed
methods in a single concept detection system.

1.3.5.2 Experimental results

Table 1.1 Performance (MXinfAP, %) for each of the stage classifiers that we used in the
experiments. For stage classifiers that are made of more than one base classifiers, we
report in parenthesis the MXinfAP for each of these base classifiers.

Stage classifier MXinfAP Base classifiers
ORBx3 17.91 (12.18,13.81,14.12) ORB, RGB-ORB, OpponentORB
SURFx3 18.68 (14.71,15.49,15.89) SURF, OpponentSURF, RGB-SURF
SIFTx3 20.23 (16.55,16.73,16.75) SIFT, OpponentSIFT, RGB-SIFT
CAFFE 19.80 Last fully-connected layer of CaffeNet
GNET 24.36 Last fully-connected layer of GoogLeNet
CONV 25.26 Second last fully-connected layer of ConvNet

Table 1.2 Performance (MXinfAP, %) for different classifier combination approaches.

M1 M2 M3 M4 M5 M6

Stage classifiers
Late-
fusion
[24]

Ensemble
pruning
[25]

Cascade-
thresholding
[28]

Cascade-
dynamic
[48]

AdaBoost
[49]

Cascade-
proposed
(Section 1.3.2)

ORBx3;
SURFx3;CAFFE;
SIFTx3;GNET;
CONV

29.84 29.74 29.79 29.84 29.70 29.96
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Tables 1.1, 1.2, 1.3, 1.4 and 1.2 present the results of our experiments in terms of
MXinfAP [46]. Table 1.1 presents the MXinfAP for the different types of features
that were used by the algorithms of this Section. Each line of this table was used as a
cascade stage for the cascade-based methods (Table 1.2: M3, M4, M6). Specifically,
stages that correspond to SIFT, SURF and ORB consist of three base classifiers (i.e.
for the grayscale descriptor and its two color variants), while the stages of DCNN
features (CAFFE, CONV, GNET) consist of one base classifier each. For the late
fusion methods (Table 1.2: M1, M2) and the boosting-based method (Table 1.2:
M5), the corresponding base classifiers per line of Table 1.1 were firstly combined
by averaging the classifier output scores and then the combined outputs of all lines
were further fused together. We adopted this grouping of similar base classifiers as
this was shown to improve the performance for all the methods in our experiments,
increasing the MXinfAP by ∼ 2%. For M2 we replaced the genetic algorithm with
exhaustive search (i.e. to evaluate all 26 − 1 possible classifier subsets) because this
was more efficient for the examined number of classifiers.
Table 1.2 presents the performance of the developed cascade-based method (Sec-

tion 1.3.2) and compares it with other classifier combination methods. The second
column shows the stage classifiers that were considered, i.e., the evaluated system
utilised six stage classifiers and all twelve types of features. The best results were
reached by the proposed cascade, which outperforms all the other methods reaching
a MXinfAP of 29.96 %. Compared to the ensemble pruning method (M2) the results
show that exploring the best ordering of visual descriptors on a cascade architecture
(M6), instead of just combining subsets of them (M2), can improve the accuracy of
video concept detection. In comparison to the other cascade-based methods (M3,
M4) that utilize fixed stage orderings and different algorithms to assign the stage
thresholds, the proposed cascade (M6) also shows small improvements in MXinfAP.
These can be attributed to the fact that our method simultaneously searches both for
optimal stage ordering and threshold assignment. These MXinfAP improvements,
of the proposed cascade, although small, are accompanied by considerable improve-
ments in computational complexity, as discussed in Section 1.3.5.3.

Table 1.3 MXInfAP (%) for different STL and MTL methods, trained on the features of
Table 1.1. Scores for the same concept were fused in terms of arithmetic mean using
late-fusion.

Single-task learning Multi-task learning
LR LSVM KSVM Lasso-MTL [40] AMTL [33] CMTL [32]

MXInfAP 27.56 29.84 29.29 31.15 30.3 29.51

In table 1.3 we evaluate the usefulness of usingMTL, as presented in Section 1.3.3,
for concept-based video search. We performed comparisons across the following
methods: i) Single-task learning (STL) using a) LR, b) LSVM and c) kernel SVM
with radial kernel (KSVM). ii) MTL using a) Lasso-MTL [40], b) AMTL [33], and c)
CMTL [32]. Single-task learning refers to the typical training of cocnept detectors,
i.e., training independent classifiers per concept. All the features of Table 1.1 were
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used to train either STL orMTL detectors and late-fusion in terms of arithmetic mean
was used to combine the scores from the different detectors for the same concept.
According to table 1.3 the best performance is achieved when the Lasso-MTL[40]
algorithm is used. Lasso-MTL can define task relatedness on the parameters of the
independently trained concept detectors which shows to performs better both from
all the STL approaches and also the compared MTL ones.
Table 1.4 shows the results of the two-layer stacking architecture presented in Sec-

tion 1.3.4 and compares it with the typical single-layer concept detection pipeline.
To train our first layer classifiers we used all the features presented in Table 1.1 and
combined them using the proposed cascade. We also experimented with dimension-
ality reduction of these features prior to serve them as input to LSVMs. Specifically,
the AGSDA method, presented in Section 1.2.2, was used to derive a lower dimen-
sional embedding of the original feature vectors. Then, the features in the resulting
subspace served as input to LSVMs. Consequently, The first layer of the employed
stacking consists from the independent detectors, either trained on the raw features
(Table 1.4 (a)) or trained on theAGSDA-reduced features (Table 1.4 (b)), that are sub-
sequently combined using the proposed cascade evaluated in Table 1.2. The same
detectors were applied on a meta-learning validation set in order to construct model
vectors that were introduced in the second layer. The second layer was instantiated
with the LP [42] algorithm, we refer to our method as P-LP.
P-LP outperforms the independent first layer detectors, reaching a MXinfAP of

25.6%. LP considers each subset of labels (label sets) presented in the training set
as a class of a multi-class problem, which seems to be helpful for the stacking archi-
tecture. In [43] we evaluated many more different multi-label learning algorithms
for our developed two-layer stacking architecture and we compared these instanti-
ations against BCBCF [36], DMF [34], BSBRM [35] and MCF [37] presented in
Section 1.3.4.

Table 1.4 Performance, (MXinfAP (%)), for the typical single-layer concept detection
pipeline and the developed two-layer stacking architecture instantiated with the LP
algorithm. For the developed method we also report CPU times that refers to mean
training (in minutes) for all concepts, and application of the trained second-layer detectors
on one shot of the test set (in milliseconds). Column (a) shows the results for detectors
trained on raw features. Column (b) shows the results for detectors trained on
AGSDA-reduced features. In parenthesis we show the relative improvement w.r.t. the
typical approach.

Dimensionality reduction
(a) N/A (b) AGSDA (c) Mean Exec. Time

Training/Testing
Cascade 29.96 30.03 N/A
Proposed-LP 30.9 (+3.1%) 30.35 (+1.1%) 549.40/24.93

Table 1.5 evaluates the usefulness of sequentially adding each of the three meth-
ods presented above towards improving concept-based video search (i.e., cascades
of classifiers, multi-task learning and exploitation of label relations), in accordance
with the AGSDA dimensionality reduction approach. The typical concept-detection
system that uses STL and late fusion to combine concept detectors trained on dif-
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Table 1.5 MXinfAP for different evaluations of our concept detection approach.

Dataset Late Cascade Cascade+AGSDA Cascade+ Cascade+AGSDA+
fusion-STL AGSDA+MTL MTL+LP

SIN 2015 23.7 23.9 24.98 25.8* 26.03

SIN 2013 29.84 29.96 30.03 32.47* 32.57

ferent features for the same concept is treated as our baseline. Then starting from
a cascade architecture that more cleverly combines the different detectors, we con-
tinue by sequentially adding one more method to further improve concept detection
accuracy. We present results both on the TRECVID SIN 2013 dataset but also on
the TRECVID SIN 2015 dataset that consists of another test set and is evaluated
on a different subset of the 346 available concepts. We observe that the proposed-
cascade performs slightly better in terms of MXinfAP compared to the late fusion
method, achieving 0.8% and 0.4% relative improvement for the SIN 2015 and SIN
2013 dataset, respectively. At the same time it is computationally less expensive dur-
ing classification as we will see in the next section. Dimensionality reduction with
AGSDA leads to more discriminative features which is indicated by an increase of
the MXInfAP from 23.9% to 24.98% and 29.96% to 30.03% for the SIN 2015 and
SIN 2013 dataset, respectively. Using also the MTL-Lasso method in the concept-
detection pipeline, instead of STL techniques, significantly outperforms all the pre-
vious methods. Finally, exploiting label relations results to further improvement. We
conclude that the methods presented in this section, i.e, cascades of detectors, MTL,
two-layer stacking architecture that exploits label relations and dimensionality reduc-
tion using the AGSDA algorithm presented in section 1.2.2, are complementary and
combining all of them in a concept detection system can boost concept-based video
search reaching the best overall MXInfAP of 26.03% and 32.57% for the SIN 2015
and SIN 2013 dataset, respectively. These numbers are among the state of the art
results for these specific datasets and, although seemingly low (since they are much
lower than 100%), a qualitative analysis shows how good results they represent. For
example, considering the concept “chair” that reaches an infAP of 32.84% on the SIN
2013 dataset, we observe in the resulting ranked list of concept-based retrieval results
that among the top-20 retrieved keyframes all of them are positive; among the top-50
retrieved keyframes 46 are positive; and among the top-100 ones 86 of them are pos-
itive. To investigate the statistical significance of the differences between the results
of the various methods/combinations reported in Table 1.5 we used a paired t-test as
suggested by [50]; in Table 1.5, the absence of * suggests statistical significance. We
found that differences between the complete method (Cascade+AGSDA+MTL+LP)
and all the other methods are significant (at 5% significance level), except for the run
that combines Cascade+AGSDA+MTL. Investigating label correlations in a system
that already combines cascades, AGSDA and MTL does not lead to significant im-
provement. However, LP is still a useful method that consistently improves concept-
based video search in both of the considered datasets.
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Table 1.6 Training complexity: (a) Required number of classifier combinations during the
training of different classifier combination approaches. (b) Required number of classifiers
to be retrained.

Required classifier
evaluations

Number of classifiers
to be retrained

M1 Late-fusion [24] - -
M2 Ensemble pruning [25] (2n − 1)M -
M3 Cascade-thresholding

∑n
j=0Mj , Mj ⊆Mj − 1 -

[28]
M4 Cascade-dynamic [48] (n− 2)Q2 -
M5 AdaBoost [49] M(n(n+ 1)/2) n(n+ 1)/2

M6 Cascade-proposed Q(n(n+ 1)/2) -
(Section 1.3.2)

Table 1.7 Relative amount of classifier evaluations (%) for different classifier combination
approaches during the classification phase.

M1 M2 M3 M4 M5 M6

Stage classifiers
Late-
fusion
[24]

Ensemble
pruning
[25]

Cascade-
thresholding
[28]

Cascade-
dynamic
[48]

AdaBoost
[49]

Cascade-
proposed
(Section 1.3.2)

ORBx3;
SURFx3;CAFFE
SIFTx3;CONV;
GNET

100 66.67 74.94 92.38 100 62.24

1.3.5.3 Computational Complexity
We continue the analysis of our results with respect to the computational complexity
of the different methods compared in Table 1.2 during the training and classifica-
tion phase. Table 1.6 summarizes the computational complexity during the training
phase. Let us assume that n stage classifiers need to be learned,M training examples
are available for training the different methods andQ is the quantization value, where
Q ≤M . The late-fusion approach [24], which builds n models (one for each set of
features), is the simplest one. Cascade-thresholding [28] follows, which evaluates n
cascade stages in order to calculate the appropriate thresholds per stage. Cascade-
dynamic [48] works in a similar fashion as the Cascade-thresholding, requiring a little
higher number of evaluations. Cascade-proposed is the next least complex algorithm,
requiringQ(n(n+1)/2) classifier evaluations. Ensemble pruning [25] follows, re-
quiring the evaluation of 2n − 1 classifier combinations. Finally, only AdaBoost
requires the retraining of different classifiers, which depends on the complexity of
the base classifier, in our case the SVM, making this method the computationally
most expensive.
Table 1.7 presents the computational complexity of the proposed cascade-based

method for the classification phase, and compares it with other classifier combina-
tion methods. We observe that the proposed algorithm reaches good accuracy while
at the same time is less computationally expensive than the other methods. Specif-
ically, the best overall accuracy achieved 37.8% and 32.6% relative decrease in the
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amount of classifier evaluations compared to the late fusion alternative (Table 1.7:
M1) and the cascade-dynamic alternative (Table 1.7: M4), respectively, which are
the two most accurate methods after the proposed-cascade. Finally, we should note
that the training of the proposed cascade is computationally more expensive than the
training of the late fusion and the cascade-dynamic methods. However, considering
that training is performed offline only once, but classification will be repeated many
times for any new input video, the latter is more important and this makes the re-
duction in the amount of classifier evaluations that is observed in Table 1.7 for the
proposed cascade very important.
With respect now to the two-layer stacking architecture, according to the last col-

umn of table 1.4, one could argue that the proposed architecture requires considerably
a lot of time. However, we should note here that extracting one model vector from
one video shot, using the first-layer detectors for 346 concepts requires approximate-
ly 3.2 minutes in our experiments, which is about three orders of magnitude slower
than the proposed second-layer methods. As a result of the inevitable computational
complexity of the first layer of the stack, the execution time that P-LP requires can
be considered negligible. This is in sharp contrast to building a multi-label classifier
directly from the low-level visual features of video shots, where the high require-
ments for memory space and computation time that the latter methods exhibit make
their application to our dataset practically infeasible. Specifically, the computational
complexity LP when used in a single-layer architecture depends on the complexity
of the base classifier, in our case the LSVMs, and on the parameters of the learning
problem (e.g., number of training examples, feature video dimensionality). LPwould
build a multi-class model, with the number of classes being equal to the number of
distinct label sets in the training set; this is in order of N2 in our dataset. Taking
into consideration the dimensionality of the utilised feature vectors, using any such
multi-label learning method in a single-layer architecture would require several or-
ders of magnitudemore computations compared to the BR alternative that we employ
as the first layer in our presented stacking architecture. We conclude that the major
obstacle of using multi-label classification algorithms in a one-layer architecture is
the computation time requirements, and this finding further stresses the merit of us-
ing a multi-label stacking architecture. Finally, the training of the MTL algorithms,
compared in Table 1.3, is computationally more expensive than the training of linear
STL alternatives (e.g., LR, LSVM), but less expensive than the kernel SVM. Consid-
ering that training is performed offline only once, but classification will be repeated
many times for any new input video, the latter is more important and MTL methods
present the same classification time with the linear STL alternatives.



20

1.4
Methods for event detection and event-based video search

1.4.1
Related work

There are several challenges associated with building an effective detector of video
events. One of them is finding a video representation that reduces the gap between the
traditional low-level audio-visual features that can be extracted from the video and the
semantic-level actors and elementary actions that are by the definition the constituent
parts of an event. In this direction, several works have shown the importance of
using simpler visual concepts as a stepping stone for detecting complex events (e.g.
[51, 19]). Another major challenge is to learn an association between the chosen
video representation and the event or events of interest; for this, supervised machine
learning methods are typically employed, together with suitably annotated training
video corpora. While developing efficient and effective machine learning algorithms
is a challenge in its own right, finding a sufficient number of videos that depict the
event so as to use them as positive training samples for training any machine learning
method is also not an easy feat. In fact, video event detection is evenmore challenging
when the available positive training samples are limited, or even non-existent; that
is, when one needs to train an event detector using only textual information that a
human can provide about the event of interest.
Zero-example event detection is an active topic with many literature works propos-

ing ways to build event detectors without any training samples using solely the event’s
textual description. Research towards this problem was mainly triggered a few years
ago when the TRECVID benchmark activity introduced the 0Ex task as a subtask
of the Media Event Detection (MED) task [52]. A similar to zero-example event
detection problem, known as zero-shot learning (ZSL), also appears in the image
recognition task. A new unseen category, for which training data is not available,
is asked to be detected in images [53, 54, 55]. It should be noted that although the
two problems have many common properties, zero-example event detection is a more
challenging problem as it focuses on more complex queries, where multiple actions,
objects and persons interact with each other compared to the simple object or ani-
mal classes that appear in ZSL [56]. The problem of zero-example event detection is
typically addressed by transforming both the event textual description and the avail-
able videos into concept-based representations. Specifically, a large pool of concept
detectors is used to annotate the videos with semantic concepts, the resulted vec-
tors, a.k.a. model vectors, contain the scores indicating the degree that each of the
concepts is related to the video. The query description is analysed and the most re-
lated concepts from the pool are selected. Finally, the distance between the model
vectors and the event concept vectors is calculated and the most related videos are
retrieved [57, 58, 59, 60].
In this work we present methods that solve the problem of event detection and

event-based video search in two different cases. Firstly, when ground-truth annotated
video examples are provided. In this case, we present how event detectors can be
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learned using the video positive examples which are available separately for each
event (Section 1.4.2). Secondly, when solely the textual description of event is given
without any positive video examples. In this case, we present how event detectors can
be learned using solely textual information for the examined events (Section 1.4.3).

1.4.2
Learning from positive examples

The target of an event detection system is to learn a decision function f : F → {±1},
where F denotes the space where the video representations lie in. f assigns a test
video to the event class (labeled with the integer 1) or to the “rest of the world” class
(labeled with the integer −1). For each event class, this is typically achieved using
a training set X = {(xi, yi) : xi ∈ F , yi ∈ {0,±1}, i = 1, . . . , N}, where xi
denotes the representation of the i-th training video and yi denotes the corresponding
ground truth label. Labels −1, +1 correspond respectively to negative, positive
training examples.
In order to train an event detector from positive video examples, firstly, we utilized

an extended and speeded-up version of our Kernel Subclass Discriminant Analysis
[61, 62] for dimensionality reduction and after that we used a fast linear SVM (AGS-
DA+LSVM) in order to train an event detector.
Specifically, two types of visual information have been used for training the event

detectors: motion features and DCNN-based features. We briefly describe the dif-
ferent visual modalities in the following:

• Each video is decoded into a set of keyframes at fixed temporal intervals (approx-
imately 2 keyframes per second). We annotated the video frames based on 12988
ImageNet [47] concepts, 345 TRECVID SIN [63] concepts, 500 event-related con-
cepts [64], 487 sport-related concepts [65] and 205 place-related concepts [66].
To obtain scores regarding the 12988 ImageNet concepts we used the pre-trained
GoogLeNet provided by [12]. We also experimented with a subset of the 12988
concepts; in order to do that we self-trained a GoogLeNet network [67] on 5055
ImageNet concepts (gnet5k). To obtain the scores regarding the 345 TRECVID
SIN concepts and the 487 sport-related concepts we fine-tuned (FT) the gnet5k
network on the TRECVID AVS development dataset and on the YouTube Sports-
1M dataset [65], respectively. We also used the EventNet [64] that consists of 500
events and the Places205-GoogLeNet, which was trained on 205 scene categories
of Places Database [66]. All the above networks were also used as feature gen-
erators. I.e., the output of one or more hidden layers was used as a global frame
representation.

• For encoding motion information we use improved dense trajectories (DT) [68].
Specifically, we employ the following four low-level feature descriptors: His-
togram of Oriented Gradients (HOG), Histogram of Optical Flow (HOF) and Mo-
tion Boundary Histograms in both x (MBHx) and y (MBHy) directions. Hellinger
kernel normalization is applied to the resulting feature vectors, followed by Fisher
Vector (FV) encoding with 256 GMM codewords. Subsequently, the four feature
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Figure 1.4 The event kit text for the event class “Attempting a bike trick”

vectors are concatenated to yield the final motion feature descriptor for each video
in R101376.

The final feature vector representing a video is formed by concatenating the feature
vectors derived for each visual modality (motion, model vectors), yielding a new
feature vector in R153781.

1.4.3
Learning solely from textual descriptors - Zero-example learning

In this section we present a method we developed in [69] that builds a fully automatic
zero-example event detection system as presented in Fig. 1.5. The developed system
takes as input the event kit, i.e., a textual description of the event query, and retrieves
the most related videos from the available event collection. We assume that the only
knowledge available, with respect to each event class, is a textual description of it,
which consists of a title, a free-form text, and a list of possible visual and audio cues,
as in [70, 71]. Fig. 1.4 shows an example of such a textual description for the event
class Attempting a bike trick. For linking this textual information with the visual
content of the videos that we want to examine, similarly to [72, 73], we a) use a pool
ofNc concepts along with their titles and in some cases a limited number of subtitles
(e.g. concept bicycle-built-for-two has the subtitles tandem bicycle and tandem), and
b) a pre-trained detector (based on DCNN output scores) for each concept.
Given the textual description of an event, our system first identifies N words or

phrases that most closely relate to the event; this word-set is called Event Language
Model (ELM). The ELM is based on the automatic extraction of word terms from the
visual and audio cues of the event kit along with the title of the event. In parallel, for
each of the X concepts of our concept pool, our framework similarly identifiesM
words or phrases: the Concept LanguageModel (CLM) of the corresponding concept
using the top-10 articles in Wikipedia and transforming this textual information in a
BoW representation.
Subsequently, for each word in ELM and each word in each one of CLMs we cal-

culate the Explicit Semantic Analysis (ESA) similarity [74] between them. For each
CLM, the resultingN ×M distance matrix expresses the relation between the given
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Figure 1.5 The proposed pipeline for zero-example event detection.

event and the corresponding concept. In order to compute a single score expressing
this relation, we apply to this matrix the Hausdorff distance. Consequently, a score is
computed for each pair of ELM and CLM. TheNc considered concepts are ordered
according to these scores (in descending order) and the K-top concepts along with
their scores constitute our event detector.
In contrast to [60] and [59], where the number of selected concepts is fixed across

the different events and motivated by statistical methods such as PCA [75], where a
fraction of components are enough to efficiently or even better describe the data, we
propose a statistical strategy that decides on the appropriate number of concepts k,
where k ≤ k′, that should be kept for an event query. First, we check if the event title
is semantically close to any of the available concepts from the concept pool. If so,
these concepts are used as the event detector. If this is not the case, our strategy orders
the vector of concepts scoresd′ in descending order, constructs an exponential curve,
and then selects the first k concepts so that the corresponding area under the curve
is at theX% of the total area under the curve. This procedure, consequently returns
different number of selected concepts for different target events. For example for the
event “Attempting ordering the a bike trick” the selected concepts are the following
four: “ride a dirt bike”, “mountain biking”, “put on a bicycle chain”, “ride a bicycle”,
while for the event “Cleaning an appliance” only the concept “clean appliance” is
selected. The final event detector is a k-element vector that contains the relatedness
scores of the selected concepts.
In parallel, each video is decoded into as set of keyframes at fixed temporal inter-

vals. Then, a set of pre-trained concept-based DCNNs are applied to every keyframe
and each keyframe is represented by the direct output of those networks. Finally, a
video model vector is computed by averaging (in terms of arithmetic mean) the cor-
responding keyframe-level representations. Each element of a model vector indicates
the degree that each of the predefined concepts appears in the video. The distance
between an event detector and each of the video-level model vectors is calculated,
and the h videos with the smallest distance are retrieved. As distance measure we
choose the histogram intersection, which calculates the similarity of two discretized
probability distributions and is defined as follows:
K∩(a, b) =

∑k
i=1min(ai, bi).
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E021 - Attempting a bike trick E031 - Beekeeping
E022 - Cleaning an appliance E032 - Wedding shower
E023 - Dog show E033 - Non-motorized vehicle repair
E024 - Giving directions to a location E034 - Fixing musical instrument
E025 - Marriage proposal E035 - Horse riding competition
E026 - Renovating a home E036 - Felling a tree
E027 - Rock climbing E037 - Parking a vehicle
E028 - Town hall meeting E038 - Playing fetch
E029 - Winning a race without a vehicle E039 - Tailgating
E030 - Working on a metal crafts project E040 - Tuning a musical instrument

Table 1.8 MED 2016 Pre-Specified (PS) events.

1.4.4
Experimental study

1.4.4.1 Dataset and Experimental Setup
Multimedia Event Detection (MED)[76] task is part of TRECVID evaluation which
is a popular benchmarking activity. The goal of MED task is to support the creation
of event detection and retrieval technologies that will permit users to define their own
complex events and to quickly and accurately search large collections of multimedia
clips. For this reason MED provides large-scale datasets for training and evaluation
purposes as well as a set of events which consists of an event name, definition, ex-
plication (textual exposition of the terms and concepts), evidential descriptions, and
illustrative video exemplars.
For training purposes of learning form positive examples method we used the PS-

Training video sets consisting of 2000 (80 hours) positive (or near-miss) videos as
positive exemplars, and the Event-BG video set containing 5000 (200 hours) of back-
ground videos as negative ones.
To evaluate both systems (i.e. learning form positive examples and zero-example

learning) a common video dataset was used. We processed the MED16–EvalSub
set consisting of 32000 videos (960 hours). We evaluate all the methods on the 20
MED2016 [76] Pre-Specified events (E021-E040) for which event kits are provided.
We evaluate all the methods in terms of the Mean Average Precision (MAP) and
Mean Inferred Average Precision (mInfAP).

1.4.4.2 Experimental Results: Learning from positive examples
In this section, we validate the performance of the presented system for learning
video event detectors from positive samples 1.4.2. We simulate two different case
scenarios. In the first scenario only few (10) positive video samples per event are
available for training while in the second one, an abundant of training video samples
are available (100 positive videos) for each individual event. Table 1.9 illustrates how
the performance of our method is affected when different amount of video samples
is used.
Undoubtedly the plethora of positive video samples, leads to significant perfor-

mance improvement,i.e. the relative improvement is 45.3% in terms of MAP and
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Table 1.9 Learning from positive examples results

MAP(%) mInfAP@200(%)

10 positive videos 31.8 34.2
100 positive videos 46.2 47.5

38% in terms of mInfAP@200%.

1.4.4.3 Experimental Results: Zero-example learning
In this section we evaluate the developed method for event-based video search in
the case that solely the event’s textual description is given (Section 1.4.3. For our
zero-example learning experiments we utilize 2 different concept pools as well as an
extension of the pipeline with an extra pseudo-relevance feedback step with online
training in which the top retrieved videos are used as positive video samples and the
AGSDA+LSVM method, as described in 1.4.2 section, is used to train new event
detectors.

• DCNN13K: In our first configuration we use the annotation from 2 different DC-
NNs: i) The pre-trained GoogLeNet provided by [67] trained on 12988 ImageNet
concepts [47] and ii) the EventNet [64] that consists of 500 events.

• DCNN14K: In this configuration, we use the annotation from 5 different DC-
NNs: i) The pre-trained GoogLeNet provided by [67] trained on 12988 ImageNet
concepts [47], ii) the GoogLeNet [12] self-trained on 5055 ImageNet concepts
(gnet5k) and subsequently fine-tuned for 345 TRECVID SIN [63] concepts, iii)
the gnet5k network fine-tuned for 487 sport-related [65] concepts, iv) the Event-
Net [64] that consists of 500 events and v) the Places205-GoogLeNet, trained on
205 scene categories [66].

• Train: In this configuration an online training stage are utilized using the top-10
retrieved videos from the first configuration as positive samples, and the learning
procedure of 1.4.2 section.

Table 1.10 illustrates how the performance of the above three different approaches
for zero-example learning.

Table 1.10 Zero-example learning results

MAP(%) mInfAP@200(%)

DCNN13K 14.6 12.2
DCNN14K 14.5 11.9
Train 16.2 14.2

It is clear that adding the pseudo-relevance feedback step by using the top re-
trieved videos as positive samples has a significant impact to our performance
(the relative improvement is 10.96% in terms of MAP and 16.39% in terms of
mInfAP@200(%)).
However, the arbitrary addition of heterogeneous different concept pools leads to a

small performance decrease due to noisy information that those concept pools were
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add to our system (the Percentage relative reduction in terms of mInfAP@200(%) is
−2.5%).
Similarly to the concept detection case, a qualitative analysis shows that the event-

based video search works satisfactorily. For example, considering the event “Horse
riding competition” that reaches an InfAP@200 of 13.9% and AP of 16.4% on the
MED16–EvalSub dataset, we observe that among the top-20 retrieved videos 16 of
them are positive, and similarly among the top-50 retrieved ones the 32 are positive.

1.5
Conclusions

In this chapter we surveyed the literature and presented in more detail some of the
methods that we have developed for concept-based and event-based video search.
In terms of concept-based video search we presented methods from three machine-
learning areas (cascades of classifiers, multi-task learning and exploitation of label
relations), that can improve the accuracy of concept-based video search and/or re-
duce computational complexity, in comparison to similar methods, thus enabling
effective real-time video search. Our experiments on two large-scale datasets, i.e.,
TRECVID SIN 2013 and TRECVID SIN 2015, show the effectiveness and scalabil-
ity of the presented methods, and especially how combining cascades of detectors,
MTL, a two-layer stacking architecture and dimensionality reduction with AGSDA
in a concept detection system can boost concept-based video search. Concerning
the event-based video search, we presented methods for learning when ground-truth
video data are available for a given event, as well as when solely a textual description
of event is given without any positive video examples. Our experiments on a large-
scale video event dataset (MED16–EvalSub) showed that the exploitation of a larger
number of video samples generally leads to better performance; but also in the more
realistic scenario of zero-example event detection problem, we presented a state of
the art method that achieves very promising results.

1.6
Acknowledgments

This work was supported by the EU’s Horizon 2020 research and innovation pro-
gramme under grant agreements H2020-693092 MOVING, H2020-687786 InVID
and H2020-732665 EMMA.

References



27

1 Snoek, C.G.M. and Worring, M. (2009)
Concept-Based Video Retrieval.
Foundations and Trends in Information
Retrieval, 2 (4), 215–322.

2 Sidiropoulos, P., Mezaris, V., and
Kompatsiaris, I. (2014) Video tomographs
and a base detector selection strategy for
improving large-scale video concept
detection. IEEE Trans. on Circuits and
Systems for Video Technology, 24 (7),
1251–1264.

3 Rublee, E., Rabaud, V., Konolige, K., and
Bradski, G. (2011) ORB: An efficient
alternative to SIFT or SURF, in IEEE Int.
Conf. on Computer Vision, pp. 2564–2571.

4 Lowe, D.G. (2004) Distinctive Image
Features from Scale-Invariant Keypoints.
Int. Journal of Computer Vision, 60 (2),
91–110.

5 Bay, H., Tuytelaars, T., and Van Gool, L.
(2006) Surf: Speeded up robust features, in
ECCV, LNCS, vol. 3951, Springer, pp.
404–417.

6 Van de Sande, K.E.A., Gevers, T., and
Snoek, C.G.M. (2010) Evaluating color
descriptors for object and scene
recognition. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 32 (9),
1582–1596.

7 Csurka, G. and Perronnin, F. (2011) Fisher
vectors: Beyond bag-of-visual-words image
representations, in Computer Vision,
Imaging and Computer Graphics. Theory
and Applications, Communications in
Computer and Information Science, vol.
229 (eds P. Richard and J. Braz), Springer
Berlin, pp. 28–42.

8 Jegou, H. and et al. (2010) Aggregating
local descriptors into a compact image
representation, in IEEE on Computer
Vision and Pattern Recognition (CVRP
2010), San Francisco, CA, pp. 3304–3311.

9 Simonyan, K. and Zisserman, A. (2014)
Very deep convolutional networks for
large-scale image recognition. arXiv
technical report.

10 Jia, Y., Shelhamer, E., Donahue, J., and
et al. (2014) Caffe: Convolutional
architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093.

11 Krizhevsky, A., Ilya, S., and Hinton, G.
(2012) Imagenet classification with deep
convolutional neural networks, in Advances

in Neural Information Processing Systems
(NIPS 2012), Curran Associates, Inc., pp.
1097–1105.

12 Szegedy, C. and et al. (2015) Going deeper
with convolutions, in CVPR 2015. URL
http:
//arxiv.org/abs/1409.4842.

13 Safadi, B., Derbas, N., Hamadi, A.,
Budnik, M., Mulhem, P., and Qu, G. (2014)
LIG at TRECVid 2014 : Semantic Indexing
tion of the semantic indexing, in TRECVID
2014 Workshop, Gaithersburg, MD, USA.

14 Snoek, C.G.M., Sande, K.E.A.V.D.,
Fontijne, D., Cappallo, S., Gemert, J.V.,
and Habibian, A. (2014) MediaMill at
TRECVID 2014 : Searching Concepts ,
Objects , Instances and Events in Video, in
TRECVID 2014 Workshop, Gaithersburg,
MD, USA.

15 Yosinski, J., Clune, J., Bengio, Y., and
Lipson, H. (2014) How transferable are
features in deep neural networks? CoRR,
abs/1411.1792.

16 Pittaras, N., Markatopoulou, F., Mezaris,
V., and et al. (2017) Comparison of
Fine-Tuning and Extension Strategies for
Deep Convolutional Neural Networks,
Springer, Cham, pp. 102–114.

17 Gkalelis, N., Mezaris, V., Kompatsiaris, I.,
and Stathaki, T. (2013) Mixture subclass
discriminant analysis link to restricted
gaussian model and other generalizations.
IEEE transactions on neural networks and
learning systems, 24 (1), 8–21.

18 Agullo, E., Augonnet, C., Dongarra, J., and
et. al (2010), Faster, cheaper, better–a
hybridization methodology to develop
linear algebra software for gpus.

19 Gkalelis, N. and Mezaris, V. (2014) Video
event detection using generalized subclass
discriminant analysis and linear support
vector machines, in Proceedings of
international conference on multimedia
retrieval, ACM, p. 25.

20 Schölkopf, B. and Smola, A.J. (2002)
Learning with kernels: support vector
machines, regularization, optimization, and
beyond, MIT press.

21 Athanasopoulos, A., Dimou, A., Mezaris,
V., and Kompatsiaris, I. (2011) Gpu
acceleration for support vector machines, in
WIAMIS 2011: 12th International
Workshop on Image Analysis for

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842


28

Multimedia Interactive Services, Delft, The
Netherlands, April 13-15, 2011, TU Delft;
EWI; MM; PRB.

22 Arestis-Chartampilas, S., Gkalelis, N., and
Mezaris, V. (2015) Gpu accelerated
generalised subclass discriminant analysis
for event and concept detection in video, in
Proceedings of the 23rd ACM international
conference on Multimedia, ACM, pp.
1219–1222.

23 Arestis-Chartampilas, S., Gkalelis, N., and
Mezaris, V. (2016) Aksda-msvm: A
gpu-accelerated multiclass learning
framework for multimedia, in Proceedings
of the 2016 ACM on Multimedia
Conference, ACM, pp. 461–465.

24 Strat, S.T., Benoit, A., Bredin, H., Quenot,
G., and Lambert, P. (2012) Hierarchical
late fusion for concept detection in videos,
in European Conference on Computer
Vision (ECCV) 2012. Workshops and
Demonstrations, Lecture Notes in
Computer Science, vol. 7585, Springer, pp.
335–344.

25 Sidiropoulos, P., Mezaris, V., and
Kompatsiaris, I. (2014) Video tomographs
and a base detector selection strategy for
improving large-scale video concept
detection. IEEE Trans. on Circuits and
Systems for Video Technology, 24 (7),
1251–1264,
doi:10.1109/TCSVT.2014.2302554.

26 Nguyen, C., Vu Le, H., and Tokuyama, T.
(2011) Cascade of multi-level
multi-instance classifiers for image
annotation, in KDIR’11, pp. 14–23.

27 Cheng, W.C. and Jhan, D.M. (2011) A
cascade classifier using adaboost algorithm
and support vector machine for pedestrian
detection, in IEEE Int. Conf. on SMC, pp.
1430–1435,
doi:10.1109/ICSMC.2011.6083870.

28 Markatopoulou, F., Mezaris, V., and Patras,
I. (2015) Cascade of classifiers based on
binary, non-binary and deep convolutional
network descriptors for video concept
detection, in 2015 IEEE International
Conference on Image Processing (ICIP),
pp. 1786–1790,
doi:10.1109/ICIP.2015.7351108.

29 Mousavi, H., Srinivas, U., Monga, V., Suo,
Y., and et al. (2014) Multi-task image
classification via collaborative, hierarchical

spike-and-slab priors, in Proc. of the IEEE
Int. Conf. on Image Processing (ICIP
2014), pp. 4236–4240.

30 Daumé, III, H. (2009) Bayesian multitask
learning with latent hierarchies, in Proc. of
the 25th Conf. on Uncertainty in Artificial
Intelligence (UAI ’09), AUAI Press,
Arlington, Virginia, US, pp. 135–142.

31 Argyriou, A., Evgeniou, T., and Pontil, M.
(2008) Convex multi-task feature learning.
Machine Learning, 73 (3), 243–272.

32 Zhou, J., Chen, J., and Ye, J. (2011)
Clustered multi-task learning via
alternating structure optimization.
Advances in Neural Information Processing
Systems (NIPS 2011).

33 Sun, G., Chen, Y., Liu, X., and Wu, E.
(2015) Adaptive multi-task learning for
fine-grained categorization, in Proc. of the
IEEE Int. Conf. on Image Processing (ICIP
2015), pp. 996–1000.

34 Smith, J., Naphade, M., and Natsev, A.
(2003) Multimedia semantic indexing using
model vectors, in 2003 Int. Conf. on
Multimedia and Expo. (ICME), IEEE, NY,
pp. 445–448,
doi:10.1109/ICME.2003.1221649.

35 Tsoumakas, G., Dimou, A., Spyromitros,
E., and et al. (2009) Correlation-Based
Pruning of Stacked Binary Relevance
Models for Multi-Label learning, in
Proceedings of the 1st international
workshop on learning from multi-label
data, pp. 101–116.

36 Jiang, W., Chang, S.F., and Loui, A.C.
(2006) Active context-based concept fusion
with partial user labels, in IEEE Int. Conf.
on Image Processing, IEEE, NY.

37 Weng, M.F. and Chuang, Y.Y. (2012)
Cross-Domain Multicue Fusion for
Concept-Based Video Indexing. IEEE
Trans. on Pattern Analysis and Machine
Intelligence, 34 (10), 1927–1941.

38 Qi, G.J. and et al. (2007) Correlative
multi-label video annotation, in Proc. of the
15th Int. Conf. on Multimedia, ACM, NY,
pp. 17–26.

39 Markatopoulou, F., Mezaris, V., and Patras,
I. (2016) Ordering of Visual Descriptors in
a Classifier Cascade Towards Improved
Video Concept Detection, Springer
International Publishing, pp. 874–885.

40 Tibshirani, R. (1996) Regression shrinkage



29

and selection via the lasso. Journal of the
Royal Statistical Society, Series B,
267–288.

41 Zhou, J., Chen, J., and Ye, J. (2011)
MALSAR: Multi-tAsk Learning via
StructurAl Regularization, Arizona State
University.

42 Tsoumakas, G., Katakis, I., and Vlahavas, I.
(2010) Mining multi-label data, in Data
Mining and Knowledge Discovery
Handbook, Springer, Berlin, pp. 667–686.

43 Markatopoulou, F., Mezaris, V., Pittaras,
N., and Patras, I. (2015) Local features and
a two-layer stacking architecture for
semantic concept detection in video. IEEE
Transactions on Emerging Topics in
Computing, 3 (2), 193–204,
doi:10.1109/TETC.2015.2418714.

44 Zhang, M.L. and Zhou, Z.H. (2007)
ML-KNN: A lazy learning approach to
multi-label learning. Pattern Recognition,
40 (7), 2038–2048,
doi:10.1016/j.patcog.2006.12.019.

45 Over, P., Awad, G., Fiscus, J., Sanders, G.,
and Shaw, B. (2013) Trecvid 2013 – an
overview of the goals, tasks, data,
evaluation mechanisms and metrics, in
Proc. of TRECVID 2013, NIST, USA.

46 Yilmaz, E., Kanoulas, E., and Aslam, J.A.
(2008) A simple and efficient sampling
method for estimating ap and ndcg, in 31st
ACM SIGIR Int. Conf. on Research and
Development in Information Retrieval,
ACM, USA, pp. 603–610.

47 Russakovsky, O., Deng, J., Su, H., and et al.
(2015) ImageNet Large Scale Visual
Recognition Challenge. International
Journal of Computer Vision (IJCV),
115 (3), 211–252,
doi:10.1007/s11263-015-0816-y.

48 Chellapilla, K., Shilman, M., and Simard,
P. (2006) Combining multiple classifiers for
faster optical character recognition, in 7th
Int. Conf. on Document Analysis Systems,
Springer, Berlin, pp. 358–367.

49 Bao, L., Yu, S.I., and Hauptmann, A.
(2011) Cmu-informedia @ trecvid 2011
semantic indexing, in TRECVID 2011
Workshop, Gaithersburg,MD, USA.

50 Blanken, H.M., de Vries, A.P., Blok, H.E.,
and Feng, L. (2005) Multimedia Retrieval,
Springer Berlin Heidelberg, NY.

51 Gkalelis, N., Mezaris, V., Dimopoulos, M.,

Kompatsiaris, I., and Stathaki, T. (2013)
Video event detection using a subclass
recoding error-correcting output codes
framework, in Multimedia and Expo
(ICME), IEEE Int. Conf. on, IEEE, pp. 1–6.

52 Over, P., Fiscus, J., Sanders, G., and et al.
(2015) Trecvid 2015 – an overview of the
goals, tasks, data, evaluation mechanisms
and metrics, in TRECVID 2015 Workshop,
NIST, USA.

53 Elhoseiny, M., Saleh, B., and Elgammal, A.
(2013) Write a classifier: Zero-shot
learning using purely textual descriptions,
in Computer Vision (ICCV), IEEE Int.
Conf. on, IEEE, pp. 2584–2591.

54 Fu, Z., Xiang, T., Kodirov, E., and Gong, S.
(2015) Zero-shot object recognition by
semantic manifold distance, in Proceedings
of the IEEE Conference on Computer
Vision and Pattern Recognition, pp.
2635–2644.

55 Norouzi, M., Mikolov, T., Bengio, S., and
et al. (2013) Zero-shot learning by convex
combination of semantic embeddings.
arXiv preprint arXiv:1312.5650.

56 Jiang, Y.G., Bhattacharya, S., Chang, S.F.,
and Shah, M. (2012) High-level event
recognition in unconstrained videos.
International Journal of Multimedia
Information Retrieval, pp. 1–29.

57 Habibian, A., Mensink, T., and Snoek, C.G.
(2014) Videostory: A new multimedia
embedding for few-example recognition
and translation of events, in Proc. of the
ACM Int. Conf. on Multimedia, ACM, pp.
17–26.

58 Elhoseiny, M., Liu, J., Cheng, H., Sawhney,
H., and Elgammal, A. (2015) Zero-shot
event detection by multimodal
distributional semantic embedding of
videos. arXiv preprint arXiv:1512.00818.

59 Lu, Y.J., Zhang, H., de Boer, M., and Ngo,
C.W. (2016) Event detection with zero
example: select the right and suppress the
wrong concepts, in Proceedings of the 2016
ACM on International Conference on
Multimedia Retrieval, ACM, pp. 127–134.

60 Tzelepis, C., Galanopoulos, D., Mezaris,
V., and Patras, I. (2016) Learning to detect
video events from zero or very few video
examples. Image and vision Computing, 53,
35–44.

61 Gkalelis, N., Mezaris, V., Kompatsiaris, I.,



30

and Stathaki, T. (2013) Mixture subclass
discriminant analysis link to restricted
Gaussian model and other generalizations.
IEEE Trans. Neural Netw. Learn. Syst.,
24 (1), 8–21.

62 Gkalelis, N. and Mezaris, V. (2014) Video
event detection using generalized subclass
discriminant analysis and linear support
vector machines, in International
Conference on Multimedia Retrieval, ICMR
’14, Glasgow, United Kingdom - April 01 -
04, 2014, p. 25.

63 Smeaton, A.F., Over, P., and Kraaij, W.
(2009) High-Level Feature Detection from
Video in TRECVid: a 5-Year
Retrospective of Achievements, in
Multimedia Content Analysis, Theory and
Applications (ed. A. Divakaran), Springer
Verlag, Berlin, pp. 151–174.

64 Ye, G., Li, Y., Xu, H., Liu, D., and Chang,
S.F. (2015) Eventnet: A large scale
structured concept library for complex
event detection in video, in ACM MM.

65 Karpathy, A., Toderici, G., Shetty, S., and
et al. (2014) Large-scale video
classification with convolutional neural
networks, in CVPR.

66 Zhou, B., Lapedriza, A., Xiao, J., and et al.
(2014) Learning deep features for scene
recognition using places database, in
Advances in neural information processing
systems, pp. 487–495.

67 Mettes, P., Koelma, D., and Snoek, C.
(2016) The imagenet shuffle: Reorganized
pre-training for video event detection.
arXiv preprint arXiv:1602.07119.

68 Wang, H. and Schmid, C. (2013) Action
recognition with improved trajectories, in
IEEE International Conference on
Computer Vision, Sydney, Australia.

69 Galanopoulos, D., Markatopoulou, F.,
Mezaris, V., and Patras, I. (2017) Concept
language models and event-based concept
number selection for zero-example event
detection, in Proceedings of the 2017 ACM
on International Conference on Multimedia
Retrieval, ACM.

70 Younessian, E., Mitamura, T., and
Hauptmann, A. (2012) Multimodal
knowledge-based analysis in multimedia
event detection, in Proc. of the 2nd ACM
Int. Conf. on Multimedia Retrieval, ACM,
pp. 51:1–51:8.

71 Jiang, L., Mitamura, T., Yu, S.I., and
Hauptmann, A.G. (2014) Zero-example
event search using multimodal pseudo
relevance feedback, in Proceedings of
International Conference on Multimedia
Retrieval, ACM, p. 297.

72 Wu, S., Bondugula, S., Luisier, F., Zhuang,
X., and Natarajan, P. (2014) Zero-shot
event detection using multi-modal fusion of
weakly supervised concepts, in Computer
Vision and Pattern Recognition (CVPR),
IEEE Conf. on, IEEE, pp. 2665–2672.

73 Yu, S.I., Jiang, L., Mao, Z., Chang, X., and
et al. (2014) Informedia at TRECVID 2014
MED and MER, in NIST TRECVID Video
Retrieval Evaluation Workshop.

74 Gabrilovich, E. and Markovitch, S. (2007)
Computing semantic relatedness using
wikipedia-based explicit semantic analysis.,
in IJCAI, vol. 7, vol. 7, pp. 1606–1611.

75 Jolliffe, I. (2002) Principal component
analysis, Wiley Online Library.

76 Awad, G., Fiscus, J., Michel, M., and et al.
(2016) Trecvid 2016: Evaluating video
search, video event detection, localization,
and hyperlinking, in Proceedings of
TRECVID, vol. 2016, vol. 2016.


	Concept-Based and Event-Based Video Search in Large Video Collections
	Foteini Markatopoulou, Damianos Galanopoulos, Christos Tzelepis, Vasileios Mezaris, Ioannis Patras
	Introduction
	Video pre-processing and machine learning essentials
	Video representation
	Dimensionality reduction

	Methodology for concept detection and concept-based video search
	Related work
	Cascades for combining different video representations
	Multi-task learning for concept detection and concept-based video search
	Exploiting label relations
	Experimental study

	Methods for event detection and event-based video search
	Related work
	 Learning from positive examples
	Learning solely from textual descriptors - Zero-example learning
	Experimental study

	Conclusions
	Acknowledgments




