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ABSTRACT
Computers made it very easy to copy someone else’s work. This
makes grading a difficult task, as the teacher that wants to prevent
plagiarism needs to compare each student’s assignment against
every other student’s assignment, a quadratic process that is im-
practical when the number of assignments gets large. Students
know this and some take advantage of it. To be able to detect pla-
giarism among students’ programming assignment we created a
software tool that checks all assignments against each other, search-
ing for copied fragments. Unlike many other tools, this search is
not based on textual comparisons or hashing functions but, instead,
on collecting pieces of evidence for and against a plagiarism verdict.
This collection is determined by specialized procedures, invoked in
a data-driven fashion, that incorporate expert knowledge regard-
ing what is plagiarism and what is not plagiarism. The tool has
been successfully used since 1995 in the evaluation of assignments
programmed in Lisp dialects, particularly, Common Lisp, Scheme,
Racket, and AutoLisp, and its mere existence became a deterrent
for plagiarism.
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1 INTRODUCTION
Nowadays, every student uses a computer to accomplish his assign-
ments. Unfortunately, the computer also makes it very easy to copy
and share students’ work. The computer even helps in camouflag-
ing the copied parts so that the teacher does not easily detect them.
This situation is called plagiarism [15] and it is based on making
a series of systematic changes to a program to create a derivative
work that is syntactically different but semantically identical. The
problem is especially serious in Computer Science courses, where
evaluation typically includes the development of software projects.
In this case, it is very easy to make copies that, at first sight, look
very different from the original. Besides, when the assignments to
be graded are divided among teachers, it is almost impossible to
detect the copies.

In this paper, we discuss a set of techniques for the detection
of copies in students’ projects and we present a software tool that
implements those techniques for Lisp-based projects. The tool was
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evaluated in real cases of projects developed using Common Lisp,
Scheme, Racket, and AutoLisp and the results confirm its ability
to detect plagiarism, even when the projects suffered considerable
changes in order to hide their non-originality.

In the next section, we discuss the detection of plagiarism. In
the following sections, we present an approach for its automation
and specific details of its implementation in a plagiarism-detection
tool. In the Results section, we evaluate its use in a real case. The
final section summarizes the work and compares it with other
approaches.

2 DETECTING PLAGIARISM
The intent of a plagiarized work is to obtain a grade without being
associated with the original work from which it was derived. This
implies that a carefully plagiarized work presents sufficient differ-
ences from the original that the teacher cannot easily correlate
them. Unfortunately, seldom there is time to make a really good
plagiarized work and some traces of the original remain in the
copy. This is particularly true in software, where the copy needs to
preserve the semantics of the original algorithms. In this case, the
copier can change some particular parts of the original but many
other parts such as the global structure, the control structures, the
recursive or iterative nature of some functions, or the primitive
operations used, remain as traces of the original. It is these traces
that help identify plagiarism.

We now describe the principles behind the proposed plagiarism
detection tool. The tool is intended to detect plagiarism between
programs written in Lisp dialects, namely, Common Lisp, Scheme,
Racket, and AutoLisp. In all of these languages, a program can be
subdivided into smaller and relatively independent parts. Depend-
ing on the particular programming language, these parts are named
classes, functions, procedures, structures, methods, etc. In most high-
level languages, and even more so, in Lisp dialects, there are few
limitations upon the textual form of the code and so it is possible
to interchange parts of the program as well as change its textual
indentation without affecting its behavior. Additionally, the pro-
gram is, to a large extent, independent of the particular names
used to describe it. This means that two programs may be textually
different but semantically identical.

Usually, the visual detection of copies in programs is based exclu-
sively on its textual form. Students know this, and take advantage
of it. By using all the possibilities described above, they can mod-
ify the textual form of a program is such convoluted ways that it
no longer resembles the original. If they have enough care not to
change the semantics of the original, the copy will accomplish the
same task. This suggests that the detection of copies should not be
based on the textual form of the programs but on its semantics.

Given that programs are composed by subprograms, and there is
no order between the subprograms, in order to identify plagiarism
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in two programs we have to compare all the subprograms in one
program against all the subprograms in the other program. If these
subprograms are basic units, i.e., they do not contain any subpro-
grams, then they can be compared in terms of the control structures
they use, the primitive operations upon which they depend, etc.
If both subprograms start by using an if control structure, most
people would agree that this, by itself, is not a verdict of plagiarism,
but it can be considered as a very small piece of evidence. In order
to collect more pieces of evidence, we check the test form of the
control structure. If in both cases this form is the application of the
very same primitive function then we increase our confidence that
we are facing plagiarism, otherwise, we decrease it. Then, we look
at the consequent of the control structure and we apply similar
reasoning. If, for example, in both consequents the program exe-
cute a loop until some criterion is fulfilled, this is another piece of
evidence. We proceed by comparing the termination criteria of both
loops, as well as the body of the loops. In case the forms in both sub-
programs do not match, we search for some of the common tricks
students use to transform one into the other, such as swapping
arguments in commutative operations. This process proceeds until
we exhaust both subprograms. In the end, we decide whether we
collected enough evidence to signal the subprograms as suspicious.

The process just described is commonly done by teachers that
grade students’ projects. However, they tend to do it only if they
already suspect that there was some cheating, which makes the
process unfair, as some are detected and others are not. Moreover,
the process does not scale, either in the amount of information
that teachers can collect, or in the number of comparisons be-
tween projects that they can do. In this paper, we address these two
problems, presenting a tool built specifically to detect plagiarism
between Lisp-based student projects.

3 AUTOMATIC PLAGIARISM DETECTION
We now describe an approach and a tool for automatic detection
of plagiarism in Lisp-based projects. We will use projects written
in the Common Lisp language [22] as an example but the tool is
configurable to operate with other Lisp dialects and, with some
extra effort, with other non-Lisp languages.

The tool is, essentially, a function which accepts two programs
as arguments and returns a similarity value. This value abstracts
away the particular similarities between the compared programs
and is related to the level of confidence that we have in a verdict of
plagiarism.

The tool can be decomposed into four main components:

• A parser that builds a syntax tree describing the programs
to compare. This allows us to forget the textual form of the
programs.

• A collection of specialized compare functions, each one de-
signed to analyze particular features of the code that is being
compared and to compute its similarity value.

• A data-driven matcher that identifies particular pieces of
code within the programs to compare and selects the spe-
cialized compare functions appropriate to those particular
pieces of code. This way, the tool can be easily extended or
adapted to work with other languages.

• A combination function that combines all the similarity val-
ues found by the previous modules into a global value.

The parser is the easiest part of the tool because there are al-
ready some available for most high-level languages. In fact, for the
Common Lisp language we just use the plain read function.

After parsing the two programs to compare, we feed the syntax
trees found into the compare function. Since we may have one
specialized compare function for comparing if forms, and another
specialized compare function for comparing iteration forms, and
so on, the top-level compare function will then check which one of
the specialized compare functions is appropriate to analyze the two
programs. To this end, each specialized compare function includes
two patterns, each one matching one particular form on each of
the compared programs. When the patterns match, the specialized
compare function uses pattern variables to access the sub-forms of
the programs and recursively compares those sub-forms using the
top-level compare function until we reach atomic pieces of code.

In each recursive step, we collect pieces of evidence suggesting
that we are facing copied programs. These pieces of evidence have
a numeric value which may be larger or smaller depending on their
importance. As an example, if both compared programs use a rarely
used primitive, this is higher evidence of plagiarism than if both
use a more frequent operation.

Since the number of forms to compare is quite large and there
may be a large number of specialized compare functions to choose
from, it is important that each of the operations involved—selecting
the compare function, matching its patterns, and combining the
amount of evidence found—executes quickly. We now analyze each
of these operations.

3.1 Evidence
During the compare process we collect pieces of evidence for and
against a verdict of plagiarism. For instance, it is unlikely that a
Lisp function that starts with an if special form can be considered
a copy of another that starts with the primitive function car. It is
the combination of all collected evidence—for and against—that
leads to the final verdict.

Expressing and combining evidence is a problem that has already
been treated by [20], in the context of diagnosing medical problems.
In this area, almost nothing is certain and doctors can only gather
evidence for diseases based on the patient’s symptoms. For instance,
if I have a headache, I may have got a cold, but it is also possible
that I have one or more of many other diseases such as cancer,
meningitis, etc. To identify the correct disease, doctors collect and
combine other pieces of evidence, like my body temperature, or the
fact that I sneeze or not.

In our case, we are only interested in determining if the plagia-
rism “disease” is present and there are pieces of positive evidence
and pieces of negative evidence for this possibility. For instance,
when comparing two functions, an equal number of parameters
constitutes a (small but) positive piece of evidence that they are a
copy of each other, while a different number of parameters consti-
tutes a negative one. Following the work of [20], we define evidence
as a number in the interval [−1, 1]. A value in this interval repre-
sents the amount of evidence that we have about something and
is called certainty factor. A certainty factor of 1 means absolute
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certainty that it is true, −1 means absolute certainty that it is false,
and 0 means that we have nothing for or against—we simply do
not know.

To combine evidence, we cannot simply add them, as we need to
maintain the combined evidence within the interval [−1, 1]. Again,
we refer to [20] to justify the following combination function C:

C(x ,y) =


x + y − xy if x > 0 and y > 0,
x + y + xy if x < 0 and y < 0,

x+y
1−min( |x |, |y |) otherwise.

The parameters of the function are two certainty factors that we
want to combine. The function combines then in such a way that
combining true with something else except false is true, combining
false with something else except true is false, combining unknown
with something else does not change the result and combining true
with false is an error as it would be equivalent to a contradiction.
When two pieces of evidence are for something, that is, they are
both positive, its combination is stronger evidence for that thing.
When two pieces of evidence are against something, that is, they
are both negative, its combination is stronger evidence against that
thing. When one of them is positive and the other is negative, its
combination will be something in between.

Although certainty factors have well-known problems regarding
the dependency of evidence, the distinction between conflict and
ignorance, and the undefined semantics of the certainty factor
itself, they are simpler and computationally more tractable than
other approaches such as probability theory [16], Dempster-Schafer
theory [6], or fuzzy set theory [4].

As an example of the use of certainty factors in our tool, we
now present the evidence defined for the specific situation of a Lisp
conditional: the cond macro without a default clause.
(defevidence both-conds-miss-default 0.5 -0.3)

In the previous example, associated with the name of the evi-
dence there are two values, one for the evidence in favor of pla-
giarism, and the other for the evidence against plagiarism. In this
particular example, these evidences are relatively large because a
cond without a default clause is a rare situation. When it occurs in
the same place in two programs, it is a strong indicator of plagia-
rism. When it occurs in one program and not in the other, it is a
medium indicator against plagiarism.

3.2 Defining Compare Functions
To be able to accurately compare Lisp forms, we must specify differ-
ent comparing functions for different combinations of Lisp forms.
In this section, we deal with the problem of specifying the form of
Lisp forms.

Our idea is to use an association between patterns describing
Lisp forms and expressions computing the evidence of a copy be-
tween those Lisp forms. The patterns will be matched against some
form and, when successful, pattern variables will be bound to se-
lected elements in the form. Then, the sub-forms designated by the
pattern variables are compared and the pieces of evidence found
are combined.

As an example of a specialized compare function, consider the
situation where we have one if special form on each compared
program:

(defcompare ((if ?test1 ?conseq1 ?altern1)
(if ?test2 ?conseq2 ?altern2))

(combine-evidence
(get-evidence both-ifs t)
(compare ?test1 ?test2))
(compare ?conseq1 ?conseq2)
(compare ?altern1 ?altern2))

The macro defcompare uses the common practice of tagging
pattern variables with a leading question mark to distinguish them
from other literal symbols. Note also that the body of the specialized
compare function calls the generic compare function to compute
the evidence for copy of the test, consequent, and alternative of both
ifs and combine the returned values with the specific evidence of
having two ifs on both programs.

Unfortunately, the previous comparison is too strict and does
not search for additional signs of plagiarism. To that end, the actual
comparison function is the following:
(defcompare ((if ?test1 ?conseq1 . ?altern1)

(if ?test2 ?conseq2 . ?altern2))
(combine-evidence

(get-evidence both-ifs t)
(compare-if-args ?test1 ?test2

?conseq1 ?conseq2
(if ?altern1 (first ?altern1) nil)
(if ?altern2 (first ?altern2) nil))

(get-evidence both-ifs-as-whens
(and (null ?altern1) (null ?altern2)))))

(defun compare-if-args
(test1 test2 conseq1 conseq2 altern1 altern2)

(max (combine-evidence
(compare test1 test2)
(compare conseq1 conseq2)
(compare altern1 altern2))
(combine-evidence
(compare test1 `(not ,test2))
(compare conseq1 altern2)
(compare altern1 conseq2))))

Note that, besides recognizing the casewhere the if is being used
as a when, this improved comparison also verifies if the consequent
and alternative might have been swapped.

The comparison function is opportunistically called with two
forms and it will then try to match its patterns against those forms
and, in case of success, bind the variables to the correspondent
matched sub-forms. In case one of the patterns does not match, the
function immediately returns with a null result.

Usually, the result of a successful match is a substitution list
where pattern variables get their bindings. Unfortunately, there are
two problems with this solution:

• The match is expensive. The result of the match is a structure
that consumes time and space (that becomes garbage very
soon). As the match is a fundamental operation there should
be a minimum of garbage involved.

• There isn’t a direct connection between the bindings found
by the match process and the free variables in the compare
function body.

Both problems can be solved if we take into account that the
patterns are known at compile time. Thus, there is no need to
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depend upon a generic match algorithm. We can optimize every
match process because we know in advance what it must do.

3.3 Partial Evaluation
The kind of optimization that we are talking about is named partial
evaluation and is a technique that aims at speeding up a program
by specializing it on some of its inputs.

In generic terms, if we have a program F that expects an input
i , we define the execution of that program as the result of F (i).
Now, let us consider that the input i can be split into two parts, one
static—known in advance—and the other dynamic. Let us write the
execution of our program on these inputs as F (s,d) where s and
d are the static and the dynamic parts of the input i , respectively.
Since we know the static part of the input, it may be possible to
rewrite the program F so that all computations that depend upon
the static part of the input are already done, that is, we want to
write a new program Fs such that F (s,d) = Fs (d).

The program Fs (d) is named the residual program for F with
respect to s or, equivalently, a version of F specialized to s .

A partial evaluator is a program that specializes other programs
with respect to some static input. Historically, a partial evaluator is
known asmix (after [9]). A partial evaluator is, then, a programmix
such that for every program F and static input s , mix(F , s) = Fs .

In our case, the program F is the match algorithm, and the static
input s which we want to use to specialize the program is the
known pattern. The result of the partial evaluation is a specialized
function that no longer receives the pattern but is capable of implic-
itly matching it. To do this, we write a partial evaluator mixmatch
already specialized on the match program. We then use mixmatch
on some pattern to produce a specialized matcher for that pattern:
mixmatch(s) = matchs

Although there are already many partial evaluators available
(for example [10], [17], and [19]), we decided to build our own. This
decision was made because our patterns are quite simple, allowing
a specialized partial evaluator to generate very fast code. Besides,
our partial evaluator generates code which is integrated with the
evaluation of evidence. The result of our partial evaluation of a
compare function is another function that interleaves the matching
and binding processes until all patterns are matched, and then
evaluates the compare function body in the lexical environment
established by the binding process.

3.4 A Data-Driven Approach
Since there are many kinds of Lisp forms, we also have many spe-
cialized compare functions. These functions must be invoked by a
generic compare function when and only when they are needed.
Since we want to be able to add more specialized compare functions
in the future, we need some way of doing it without disturbing
the rest of the compare functions. The data-driven programming
methodology [13] is an appropriate solution.

In a data-driven approach to our compare problem, we keep
all specific compare functions on a database. This database is dy-
namic in the sense that new specific compare functions can be
added at any time, even during the compare process. The generic
compare function will use this database to identify the specific
compare function appropriate for each situation. In many cases,

there will be more than one specific compare function matching
a particular situation. For example, if we consider the Lisp expres-
sion (+ 1 2), we can easily build patterns that match it, such as
(+ 1 ?arg), (+ ?arg1 ?arg2), (?f ?arg1 ?arg2), (?f . ?args),
(?car . ?cdr), or simply ?expr. All these patterns may coexist
in our system because they have different purposes: (+ 1 ?arg)
matches an increment operation, (+ ?arg1 ?arg2) matches a sum
operation, (?f ?arg1 ?arg2) matches a two-argument function
application, (?f . ?args) matches a general function application,
and so on. To decide which compare function should be used, there
must be an order between all the patterns. This order is needed to
ensure that more specific compare functions are tested before more
generic compare functions.

There are two perspectives regarding this order:
• Automatic-based: If we can compute the specificity of a pat-
tern, we can use it to sort the compare functions so that more
specific patterns are tried before less specific patterns.

• Manual-based: Since text files are sequential, there is a se-
quential order in the compare function definitions. We can
arrange our definitions so that their relative position reflects
our intended matching order.

The first approach is similar to what is used in CLOS—The Com-
mon Lisp Object System [11, 22], where multi-methods can be
specialized on the type of all arguments. These types have a sub-
type relation between them that must be taken into account when
dispatching a generic function. In our case, we have patterns with
different degrees of specificity and we also have multi-patterns,
thus being comparable to CLOS. The problem with this approach is
that it is not always obvious which patterns are more specific and
thus, we might end up with the wrong order.

Depending exclusively on the second approach is also somewhat
problematic. Whenever we want to add some new patterns, we
need to carefully choose where to define them. If we define them
after more generic patterns, the new patterns will never be checked.
If we define them before more specific patterns, the older patterns
will never be checked.

Our solution to the problem is a mixed approach. We will re-
tain the flexibility of the CLOS approach while depending on the
definition order in situations where a generic dispatch would be
ambiguous. The idea is to define a subsumption relation between
patterns, and use that relation to order the patterns. Whenever the
subsumption relation cannot decide which pattern is more specific,
we use the definition order. This approach follows the program-
mer’s intention except when his intention leads to wrong results.

3.5 Indexing
When the number of compare functions is large, checking the
patterns of all compare functions until one of them succeeds is very
time-consuming. Besides, this time grows as we add more compare
functions. To solve this problem, when patterns contain literals, they
are used as indexes in an hash-table of compare functions. Since
each compare function specifies two patterns, we have a doubly-
indexed hash-table. On each entry of the hash-table, we keep all the
compare functions whose patterns begin with the correspondent
keys, sorted by the specificity of the rest of both patterns. This
allows a very fast search of the appropriate compare function in
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most cases. In other cases, the indexing mechanism restricts the
subset of applicable compare functions to just two or three, which
is still quite good.

It is important to note that the indexing mechanism is itself
implemented by a specialized compare function. This function has
a parameter list which matches all patterns that can be indexed.
When the match succeeds, the function uses the literals found to
get the appropriate compare functions. This allows the indexing
mechanism to be included in the system without modifying it. This
is useful because different programming languages may require
different indexing mechanisms and we can have several indexing
mechanisms at the same time.

With this technique, our generic compare function needs only
to check each specialized compare function in turn, according to
the subsumption relation between the patterns of those functions.
Some of these specialized compare functions are in fact indexing
functions which speed up the selection of the appropriate compare
functions. In case they are not applicable, the process continues,
checking another function, being it a real compare function or
just another indexing function. Obviously, it is possible to have
indexing functions within indexing functions without limit. An
indexing function can thus be seen as an abstraction of several
compare functions.

4 COMPARING PROJECTS
The previous sections described the techniques that we developed
for a generic compare process. We now describe some of the specific
enhancements that specialize the process for the Lisp language.

4.1 Comparing Project Structure
Let us suppose we are comparing the following Lisp project:
(defun a (x y)

(b x)
(c y))

(defun b (z)
(c z))

(defun c (z)
z)

and the following copy:
(defun b1 (z1)

(c1 z1))

(defun a1 (x1 y1)
(b1 x1)
(c1 y1))

(defun c1 (z1)
z1)

The functions a, a1, b, b1, c, and c1 are so small that they can
hardly be considered copies. Nevertheless, there are obvious resem-
blances between the two projects, as they share the same structure.
In the previous example, a calls b and c while a1 calls b1 and c1.

In order to compare the projects’ structures, a possible solution
would be to generate the callers/callees graph of both projects and
compare them with a graph comparing algorithm. However, there
is a simpler solution: whenever we find functions applications, we
check their definitions just as we are checking the current ones.

Using the previous example, while comparing a and a1 we find
that they call, respectively b and b1. Then, we compare b and b1

just to find that they call c and c1. Again, we compare c and c1. The
result of the comparison is then returned and combined with the
comparison of b and b1, and the result is returned and combined
with the comparison of a and a1. This way, functions near the root
of the graph will see its comparison getting more and more precise
as each called function is compared.

This process also takes into account self-recursive and mutually-
recursive functions. When in presence of such cases, we stop the
check (avoiding infinite regression) and we return with a value
reflecting that additional piece of evidence.

4.2 Comparing Lisp Forms
As we said before, when we compare two Lisp forms we first try to
use specialized compare functions for those forms. The following
list is just a short extract of some cases that the specialized compare
functions deal with:

• To compare two functions, we check their names, their ar-
guments lists, their documentation strings, and their bodies.

• Common transformations involving let forms consist of
exchanging some bindings, and replace let with let* and
vice-versa. This forces us to compare let forms, let* forms,
and combinations of them.

• Another common transformation consists of cascading lets.
Instead of using a single let to establish bindings, it is possi-
ble to use a large number of lets, each one establishing some
of the bindings. Although the result is semantically similar,
syntactically it looks very different. To avoid this trick, we
collect all subsequent lets. Although we may be changing
the semantics of the form, the change is not relevant to the
compare process.

• While comparing bindings, we must be careful about un-
usual bindings. Although the usual let form is similar to
(let ((var val)) body), it is possible to have uninitialized
bindings, such as (let ((var)) body), or unique uninitial-
ized binding such as (let (var) body).

• When comparing ifs, we give special attention to the excep-
tional cases of ifs without alternative because they are rare.
In this case, the ifs look like whens.

• When an if is copied, most students are smart enough to
modify it by negating the test and swapping the consequent
with the alternative. To deal with this case, we must also
compare the possible transformation. We return the highest
value found.

• Since themacro cond is very common, it is difficult to depend
on it to detect copies. For this reason, we just dispatch on
the tests and actions. However, we do analyze the default
clause because its absence is a rare situation. If two cond
forms both miss the default clause, that is a strong sign that
they may have been copied.

• One of the common copying practices is replacing a cond by
an if and vice-versa. To handle this case, we compare the
first cond clause with the condition and consequent of the
if and we compare a new cond containing the remaining
clauses with the alternative of the if. This approach allows
the comparison of a multi-clause cond with a cascade of if
forms.
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• Transforming between an if and when is another common
plagiarism technique. The only tricky situations are (1) that a
when with multiple consequents implies an if with a progn
consequent and (2) that the if should not have an alternative
or it should be nil.

• Another common transformation is between if and unless.
As with the if and when comparison, the only tricky sit-
uations are (1) that an unless with multiple consequents
implies an if with a progn consequent and (2) that the if
should not have an alternative or it should be nil. Besides,
the if must have a negated test or have the consequent
swapped with the alternative.

• Substituting a dotimes with a do and vice-versa are also
good approaches to hide plagiarism. To detect these situa-
tions, we compare the corresponding parts, also including
the dotimes macro-generated ones (namely, stopping con-
dition for the loop and increment expression).

• Comparing setqs and setfs needs to take into account that
each variable must have its value, but the order between
variable-value pairs can be exchanged (to a certain extent).

4.3 Comparing Transformations
We have already exposed some of the common copying techniques
explored by students. Some of these techniques are sufficiently
general to be easily formalized. On this set, we include changing
parameter names, permuting function arguments, and cascading
let bindings.

However, there is another set of techniques that are much more
elaborated and involvemore knowledge about Lisp functions. Trans-
forming (1+ expr) into (+ expr 1) is an example. They are seman-
tically equivalent expressions and either can be used. Since they
are syntactically different, they make copy detection a harder task.
There are much more examples, for instance, (null expr) and
(not expr).

Different Lisp functions that perform very similar operations in
most contexts are another source of problems. The functions car
and first are equivalent and either can be used. The functions
endp and null have similar semantics and in most situations either
can be used.

We extended our tool with some syntactic sugar to make it easy
to define new compare functions to recognize such equivalent forms.
Below we present some of the defined transformations.
(1+ ?x) ≡ (+ ?x 1)
(1- ?x) ≡ (- ?x 1)
(< ?x ?y) ≡ (>= ?y ?x)
(> ?x ?y) ≡ (<= ?y ?x)
(null ?x) ≡ (eql ?x nil)
(zerop ?x) ≡ (= ?x 0)
(car ?x) ≡ (first ?x)
(cdr ?x) ≡ (rest ?x)
(null ?x) ≡ (endp ?x)
(= (length ?list) 1) ≡ (endp (rest ?list))
(not (null ?list)) ≡ ?list
(cons ?elem nil) ≡ (list ?elem)

As is visible, we describe the equivalences using repeated pat-
tern variables in both patterns. Usually, when a pattern variable
is repeated on two patterns, it means that for them to match, the

variables’ values must be equal. Here, it just means that we should
compare the values on each matched form. When we enter the
equivalent forms into the system, all pattern variables are renamed
and then two new compare functions with permuted arguments
are defined so that both transformations can be tried.

In order to define these transformations, the macro defequivs
takes a list of equivalent forms and, optionally, the corresponding
evidence. As an example, the form

(defequivs ((cadr ?x) (car (cdr ?x)) (second ?x) (nth 1 ?x)))

creates 12 comparing functions, each dealing with one of the two-
element combinations of the given patterns.

5 RESULTS
Validation is an important part of the plagiarism detection process.
To this end, we also developed a mode for the Emacs editor [21]
that simplifies the verification of the results. The mode presents,
side by side, the fragments of code that were considered sufficiently
similar to merit a careful observation.

We tested our tool on a course where students had to create
a moderately complex project in Common Lisp. One of the re-
quirements was that students had to implement a small number of
functions with a pre-established signature.

The students submitted 112 projects with an average of 27 im-
plemented functions per project. We conducted tests where we
compared just a selected function and tests where we compared
all the implemented functions. On the first case, there were 6216
comparisons between projects. On the second case, the number
raises to 4.4 million.

5.1 Analyzing a Selected Function
In this test, we analyzed a selected function that all students had to
implement. The results are in Figure 1, where each axis represents
the project’s number and each square has a shade that is propor-
tional to the amount of evidence found. In this figure, we note the
selectivity of the compare process. Although all projects defined the
selected function, only a few pairs (16/6216 = 0.26%) were found
suspicious. This means that originality was high, that is, there were
many different implementations of the selected function. On the
other hand, if we count the number of suspicious projects (not
pairs of projects), the ratio grows to 21/112 = 18.8%. Note that the
first percentage represents the number of comparisons that were
found positive, while the second percentage represents the affected
projects. The first number will only be 100% when all students use
the very same function, while the second can reach that value if
there is one copy for each original function.

To evaluate the tool’s accuracy, all suspicious projects were man-
ually checked. We also checked projects with small negative ev-
idence to be sure that the tool did not miss anything. This was
important to determine an evidence level which justifies further
inspection. This value depends on the average size of the functions,
the difficulty of the assignment, etc. In our case, we found that
evidence below 0.6 does not represent plagiarized functions but,
instead, functions that happen to be similar.
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Figure 1: Evidence of copy of a selected function between
all pairs of projects. Both axis represent the set of compared
functions.

5.2 Analyzing Projects
An unrestricted test involving all projects’ definitions can produce
a very large number of suspicious pairs of definitions. To avoid
cluttering the results with irrelevant information, we only searched
for very strong evidence of copy (larger than 0.8). Note that we
excluded from this test the critical functions tested by the previous
analysis.

Figure 2 represents the results of the analysis on pairs of projects.
A combined analysis of the previous two figures shows that there
are data points in Figure 2 that are not present in Figure 1. This
means that there are students who are careful enough to develop
the critical parts of the project but careless in what regards less
relevant parts.

In the end, the final number of copied projects detected was 28,
which represents 25% of all projects, the highest ever recorded on
that course.

5.3 Pedagogical Effects
Besides helping teachers detecting plagiarism, the tool is invaluable
as a pedagogical measure. The mere fact of knowing that assign-
ments will be scrutinized regarding possible plagiarism entails in
the student a completely different attitude.

To verify the change in students’ habits, we run the tool again
one year later, on the very same course. This time, the project was
given to 132 groups of students and 109 of them delivered a solution.

We present in Figure 3 the results of the plagiarism detection
process. As before, only pairs of projects with more than 2 copied
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Figure 2: Number of copies among pairs of projects. Both
axis represent the set of compared projects.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 3: Number of copies among pairs of projects in the
following year. Both axis represent the set of compared
projects.

forms are shown. As we can see, there are much less copied projects
now.
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In our opinion, the main reason for these results is the psycho-
logical effect of the perceived increase in the plagiarism detection
effort. Independently of the students’ suspicions regarding the real
cause of that increase, they quickly adapt to this perception by
either avoiding plagiarism or by increasing the effort to modify the
plagiarized projects so that cheating would not be detected.

6 RELATEDWORK
The plagiarism detection tool here presented was invented in 1995.
Despite being frequently used in the following years, it remained
a closely guarded secret because we were afraid that it would not
be well-received by the student’s association. Nowadays, when
automatic grading is already a given in universities, plagiarism
detection would not surprise anyone but, at that time, that was not
the case. In fact, the existence of the tool was acknowledged only
after several other similar tools were announced.

Plagiarism detection was studied by several authors, including
[3, 5, 7, 12, 14]. The proposed approaches include textual compari-
son [1], that compares source code modulo name changes, abstract
syntax tree (AST) comparison [2, 23, 24], which is immune to textual
changes but does not detect code transformations, metric analy-
sis [5, 7], that detect code framents that have a similar number of
unique operators, operands, declared variables, etc., and fingerprint-
ing [8, 18], based on the use of hashing functions that are immune
to the typical code transformations done to hide plagiarism, so that
two plagiarised fragments produce the same hash value.

The work here presented can be considered as an extended AST-
based comparison approach that is immune to the code transfor-
mations generally employed to hide plagiarism, and where the
similarities and differences between AST nodes are evaluated using
a metric-based approach. The metrics were derived from our experi-
ence regarding the code that is typically written by our students. A
final difference is the adaptability and extensibility of our approach,
which was designed to easily support user-defined comparisons
and metrics.

7 CONCLUSION
We described a tool to identify plagiarism in students’ projects. The
tool compares program fragments and gives a certainty factor to the
question “is plagiarism present in these fragments?”. Based on this
certainty factor, the teacher can quickly identify students’ projects
that deserve more careful attention.

We have used the tool on a course and we found a surprisingly
high number of copied projects. However, the results obtained in the
following years show that students quickly adapt to the increased
scrutiny by dramatically reducing plagiarism.

There are other important uses for this tool. In particular, it can
be used to detect redundancies in code. By comparing the code
against itself one can detect which code fragments are sufficiently
similar to deserve being substituted by a conveniently parameter-
ized function.
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