
Symbols as Namespaces in Common Lisp
Alessio Stalla

alessiostalla@gmail.com

ABSTRACT
In this paper, we propose to extend Common Lisp’s fundamental
symbol data type to act as a namespace for other symbols, thus
forming a hierarchy of symbols containing symbols and so on recur-
sively. We show how it is possible to retrofit the existing Common
Lisp package system on top of this new capability of symbols in
order to maintain compatibility to the Common Lisp standard. We
present the rationale and the major design choices behind this effort
along with some possible use cases and we describe an implemen-
tation of the feature on a modified version of Armed Bear Common
Lisp (ABCL).

CCS CONCEPTS
• Software and its engineering → Modules / packages; Data
types and structures; Semantics.

KEYWORDS
Symbols, Namespaces, Packages, Hierarchy, Common Lisp, ABCL

ACM Reference Format:
Alessio Stalla. 2019. Symbols as Namespaces in Common Lisp. In Proceedings
of the 12th European Lisp Symposium (ELS’19). ACM, New York, NY, USA,
5 pages. https://doi.org/10.5281/zenodo.2648195

1 INTRODUCTION
1.1 Symbols
One of the distinguishing features of Lisp, that has set the language
apart since its inception in the late 1950’s [5], is the symbol data
type. In Lisp, symbols are names for things, including parts of a pro-
gram such as variables, functions, types, operators, macros, classes,
etc. and including user-defined concepts and data. Each symbol has
a name, which is a string, and a property list, an associative data
structure where the language implementation, as well as libraries
and programs, can store data and meta-data related to the sym-
bol or associated concepts. The Lisp reader ensures that, when it
encounters the same symbol name twice, it will return the same,
identical symbol; so, when reading the textual representation of
some source code, the same name appearing as a different string in
several positions in the source text will refer to the same concept
or program element.

Symbols are a data type usually found in compilers and inter-
preters. Lisp exposes the symbol concept to the user of the system

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’19, April 01–02 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2648195

and is itself built upon it – it is, in its core, a system for the ma-
nipulation of lists of symbols. This makes programming in Lisp
qualitatively different from other programming languages [3], be
they object-oriented, functional, imperative, and so on. Usually we
tend to concentrate on lists (or, better, on conses) and to forget
about the importance of symbols.

1.2 Packages
Early Lisps had a single namespace for symbols [6]. That is, a single
global hash table that the Lisp reader consults when it encounters
a symbol name: if it’s already present in the table, the associated
symbol is used, otherwise a fresh symbol is created and stored in
the table. This operation is called INTERN. The table itself is called
an obarray in Maclisp [8], Emacs Lisp [2], and perhaps other Lisps.

A single namespace suffers from the possibility of symbol clashes
– that is, two programs assigning incompatible meanings to the
same symbol. Eventually, this problem was addressed in Common
Lisp with its package system [9], derived from an earlier system
introduced in Lisp Machine Lisp [12].

In Common Lisp, packages are objects that map symbol names
(strings) to symbols. More than one package can be defined; in-
deed, the Common Lisp standard defines three built-in packages,
COMMON-LISP for the language itself, KEYWORD for keyword symbols
that are constants that evaluate to themselves, and COMMON-LISP-USER
for user symbols. However, exactly one package is current at any
one time (per thread): it is, by definition, the value of the special
variable *PACKAGE*.

The reader always interns unqualified symbol names in the cur-
rent package. To refer to a symbol in another package, the sym-
bol name is prefixed by the package name followed by a colon –
or two, in certain cases which we’ll explain shortly. For example,
ALEXANDRIA:WHEN-LET.

Packages, like symbols, have a name which is a string. Addition-
ally, packages can have multiple secondary names called nicknames.
For example, the COMMON-LISP package is nicknamed CL. And, just
like symbols in earlier Lisps, packages are registered in a single
global map keyed by their names and nicknames. It is possible to
remove a package from the map, using the DELETE-PACKAGE opera-
tor (which removes at once all the entries referring to that package,
including nicknames). However, the Common Lisp standard does
not specify any meaningful way in which a package object can be
used once it’s been deleted, and it does not define any operator
to put a package in the global map back again. In practice, in a
portable Common Lisp program, a deleted package is no longer
usable in any way.

The package system also acts as a simple but effective read-time
module system. A package can export some of its symbols; other
packages can import them individually or they can use another
package, thus automatically importing all its exported symbols.
The names of non-exported symbols need to be prefixed with two
colons when referring to them from other packages.

https://doi.org/10.5281/zenodo.2648195
https://doi.org/10.5281/zenodo.2648195

ELS’19, April 01–02 2019, Genova, Italy Alessio Stalla

2 PACKAGE PROBLEMS
Packages are arguably one of the most criticized (or poorly under-
stood) features of the Common Lisp language:

• One issue is that the package system is not a very advanced
module system, or not much of a module system at all. By
design, it is just a system for organizing names and avoiding
or handling clashes.

• Another issue is that the package system works at read-time,
thus it relies on, and suffers from, read-time side effects [4].

• Then, as we’ve previously said, package names and nick-
names live in a global shared namespace. With the ever-
increasing amount of libraries (the Quicklisp distribution
contains more that 1500 libraries [1]), each defining at least
one package but quite often more than one, the possibility
for package name clashes is real, especially considering the
existence of nicknames which are often short mnemonic
names or acronyms.

• Finally, since packages cannot portably exist as usable objects
outside their global namespace, solutions using temporary
or "unnamed" packages are awkward and feel hacky.

In this article, we’ll focus on the last two issues: a single, global
namespace for package names and nicknames, and the fact that
packages are tied to this namespace.

3 EXISTING EXTENSIONS OF THE PACKAGE
SYSTEM

Naming issues such as potential clashes need not necessarily be
solved with technique alone. Solutions based on social conventions
are often employed successfully. For example, the C language does
not have any provision for namespacing. Developers simply prefix
the names of functions and variables to avoid clashes.

Also, the package system itself natively provides tools for dealing
with naming conflicts, such as the aforementioned nicknames and
the RENAME-PACKAGE function.

Still, a number of extensions to the package system have been
proposed and implemented over the years. We’ll now review a
couple of those.

3.1 Hierarchical Packages in Allegro Common
Lisp

Allegro Common Lisp augments packages with some hierarchical
structure [10]. Taking inspiration from languages such as Java and
C#, it proposes a naming convention according to which package
names are a sequence of names separated by dots.

The hierarchical structure in Allegro is just a naming convention;
it does not mandate correspondence to a directory and file structure,
as in Java. However, the convention is understood and enforced by a
few functions that also allow users to shorten package names when
they have some substructure in common, in a way that resembles
file system paths. For example, (find-package :.test) would
return the package it.alessiostalla.app.test if the current
package were it.alessiostalla.app.

An informal survey by the author revealed that hierarchical pack-
ages appear to be seldom used, if at all, outside the internals of Alle-
gro Common Lisp itself. Interestingly, the same facility exists as an

open-source library by Pascal Bourguignon (https://gitlab.com/com-
informatimago/com-informatimago/blob/master/common-lisp/lisp/relative-
package.lisp).

3.2 Package-local Nicknames in SBCL and
Other Lisps

Other Common Lisp implementations, in particular at least SBCL
[11] and ABCL, allow to define package-local nicknames. That is,
a package, say P, can specify local nicknames for other packages.
When P is the current package, and only then, those nicknames
can be used to refer to the nicknamed packages. Thus, the local
nicknames do not pollute the global package namespace. Therefore,
users can shorten frequently-used package names without fearing
collisions with other unrelated packages that happen to have the
same nickname.

This apparently simple feature is nevertheless quite powerful,
and indeed, from an informal survey by the author of this paper, it
is actively used or at least well regarded by a number of experienced
developers on the Common Lisp Professionals mailing list.

4 SYMBOLS AS NAMESPACES
Let’s now analyze the more radical option of using symbols as
namespaces for other symbols. How would it look like? Is it worth-
while? Is it possible to extend Common Lisp with such a feature and
to deprecate packages while maintaining backwards compatibility
with the Common Lisp standard and with existing Common Lisp
code?

4.1 What We Want to Achieve
Wewant to use symbols as namespaces for other symbols, and so on
recursively. In other words, we want every symbol to potentially act
as a package. We want these extended symbols to be recognized by
the Lisp reader and Lisp printer. We’ll use the syntax foo:bar:baz
to represent a symbol named baz, which is an external symbol in
the symbol named bar, which is itself an external symbol in the
symbol named foo. So the idea is to extend the Common Lisp syntax
to allow multiple, non-consecutive package markers. According to
the Common Lisp standard, the treatment of tokens with multiple
package markers is undefined and implementation-dependent [7],
so this extended syntax is allowed by the standard. Similarly, we’ll
use two consecutive colon characters to refer to internal symbols.

Symbols that are not interned in other symbols, or in other
words have no parent symbol, are called root symbols. We want to
have exactly one canonical root symbol, that we’ll denote here as
#<ROOT>, such that the syntax :foo represents a symbol named foo
whose parent is the canonical root symbol. Other root symbols can
be created (for example, with the standard function MAKE-SYMBOL),
but only the canonical one gets the special syntax described here.
The canonical root symbol cannot be replaced. It is printed as a an
empty string, thus it cannot be read by itself.

In general, we’ll need to add new operators to our Common
Lisp implementation to support these new features. Rather than
adding them in a new package, we have chosen to intern them in
the SYMBOL symbol, as it will become apparent in the next section.

Symbols as Namespaces in Common Lisp ELS’19, April 01–02 2019, Genova, Italy

4.2 Backwards Compatibility
The idea is to retrofit packages as a facade over namespacing sym-
bols, in order to maintain Common Lisp compatibility for existing
programs that do notmake use of, or even know about, our new sym-
bol type. So, our extended symbols will need to retain all the package
features such as exporting, USEing other namespaces, shadowing,
etc. We could leverage the symbols’ property lists for those features,
or we could add implementation-dependent fields to the symbol
type itself.We provide an operator, (symbol:as-package symbol),
that given a symbol will return a package object reflecting that sym-
bol’s name and contents.

Furthermore, since packages can be given nicknames, our new
symbols must support the same feature if we want them to replace
packages. So, it must be possible to intern the same symbol with
different names (aliases) in the same or in different namespaces.
This is an important difference from Common Lisp, where symbols
either have exactly one home package, or they are uninterned. Our
symbols can have multiple aliases in multiple namespaces, but they
always have a name and a parent symbol (or NIL). We provide two
operators:

(symbol:alias symbol alias &optional export)

to create an alias of a symbol in its parent namespace, and

(symbol:remove-alias symbol alias)

to remove an alias. To create an alias of a symbol in a different
namespace, we use the standard IMPORT function, which of course
now works on symbols as well as on packages. Note that the hier-
archical nature of symbols implies that aliases are local, just like
the package-local nicknames extension in SBCL and ABCL.

5 THE ROOT SYMBOL, KEYWORDS AND
TOP-LEVEL PACKAGES: A PROBLEM

It is apparent that keywords and symbols in the root namespace
have something in common. In part this comes from the choice of
syntax: since foo:bar is symbol bar with parent foo, :foo ought
to designate the symbol foo with parent #<ROOT>, just like paths
in a file system. But :foo in Common Lisp is already the syntax
for the keyword named foo. It’s not only a matter of the choice
of syntax, though. Keywords are meant to be read uniformly and
unambiguously no matter what the current package happens to be.
Analogously, one is supposed to be able to reach to the root names-
pace with the same syntax no matter what the current namespace
is. Even not considering syntax, keywords and symbols in the root
namespace appear to be similar beasts.

Another seemingly obvious choice is that legacy Common Lisp
packages – which are inherently top-level, global names – ought
to live in the root symbol, so that package COMMON-LISP is actu-
ally the symbol #<ROOT>:COMMON-LISP, which is then printed as
:COMMON-LISP. Thus the root symbol is the global map that con-
tains all packages, which in standard Common Lisp is an object
that users of the language cannot access.

These two apparently natural choices, however, don’t play well
together. In fact, to preserve backwards compatibility, the Lisp
reader, when searching for a package (say, COMMON-LISP), must
either search it locally to the current namespace (we’ll call this

option L for Local first), or it must search it in the root first, then
in the current namespace (option R for Root first).

Choice (L) implies that, for, say, CL:LIST to be read consistently
everywhere, every package must import the :CL symbol. More gen-
erally, every symbol which denotes a package must be accessible
(imported) in every namespace. But if the symbol, such as :CL, is
also a keyword by design, then it is a constant and it cannot be
rebound, not even locally. This is a strong limitation and a problem
for backwards compatibility, especially for packages with common
names like SEQUENCE, SYSTEM, EXTENSIONS etc. which collide with
symbols in the COMMON-LISP package or with symbols in user code.
Clearly, having packages named by keywords and requiring all
namespaces to import those keywords has heavy usability implica-
tions.

Choice (R) instead implies an inconsistency. In the expressions
CL:X and CL, the two character strings "CL" might be read as differ-
ent symbols: the first as #<ROOT>:CL, the second as, for example,
CL-USER:CL. Also, with that scheme, :KEYWORD would be a symbol
whose namespace is itself, which is confusing, but this is probably
just a minor annoyance.

6 AN IMPERFECT SOLUTION
We can then decide that the root symbol is not the keyword package
after all. This, however, has other problems. In fact, there is a read
inconsistency for keywords. :foo must be read as a keyword at
least for backwards compatibility, but in the expression :foo:bar,
foo is not a keyword, it is symbol FOO in symbol #<ROOT>.

Also, there is still the inconsistency of, e.g., SEQUENCE in the
expressions 'SEQUENCE:COUNT and 'SEQUENCE being two differ-
ent symbols if SEQUENCE is a top-level package, unless the symbol
SEQUENCE is imported in the current package. This is for backwards
compatibility, because if a user evaluates (defpackage foo), Com-
mon Lisp mandates that foo::x refers to the top-level package FOO
no matter what the current package is.

However, there isn’t the additional limitation of keywords being
constants, so SEQUENCE-the-package and SEQUENCE-the-CL-symbol
can be arranged to be the same symbol without drawbacks, by
importing :sequence in CL (or by importing cl:sequence into
#<ROOT>). For system packages, the implementation can probably
arrange things like that automatically, so for users it’s transparent.
For user packages, this cannot be done by the implementation, users
have to write the boilerplate manually if they want to avoid the
inconsistency.

Ideally, if no backwards compatibility were required, we could
mandate that the names of top-level packages be always prefixed by
a colon – as in :cl:count and :sequence:count – unless locally
imported. However, in an existing Common Lisp system, this is
not possible. Legacy compatibility could be turned on and off with
flags, but this still seems a bit of a mess. Things don’t click, they’re
too complex. The beauty of the original idea seems lost.

7 THE REAL SOLUTION
Things flow much better if we take a different route. Namely, that
top-level packages (actually, their names) are not top-level sym-
bols. Instead, let’s make them live in another, non-root symbol, say
:TOP-LEVEL-PACKAGES. The root symbol, then, continues to be the

ELS’19, April 01–02 2019, Genova, Italy Alessio Stalla

home namespace of keyword symbols, that is, the Common Lisp
keyword package, and the only "special" symbol and package in
the system.

So, when it encounters the expression foo:bar, the reader looks
for foo in the current namespace first; if it is not present or it is not
a namespace, i.e. it doesn’t contain other symbols (a distinction that
is necessary to avoid excessively shadowing top-level packages),
then it continues its search in the symbol :TOP-LEVEL-PACKAGES.
An inconsistency can still happen – the expressions foo:bar and
foo referring to different foo symbols – but only if a local symbol
named foo exists and it is not used as a namespace. In that case, it
is reasonable that the same sequence of characters "foo" refers to
different things according to whether it’s denoting a namespace or
a symbol name – after all, that’s how today’s Common Lisp works.

As a minor annoyance, to spell, say, the CL:LOOP symbol in its
absolute form, one must write :top-level-packages:cl:loop;
that is, the abstraction leaks a bit.

8 IMPACT ON COMMON LISP ASSUMPTIONS
The change we are proposing cuts deep in the fundamentals of
Common Lisp and arguably of Lisp as it was first conceived. What
are the consequences?

One area that should definitely be explored as further work
is read-print inconsistencies, as it is apparent from the previous
sections. We haven’t studied the issue enough to report something
meaningful here.

Another problematic impact is the interplay with the function
DELETE-PACKAGE.

8.1 DELETE-PACKAGE
In Common Lisp, DELETE-PACKAGE removes a package with all its
nicknames from the global namespace and renders the package
object unusable in portable code. In our extended Common Lisp,
DELETE-PACKAGE should do the same thing to any symbol.

However, with symbols being potentially imported, exported,
aliased, used as namespaces in several places, to delete a symbol
atomically from the system requires a lock on the whole symbol
system. And, even ignoring concurrency issues, there are new possi-
bilities for failure that are currently absent in Common Lisp. Remov-
ing an alias can uncover a conflict between two used packages, for
example. DELETE-PACKAGE is necessary because packages do not
exist outside their global map; symbols do live just as well without
a parent, and they can be uninterned. Once a symbol is no longer
referenced by any live object it can be garbage collected. So, if our
proposal is to be adopted, DELETE-PACKAGE should be restricted
to work only on symbols and aliases in :TOP-LEVEL-PACKAGES, or
it should be deprecated altogether in favor of REMOVE-ALIAS and
UNINTERN, or both.

9 APPLICATIONS
So far hierarchical symbols might seem just a cool feature, a bizarre
experiment or a hack for the sake of hacking. In our opinion, they
make packages "better citizen" in a world where everything is a
first-class object and can be created, manipulated and discarded
at will. They also arguably (if we don’t consider the backwards-
compatibility complexities) provide a better, more consistent design

of symbols as "things that give names to things", all the way down.
However, they have practical applications, too. Here we propose
one and hint at a few others.

9.1 A File System Facility
Common Lisp’s pathnames are another frequently debated feature
that is known to have made most users scratch their heads in
confusion. Here we propose a simple library that provides an easier
API for basic pathname usage, leveraging hierarchical symbols.
This example will show how hierarchical symbols are a versatile
feature that allows to represent all sort of hierarchical names in the
language and will showcase some of the functions supporting our
new symbols.

The key idea of this small library is to represent pathnames as
symbols. One canmount a physical pathname, with its implementation-
dependent syntax, to a given symbol. Then one can construct related
pathnames by interning symbols in it and so on recursively, without
setting up complex translations, manipulating strings or using the
awkward Lisp pathnames API. When done with it, one can also
unmount a symbol, i.e. remove all filesystem-related information
from it.

So by evaluating (mount 'foo (user-homedir-pathname))
one can represent paths such as 'foo::Downloads::virus.exe
(having readtable-case set to :PRESERVE helps as file systems can
be case sensitive). The pathname of a given symbol can be obtained
with the pathname operation:
(pathname 'foo::Downloads::virus.exe)
=> #P"/Users/alessio/Downloads/virus.exe"

Symbols-as-pathnames can be tested for existence, opened for
reading or writing, and operated upon in all the ways supported
by the native Common Lisp pathname facility.

9.2 FFI and Interoperation
There are other areas where having composite, hierarchical names
can be beneficial. One is, of course, interoperation with languages
that themselves have, or simulate, such names. For example, a Java
FFI could allow the following:
(jffi:import 'java:lang:String) ;optionally :as 'java-string
(jffi:new 'String "a string") ;New object creation
(String::valueOf 42) ;Static method call
(String::toCharArray **) ;Instance method call

9.3 Addressing Other Kinds of Paths
Generally, every time we might want to map paths or hierarchies
to symbolic data, hierarchical symbols can offer an advantage. For
example:

• JSON or XML paths (XPath)
• mapping objects to database systems (e.g., schema:table:column)
• representing URL’s and network path
• invoking remote functions, services, procedures

10 IMPLEMENTATION
An implementation of the above concepts and a few support func-
tions has been realized on Armed Bear Common Lisp (ABCL). ABCL
is a Common Lisp running on the JVM, written in a combination

Symbols as Namespaces in Common Lisp ELS’19, April 01–02 2019, Genova, Italy

of Java and Lisp and with a significant amount of code inherited
from CMUCL/SBCL.

The result is a working ABCL that has the symbol data type
described earlier and fails the same ANSI tests it failed before the
changes. Most modifications involved only 4 files: Symbol.java
(the symbol type), Package.java (the package type), Primitives.java
(primitive functions) and Stream.java (where most of the reader is
defined).

As an additional consequence, ABCL’s serialization of symbols
in FASL files, which was brittle, broke irreparably and was rewritten
to be more solid (basically printing symbols with *print-readably*
bound to T, which causes them to be printed in their absolute form
starting from the root, e.g. :TOP-LEVEL-PACKAGES::COMMON-
LISP::T). However, this causes a certain increase in FASL size and a
deterioration of load times, particularly at startup or when loading
big systems, which are already a pain point in ABCL.

The implementation can be found at https://github.com/alessiostalla/abcl
on the branch hierarchical-symbols.

11 FURTHERWORK
The work here is just a foundation. The implications of hierarchical
symbols in Common Lisp should be analyzed further. In particular,
that there are no read-print inconsistencies in corner cases.

A low-hanging fruit is to enhance our work by providing a
few missing usability features. For example, since symbols can
be aliased, have an :import-from :as option in defpackage/define-
namespace.

A particular area of interest is the porting of the feature to other
Lisp implementations. Implementing it on ABCL has been rela-
tively easy, but it might be just a fortunate case. Also, investigating
whether it is possible to implement this proposal in pure Common
Lisp, with no modifications to the implementation, is a worthwhile
goal.

ACKNOWLEDGMENTS
Thanks to the ABCL developers and the users of the Common Lisp
Professionals mailing list for their insight and experience.

REFERENCES
[1] Zach Beane. Quicklisp beta. URL https://www.quicklisp.org/beta/.
[2] Inc. Free Software Foundation. Gnu emacs lisp reference manual.

URL https://www.gnu.org/software/emacs/manual/html_node/elisp/
Creating-Symbols.html#Creating-Symbols.

[3] Richard P. Gabriel. The structure of a programming language revolution. URL
https://www.dreamsongs.com/Files/Incommensurability.pdf.

[4] Ron Garrett. Lexicons: First-class global lexical environments for common lisp.
URL http://www.flownet.com/ron/lisp/lexicons.pdf.

[5] John McCarthy. Recursive functions of symbolic expressions and their computa-
tion by machine, part i. Commun. ACM, 3(4):184–195, April 1960. ISSN 0001-0782.
doi: 10.1145/367177.367199. URL http://doi.acm.org/10.1145/367177.367199.

[6] John McCarthy. LISP 1.5 Programmer’s Manual. The MIT Press, 1962. ISBN
0262130114.

[7] Kathy; et al. Pitman, Kent; Chapman. The common lisp hyperspec - section
2.3.5 valid patterns for tokens, . URL http://www.lispworks.com/documentation/
HyperSpec/Body/02_ce.htm.

[8] Kent Pitman. The revised maclisp manual (the pitmanual), . URL http://www.
maclisp.info/pitmanual/symbol.html#10.9.1.

[9] Guy L. Steele, Jr. Common LISP: The Language (2Nd Ed.). Digital Press, Newton,
MA, USA, 1990. ISBN 1-55558-041-6.

[10] Unknown. The allegro common lisp documentation - packages, . URL http:
//franz.com/support/documentation/current/doc/packages.htm.

[11] Unknown. Sbcl 1.4 user manual, . URL http://www.sbcl.org/manual/#Package_
002dLocal-Nicknames.

[12] Daniel Weinreb. Lisp Machine Manual. Massachusetts Institute of Technology,
Cambridge, MA, USA, 1981. ISBN B0006Y4UVA.

https://www.quicklisp.org/beta/
https://www.gnu.org/software/emacs/manual/html_node/elisp/Creating-Symbols.html#Creating-Symbols
https://www.gnu.org/software/emacs/manual/html_node/elisp/Creating-Symbols.html#Creating-Symbols
https://www.dreamsongs.com/Files/Incommensurability.pdf
http://www.flownet.com/ron/lisp/lexicons.pdf
http://doi.acm.org/10.1145/367177.367199
http://www.lispworks.com/documentation/HyperSpec/Body/02_ce.htm
http://www.lispworks.com/documentation/HyperSpec/Body/02_ce.htm
http://www.maclisp.info/pitmanual/symbol.html#10.9.1
http://www.maclisp.info/pitmanual/symbol.html#10.9.1
http://franz.com/support/documentation/current/doc/packages.htm
http://franz.com/support/documentation/current/doc/packages.htm
http://www.sbcl.org/manual/#Package_002dLocal-Nicknames
http://www.sbcl.org/manual/#Package_002dLocal-Nicknames

	Abstract
	1 Introduction
	1.1 Symbols
	1.2 Packages

	2 Package Problems
	3 Existing Extensions of the Package System
	3.1 Hierarchical Packages in Allegro Common Lisp
	3.2 Package-local Nicknames in SBCL and Other Lisps

	4 Symbols as Namespaces
	4.1 What We Want to Achieve
	4.2 Backwards Compatibility

	5 The Root Symbol, Keywords and Top-Level Packages: a Problem
	6 An imperfect solution
	7 The Real Solution
	8 Impact on Common Lisp Assumptions
	8.1 DELETE-PACKAGE

	9 Applications
	9.1 A File System Facility
	9.2 FFI and Interoperation
	9.3 Addressing Other Kinds of Paths

	10 Implementation
	11 Further Work
	Acknowledgments
	References

