

AiMES 2018 ECS and SMEQ Joint International Meeting

A Breakthrough in Plating for Solar Cell Metallization

M. Balucani^{1,2} S. Quaranta¹

¹ DIET-Sapienza University of Rome, Via Eudossiana, 18 - 00184 Roma (ITALY), ² Rise Technolgy S.r.l., Lung.re P. Toscanelli 170 – 00121 Roma (ITALY),

-1-

Agenda / Outline / Overview

Introduction

• Solar cell and cost pressure

History and State of the art

- Plating Techniques
- Technology Key Issues of Plating in Solar Cell
- Localized Plating

Our Approach (A Breakthrough in Plating for Solar Cell Metallization)

- DLD/DLM
 - Main results achieved
 - On going work (H2020 AMPERE Project)

Acknowledgement

Conclusions

World wide production capacity > 110GW A solar cell, or photovoltaic cell, is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or

resistance, vary when exposed to light.

Solar Cell

TRPV 2018

+

 $(2028 \sim 7\%)$

 $(2028 \sim 60\%)$

Silicon HeteroJunction (SHJ) Solar Cell $\eta > 22.0\%$

M. Balucani et al.

Technolog

-4-

M. Balucani et al.

-5-

Ag \$/g influences Tremendously solar cell cost

Bi-facial SHJ Ag/cell (5BB) \cong 0.2g \rightarrow 0.14\$/cell $\stackrel{22.5\%}{\rightarrow}$ 0.073 \$/Wp \rightarrow 0.34\$/Wp \rightarrow 21.4%

History and State of the art

Plating Technique in Solar Cell

Before the introduction of alternative metallization techniques, technical issues in reliability and adhesion have to be solved. Appropriate equipment also needs to be available. **(ITRPV)**

Plating key issues

- \triangleright Copper not directly in contact with silicon!!!!! \rightarrow Need Barrier Layer
- Pin-holes and Scratches
- Adhesion (> 1 N/mm)

 \geq

- Speed of Plating \rightarrow Throughput, Space floor and Chemical quantities
 - Drag-out \rightarrow Reduce additive consumption

State of the art

Industrial Plating for Solar Cell

• LIP or LAP

BE Semiconductor Industries N.V.

Meco Direct Plating Line (DPL) (www.besi.com/productstechnology/productgroup/plating/com)

State of the art

Industrial Plating for Solar Cell

• Plating seed layer

Whatever plating industrial technique you you use is necessary to use Protective MASK

PIXDRO JETX P Inkjet printing equipment for solar cell fabrication

Alternative to printing: Apply a film and open it by laser

State of the art

Plating Issues

- Mask + Plating $\approx Ag$
- Adhesionto siliconto TCO
- Speed of plating.....

Industrial line for 100MWp is: $\approx 30 - 45$ m long !!! HUGE FLOOR SPACE!!!!! Solution make-up is >1500 liter

Acknowledge

This project has received funding from the European Union's Horizon 2020 research

and innovation programme under grant agreement No 745601.

for the funded project AMPERE.

