

AiMES 2018 ECS and SMEQ Joint International Meeting

A Breakthrough in Plating for Solar Cell Metallization

M. Balucani^{1,2} S. Quaranta¹

¹ DIET-Sapienza University of Rome, Via Eudossiana, 18 - 00184 Roma (ITALY),
² Rise Technolgy S.r.l., Lung.re P. Toscanelli 170 – 00121 Roma (ITALY),

Agenda / Outline / Overview

• Introduction

- Solar cell and cost pressure
- History and State of the art
 - Plating Techniques
 - Technology Key Issues of Plating in Solar Cell
 - Localized Plating
- Our Approach (A Breakthrough in Plating for Solar Cell Metallization)
 - DLD/DLM
 - Main results achieved
 - On going work (H2020 AMPERE Project)
- Acknowledgement
- Conclusions

• Solar Cell *World wide production capacity > 110GW*

A solar cell, or photovoltaic cell, is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon. It is a form of electrical characteristics, such as current, voltage, photoelectric cell, defined as a device whose or resistance, vary when exposed to light.

TRPV 2018 Al-BSF PERC/PERL/PERT

 $16.0 < \eta < 20.0\%$ Efficiency $19.0 < \eta < 22.5\%$

(2028 ~ 7%) trend for such technolgies $(2028 \sim 60\%)$ +

• Silicon HeteroJunction (SHJ) Solar Cell $\eta > 22.0\%$

• Cost Pressure Increasing Tremendously in SC

• Ag \$/g influences Tremendously solar cell cost

Ag	Ag					
	ІТО					
	a-Si:H (p)					
	a-Si:H (i)					
n-type c-Si wafer						
a-Si:H (i)						
a-Si:H (n+)						
ІТО						
Ag	Ag					

Low temperature Ag paste ≈ 0.7 /g Sheet resistance post <u>curing</u> is not bulk Ag: (Temp < 200° C)

$$5 \frac{m\Omega}{\Box} < R_{sq @25\mu m} < 25 \frac{m\Omega}{\Box} \\ 8.5 \cdot \rho_{Ag bulk} \qquad 42.5 \cdot \rho_{Ag bulk}$$

Specific contact resistance $1m\Omega \cdot cm^2$ to $4m\Omega \cdot cm^2$

Bi-facial SHJ Ag/cell (5BB) $\cong 0.2g \rightarrow 0.14$ \$/cell $\stackrel{22.5\%}{\rightarrow} 0.073$ \$/Wp $\rightarrow 0.34$ \$/Wp $\rightarrow 21.4\%$

History and State of the art

• Plating Technique in Solar Cell

Before the introduction of alternative metallization techniques, technical issues in reliability and adhesion have to be solved. Appropriate equipment also needs to be available. **(ITRPV)**

Plating key issues

- ▷ Copper not directly in contact with silicon!!!!! \rightarrow Need Barrier Layer
- Pin-holes and Scratches
- ➢ Adhesion (> 1 N/mm)
- > Speed of Plating \rightarrow Throughput, Space floor and Chemical quantities
- \triangleright Drag-out \rightarrow Reduce additive consumption

State of the art

Industrial Plating for Solar Cell

• LIP or LAP

BE Semiconductor Industries N.V.

Meco Direct Plating Line (DPL) (www.besi.com/productstechnology/productgroup/plating/com)

ECS and SMEQ

Joint International Meeting

State of the art

Industrial Plating for Solar Cell

• Plating seed layer

Whatever plating industrial technique you use is necessary to use Protective MASK

PIXDRO JETX P

Inkjet printing equipment for solar cell fabrication

MEYER BURGER

Alternative to printing: Apply a film and open it by laser

State of the art

Plating Issues

• Mask + Plating

- Adhesion to silicon to TCO
- Speed of plating.....

Industrial line for 100MWp is: ≈ 30 – 45 m long !!! HUGE FLOOR SPACE!!!!! Solution make-up is >1500 liter

!!!!!

M. Balucani et al.

RISE Technology

!!!!!

Is there a possible solution that could solve all these plating issues

Selective Plating Process and a Fast process

Without using RESIT or PHOTORESIST

State of the Art: Localized Plating

Localized electrochemical deposition (LECD)

Static Meniscus

Main Issues:

- No Refreshment of solution
- High current density: strong bubbling
- Base footprint dimension

ECS and SMEQ

Joint International

[R. A. Said Nanotechnology 14 (2003) pp. 523–53]

2.8

3.0

3.2

State of the Art: Localized Plating

Localized electrochemical deposition (LECD)

^{1,2}Microanode guided

Electroplating (MAGE)

Cu deposition rate up to 867 µm/min

Main Issues:

s/und

5.5

- (1) Electrode must be quite close to cathode (i.e. < 50 μ m)
- (2) Very difficult to keep confined the plated area: reduced only for (1) < $5\mu m$
- (3) Necessary to move the micro-anode
- (4) Porous structure due to very low convection contribution

1] E. M. El-Giar et al. Journal of The Electrochemical Society, 147 (2) 586-591 (2000)

2] J.C. Lin et al. Electrochimica Acta 55 (2010) 1888–1894]

State of the Art: Localized Plating

Mass transport of copper ions in the electroplating process is theoretically governed by the Nernst–Planck equation:

$$\boldsymbol{\rho} + \boldsymbol{c}\boldsymbol{v}$$
 [mol s⁻¹ m⁻²]

IBM by Jet plating (1) Record of Cu deposition 50 μm s⁻¹ J=150 A cm⁻²

Not porous and very nice morphology

(1) R. J. von Gutfeld and D. R. Vigliotti, High-speed electroplating of copper using the laser-jet technique, Appl. Phys. Lett. 46, (1985), pp. 1003-1005

~2 µm s⁻¹ Cu deposition rate

WHAT WE LOOK FOR

- Don't want to use resist or photoresist
 - Confined plating
- Want to have fast plating regimes
 - Non-porous structure ... as low as possible !!!
 - Low chemical consumption, small footprint and reasonable make-up (<300 litre)
 - Find a process to guarantee adhesion

Our Approach: DLD

Our Approach: DLM

CANCUN ® MEXICO September 30-October 4, 2018

Dynamic Liquid Multi Drop/Meniscus

DLD/DLM: Problem to solve

Rayleigh Taylor (RT) instability:

CANCUN

ECS and SMEQ

Joint International Meeting

When a heavy fluid is supported by a light fluid, the system is RT unstable

Simulation and Experimental Results

0 W I * * * *	I (μm)	W (μm)	Ο (μm)	Η (μm)	V _{inlet} (ms ⁻¹)	∆р (Ра)	Re _{Liquid}	H _d (μm)
	500	500	500	2000	0,45	1000	437	733
	300	300	300	1000	0,5	1500	291	573
	100	100	100	600	0,8	2000	155	213
	70	70	70	600	0,9	2500	122	187
	50	50	50	300	1	3000	97	118
	30	30	30	200	1,25	3500	73	73
	15	20	20	75	1,5	4000	44	32

ECS and SMEQ Joint International Meeting

0.50 mm 1.76 mm CFD result

Simulation and Experimental Results

	I (μm)	W (μm)	Ο (μm)	Η (μm)	V _{inlet} (ms ⁻¹)	Δр (Ра)
Nozzles operating conditions	500	500	500	2000	0,4	2000
		TEST			CFD	
Dynamic drop height (μm)	570			590		
Dynamic meniscus footprint (μm)	1710			1760		
Air volume flow rate (l/min)	60,5			63,9		

M. Balucani et al.

PV and Cu Pillar Application: Continuous or Stop-Go

Equipment Evolution in Time

2011

2012

2016

2013

https://www.youtube.com/watch?v=xDIsubIi5EM

Search in you tube "meniscuspad"

2014

Jannuary 2019

SAPIENZA UNIVERSITÀ DI ROMA

Micro Nozzles

50 µm

Micro Nozzles

Speed of liquid is in the range of 1m/s

Main results achieved

• Front and back side of c-Si

- Cu on ITO
 - Main Tasks:
 - Adhesion > 1N/mm
 - No damage of SHJ solar cell after ITO processing
 - Quality of metal better than low temp. Ag-paste
 - FF and BB plating without mask
 - Speed of plating \rightarrow Prove industrial feasibility of technique
 - Productivity > 2500 w/h
 - Make-up solution quantity
 - Floor space

200 nm

• Cu on ITO directly

• Adhesion Issue

• Cu on ITO after flash of Ni

• Cu on ITO after flash of Ni

After 2 min @ 200° C

-30-

• Cu (10 μ m) on ITO after flash of Ni

• Evaluation of ITO damage:

Recombination lifetime

Before ITO reduction	After ITO reduction	Reduction in MSA
τ =1054 μs	$\tau = 1079 \ \mu s$	p-side 320 mA 0.1 sec.
$\tau = 749 \ \mu s$	$\tau = 803 \ \mu s$	p-side 200 mA 0.1 sec.
$\tau = 1291 \ \mu s$	τ =1227 μs	p-side 100 mA 0.1 sec.

ITO reduction in MSA solution doesn't affect recombination lifetime leaving the passivation layer intact.

INES	(RF) ITO				
Reduction current		HCl (1 M, 82 gr HCl 37%/L)	MSA (4 M, 250 g pure/L)		
80 mA	0.5 s	427 Ω	263.8 Ω		
80 mA	0.4 s	313.9 Ω	229 Ω		
110 mA	0.3 s	342.1Ω	245.5 Ω		
160 mA	0.2 s	339.7 Ω	227.2 Ω		
320 mA	0.1 s	386.6 Ω	239.1 Ω		
100 mA	0.2 s	239.2 Ω	204.5 Ω		

ECS and SMEG

Joint Internationa

HCI-MSA comparison

MSA is capable of reducing ITO inducing less damage and limiting the corrosion of the formed In-Sn phase

• FF and BB plating **without mask**

Moving down to 50µm FF

• Cu Speed of plating

Current

ECS and SMEQ

Joint International

N.	Imin [ASD] DR [µm/s]	I _{max} [ASD] DR [µm/s]	Fluid Velocity [m/s]	Optimal I [ASD] DR [µm/s]	Cu [g/l]
5	200 0.74	300 1.10	0.17	-	17
3	200 0.74	413 1.53	0.87	200 0.74	17
1	166 0.61	433 1.59	1.04	233 0.86	17
6	200 0.74	300 1.10	1.04	300 1.10	38
7	233 0.86	500 1.84	1.04	366 1.35	45
8	333 1.23	600 2.21	1.04	366 1.35	45

ρ_{Cu}≤ 3.0 μΩ·cm

Testing PRP average J up to 1500ASD

BASF additive for dendrite suppression

High crystallinity (low background, sharp and intense peaks, k_{a2} visible even at high 9).

- High purity (no detectable Cu₂O, Cu(OH)₂,CuO or CuCO₃ phases).
- Large crystallites (over the instrumental resolution \approx 150 nm)
- High density (8.93 g/cm³), substrate (brass) contribution is immaterial.
- Williamson-Hall Plots and Warren-Averbach shows strain in the range 100-200MPa

-34-

Α

6

Industrial Feasibility

Acknowledgement

Italian National Agency for New Technologies, Energy and Sustainable Economic Development

Dr. Mario Tucci and Dr. Massimo Izzi

samples, measurement and discussion

Dr. Jean-François Lerat and Dr. Delfina Munoz

ITO samples and discussion

Dr. Salvatore Lombardo

TEM and discussion

-36-

Conclusion

- Adhesion > 1N/mm
- No damage of SHJ solar cell after ITO processing
- Quality of Cu better than low temp. Ag-paste
- ITO red., Ni and Cu plating NO MASK
- Speed of plating $\rightarrow 1 \mu m/s \rightarrow 2 \mu m/s \rightarrow 10 \mu m/s$
 - Productivity > 2500 w/h
 - Make-up solution ≤ 300 liter
 - Floor space at least 5 times less than state of the art

Breakthrough in Plating for Solar Cell Metallization

