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Abstract—We investigate resolution capabilities of adaptive
thresholding methods in the context of iterative microwave
imaging algorithms. Our test cases involve two closely located
cylindrical targets of high dielectric contrast with respect to
the background in a microwave tomography setup simulated
in CST. We apply a distorted Born iterative method (DBIM),
and compare a two-step iterative shrinkage thresholding (TwIST)
implementation with a conventional conjugate gradient least
squares (CGLS) method as linear solvers at each DBIM iteration.
Our results demonstrate that applying the TwIST approach can
resolve the two closely-located targets much more accurately than
the CGLS under identical settings in the DBIM algorithm.

Index Terms—adaptive thresholding, DBIM, CGLS, TwIST,
microwave imaging.

I. INTRODUCTION

Microwave tomographic methods estimate the spatial dis-
tribution of dielectric properties in a reconstruction region by
solving an electromagnetic (EM) inverse scattering problem
[1]. The success of these methods depends on the deployed
reconstruction algorithms as well as data quality acquired by
the experimental setup [2]. Our previous work has shown good
reconstruction results in a wideband microwave tomography
system via the distorted Born iterative method (DBIM) [3].
The DBIM solves the nonlinear scattering problem iteratively
by applying the Born approximation at each iteration and
solving the resulting linear problem. The approach to this
linear inverse problem is one of the most important factors for
the overall convergence of the DBIM to accurate estimates of
the true dielectric properties in the reconstruction region.

Our previous work has studied the impact of thresholding
methods as linear solvers in DBIM reconstructions of anatomi-
cally complex numerical breast models [4]–[6]. This was done
using data from simplified two-dimensional (2-D) microwave
imaging simulations. This work, on the contrary, considers
simple imaging scenarios of two targets in a homogeneous
background, but uses data from accurate models of our exper-
imental systems in CST’s Microwave Studio simulations. By
placing the two targets at close distance in various locations,
we can assess the ability of our system to resolve them using
the TwIST vs. the CGLS as linear solvers inside the DBIM
iterations.

The remainder of the paper is organized as follows: Section
II reviews our DBIM-TwIST algorithm, while Section III intro-
duces the multi-target model and simulation setup. Section IV
presents the reconstruction results based on the two different

linear inversion strategies, which illustrates the advantages of
DBIM-TwIST approach followed by a Conclusion section.

II. METHODS

A. Distorted Born Iterative Method (DBIM)

The DBIM can solve nonlinear EM inverse scattering
problems iteratively to reconstruct the spatial distribution of
dielectric properties within a region V [7]. It is based on a
approximating the non-linear integral equation which describes
the relationship of the electric field with the continuous spatial
distribution of dielectric properties via the Born approxima-
tion,

Es(rn, rm) = E(rn, rm)−Eb(rn, rm)

= ω2µ

∫
V

Gb(rn, r)Eb(r, rm)(ε(r)− εb(r)dr),

(1)
where E, Es, Eb denote total, scattered, and background
fields, respectively, and Gb is the dyadic Green’s function
for the background medium which can be estimated by
Gb = i

ωµEb [7]. The complex permittivity of the known
background and unknown object are denoted as εb(r) and ε(r),
respectively,and their difference is the contrast function O(r).

B. Two-Step Iterative Shrinkage Thresholding (TwIST)

The TwIST algorithm can be used to solve the linear
problem at each DBIM iteration as a linear inverse problem
(LIP) of estimating the unknown original image vector from
the observation vector via the linear equation Ax = y. Many
approaches to this LIP define a solution to be the minimizer
of a convex objective function,

f(x) =
1

2
‖y −Ax‖22 + λΦ(x) (2)

where Φ is the regularization function and λ is a weighting
parameter.

Iterative thresholding algorithms have been proposed by
many authors within different frameworks [8]–[10]. The
TwIST is based on the algorithm in [11]. This algorithm
presents a method of splitting the matrix to structure a two-
step iterative equation:

xt+1 = (1− α)xt−1 + (α− β)xt + βΓλ(xt)

Γλ(x) = Ψλ(x +AT (y −Ax))
(3)

where α and β are the parameters of the TwIST algorithm and
Ψλ is the denoising function which is based on the regulariza-
tion function Φ. The next estimate xt+1 depends not only on



2
0
0
m
m

15mm

1
0
0
m
m

A1

A2

A3

A4

A5

A6

A7

A8

5mm

1
0
0
m
m

Fig. 1: Schematic of experimental setup modelled in CST
Microwave Studio with eight antennas, the tank and targets.

the current solution xt, as in conventional iterative shrinkage
thresholding algorithms, but also the previous solution xt−1.
In our previous work [5], we have studied the optimization of
the parameters of the TwIST algorithm. The regularizer Φ(x)
has been set as soft-thresholding function: Φ(x) = ‖x‖1.

C. Frequency-hopping

Our recent work has demonstrated that the combination
of multi-frequency information can enhance performance in
terms of both robustness and resolution [6], [12]. In the
frequency hopping approach, the single frequency reconstruc-
tions are performed from low to high frequencies [13]. Our
experimental system can operate in the 1.0-3.0 GHz range
[3]. The inverse problem involving higher contrasts can be
solved better at lower frequencies due to the fact that the non-
linear effect or multiple scattering effects are less pronounced
at lower frequencies. Additionally, at lower frequencies the
inverse problem converges using less number of iterations
and as a result reduced computational time. Therefore, we
used five frequencies in this range (1.2, 1.4, 1.6, 1.8 and 2.0
GHz) with a fixed number of 15 iterations for the first three
frequencies and 20 iterations for 1.8 GHz and 2.0 GHz. For
all reconstructions, cubic voxels of 2.0 mm side have been
used in our imaging algorithm. At the start of the inversion
process at 1.2 GHz, the imaging domain was filled with the
background glycerine-water medium of known properties. The
reconstructed properties at 1.2 GHz were then inserted as the
initial guess for the reconstruction at 1.4 GHz, and so on.

III. SIMULATION SETUP

Our microwave tomography system is based on an eight-
element array comprised of compact and robust printed
monopole antennas operating in 1.0-3.0 GHz when fully im-
mersed in a 90% glycerol-water mixture. The system has been
validated experimentally in our previous work [3], but in this
paper we have modelled the system in CST Microwave Studio
to benchmark performance in the absence of experimental
errors.

Fig. 1 shows the schematic of the CST simulation setup
which consists of two concentric cylindrical tanks with 100
and 200 mm diameter. Fig.2 (a) shows the front and rear views
of the proposed printed monopole. The fabricated antenna is
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Fig. 2: (a) Schematic of the proposed antenna modelled in
CST Microwave Studio. (b) Photo of the fabricated antenna.

shown in Fig.2 (b). We have considered the antenna array
diameter to be 130 mm, which helps maintaining the signal
transmission levels above the noise floor. The targets are water-
filled cylinders of 15 mm diameter placed inside the inner tank.
Signals are recorded first in the homogeneous background
and then with the dielectric cylindrical targets introduced. The
simulation results from these cases produce the scattered signal
information, which is used by the algorithm for reconstruction.

IV. RECONSTRUCTION RESULTS

We present 2-D reconstruction results using the TwIST and
CGLS solvers in conjunction with the DBIM. As in our previ-
ous work [3], all these reconstructions use the finite-difference
time-domain (FDTD) method with a convolutional perfectly
matched layer (CPML) boundary condition as forward solver
in the DBIM. We also use a first-order Debye model to capture
the dispersive behaviour of liquids such as the 90% glycerol-
water mixture,

εr(ω) = ε∞ +
εs − ε∞
1 + jωτ

− j σs
ωε0

(4)

where ε∞, ∆ε, σs, and τ are the four parameters of the single-
pole Debye model. We assume that the relaxation time con-
stant τ is known and invariant with position, and reconstruct
the Debye parameters which can then be used to calculate
the resulting complex permittivity inside the reconstruction
domain.

Fig.3 presents reconstructions of the targets depicted in Fig.
1 using the DBIM-TwIST and DBIM-CGLS algorithms. The
actual real and imaginary permittivity values of the water
targets at 1.2 GHz are ε′=78.6 ,ε′′=4.8. For the DBIM-TwIST
algorithm applied in the top row, both targets are detected
and localised, and the estimated values are close to the actual,
except for the imaginary part of the water target. For the CGLS
algorithm applied in the bottom row, targets are not resolved
well and appear as a single extended target, or with many
artefacts around them.

To test further the ability of our algorithm to resolve
close targets, we have considered additional CST models of
varying targets distance. Fig.4 shows the top view of two CST
simulation setups. The distances between the centres of the two
targets in Fig.4 (a) and (b) are 40 and 20 mm, respectively.
Fig.5 presents reconstructions of the permittivity’s real part
from the DBIM-TwIST and DBIM-CGLS algorithms for the
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Fig. 3: Reconstructed real (left) and imaginary (right) part of
the complex permittivity for the region inside the antenna array
of Fig. 1. The top row corresponds to the TwIST algorithm,
and the bottom row to CGLS. The complex permittivity was
calculated at 1.2 GHz from the Debye parameters which were
reconstructed using frequency hopping at 1.2, 1.4, 1.6, 1.8 and
2.0 GHz.
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Fig. 4: Top view of two CST simulation models with varying
target distance.

models of Fig.4. The top row corresponds to the TwIST
algorithm, while the bottom row corresponds to the CGLS.
It is again clear from these images that the TwIST outerper-
forms the CGLS in resolving the two targets for these two
different scenarios, and is also quantitatively more accurate in
estimating the dielectric constant of the targets.

V. CONCLUSION

We have considered 2-D microwave imaging scenarios
based on CST simulation models of our experimental mi-
crowave tomography system to compare the TwIST and CGLS
solvers in conjunction with the DBIM algorithm. The purpose
of this study was to demonstrate that thresholding methods
such as the TwIST can enhance resolution compared to tradi-
tional approaches such as the CGLS. Our results have shown
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Fig. 5: Reconstructed real part of the complex permittivity for
the CST setups of: (left) Fig. 4(a), and (right) Fig. 4(b). The
top row corresponds to TwIST algorithm, and the bottom row
to the CGLS. The complex permittivity was calculated at 1.2
GHz from the Debye parameters which were reconstructed
using frequency hopping at 1.2, 1.4, 1.6, 1.8 and 2.0 GHz.

that the TwIST can resolve two closely located targets in in
three different cases where the CGLS fails . A more extensive
study including experimental results will be presented at the
conference.
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