

Machine learning assisted seismic interpretation

An integrated workflow for structural/stratigraphic interpretation, combined with reservoir characterisation

Behzad Alaei, Steve Purves, Eirik Larsen, and Dimitrios Oikonomou

Artificial Intelligence / Machine Learning

Computer Vision

Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow https://github.com/matterport/Mask_RCNN

Al is Changing Geoscience Work

Enablers

William and the second

Outline

Seismic to well tie

Automatic seismic interpretation: Horizon picking

Fault identification and extraction

Geobody extraction

Property predictions

Uncertainty

Seismic to well tie

Automated Seismic Interpretation Horizon picking

Workflow for lithostratigraphic picking:

Labels: Geological intervals and

ML Algorithm: Volumetric classification of stratigraphic units units using deep neural networks

Output:

- Stratigraphic containers
- Extract surfaces as interfaces between units

Example labels

Inline Prediction

Automated Seismic Interpretation Norwegian Barents Sea

stratigraphic interpretation

Automated Seismic Interpretation Norwegian Barents Sea

Stratigraphy:

- Stratigraphic intervals as volumetric containers
- Interface surface gridding to produce horizons

Automated Seismic Interpretation Norwegian Barents Sea

Structural interpretation-Fault imaging

Workflow for Fault Interpretation:

Labels:

- Fault sticks
- Line drawings & images

ML Algorithm:

 Deep Fully Convolutional Networks

Output:

- Segmented Fault Volumes
- Fault Orientation Volumes

Automated Seismic Interpretation

Fault interpretation

Deep Learning Model

trained on manual fault picks on 15 inlines

(below) representative labels from a different line

ASI and geobody extraction

Gully Systems

Potential stratigraphic traps

Complex geomorphology

Varying infill response

Extensive and very difficult to pick

Reproduced with permission from <u>Mattos, Alves</u> & Scully 2018

ASI and geobody extraction

Approach

Labels:

- Order of 25 inlines over a cropped area

ML Algorithm: Deep Fully Convolutional Network with MonteCarlo Dropout

Output:

- Volumetric Geobodies

Reproduced with permission from Mattos, Alves & Scully 2018

The Objective

$HCIIP = GRV \times N/G \times POR \times S_{hc} / FVF$

- **HCIIP** = hydrocarbons in place*
- **GRV** = gross rock volume
- N/G = net / gross ratio
- POR = porosity
 - = hydrocarbon saturation
- **FVF** = formation volume factor

*of oil, solution gs, free gas, condensate and normal surface conditions

Interpretation of complex geobodies

hard-to-track basal surfaces

Manual (point) interpretation in traditional software takes time and is prone to errors

Interpretation of complex geobodies

hard-to-track basal surfaces

Manual (point) interpretation in traditional software takes time and is prone to errors

Gridding of manual (point) interpretation suffers from picking inconsistency

Gullies Labels

Gullies Labels & Predictions

Gullies Prediction

XL 4980

Property predictions

Quantitative interpretation

• Labels:

- Continuous property logs (e.g. porosity, water saturation, and lithology) at wells
- Features:
 - Full and partial stacks
 - Interval velocity volumes
 - Attributes
- ML Algorithm
 - Deep fully convolutional neural network
- Output
 - 3D volumes of properties
 - 3D litho_fluid volumes

Predicting rock- and fluid-properties from 3D seismic

ML-derived 3D porosity model inferred from seismic traces; near, mid, far and seismic attributes

3D porosity volume Arenaria Barents Sea

3D porosity volume Arenaria Barents Sea

3D porosity volume Arenaria Barents Sea

3D porosity volume Sleipner Vest North Sea

3D multiclass lithology volume Sleipner Vest North Sea

