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Artificial Intelligence / Machine Learning

Computer Vision
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow
https://github.com/matterport/Mask_RCNN



AI is Changing Geoscience Work 



Enablers







Outline
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Seismic to well tie

Automatic seismic interpretation: Horizon 
picking

Fault identification and extraction

Geobody extraction

Property predictions

Uncertainty



Seismic to well tie
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Automated Seismic Interpretation
Horizon picking
Workflow for lithostratigraphic picking:

Labels: Geological intervals and 

ML Algorithm: Volumetric 
classification of stratigraphic units 
units using deep neural networks

Output: 
● Stratigraphic containers
● Extract surfaces as interfaces 

between units
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Example labels Inline Prediction



Automated Seismic Interpretation Norwegian Barents Sea
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stratigraphic interpretation



Stratigraphy:

● Stratigraphic intervals 
as volumetric 
containers

● Interface surface 
gridding to produce 
horizons

  



  



Structural interpretation-Fault imaging

Workflow for Fault Interpretation:

Labels:
● Fault sticks
● Line drawings & images

ML Algorithm:
● Deep Fully Convolutional 

Networks

Output:
● Segmented Fault Volumes
● Fault Orientation Volumes
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Automated Seismic Interpretation
ّFault interpretation Deep Learning 

Model
trained on manual 
fault picks on 15 
inlines

(below) representative 
labels from a different 
line



Fault interpretation Arenaria Barents Sea
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Fault interpretation Arenaria Barents Sea
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Fault interpretation Arenaria Barents Sea
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Fault interpretation Arenaria Barents Sea
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Fault interpretation Arenaria Barents Sea
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Fault interpretation Arenaria Barents Sea
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Reproduced with permission from Mattos, Alves 
& Scully 2018 

Gully Systems

Potential stratigraphic traps

Complex geomorphology

Varying infill response

Extensive and very difficult to pick

ASI and geobody extraction

https://www.researchgate.net/profile/Nathalia_Mattos4/publication/327328738_Structural_and_depositional_controls_on_Plio-Pleistocene_submarine_channel_geometry_Taranaki_Basin_New_Zealand/links/5ba8ad4d299bf13e6048339c/Structural-and-depositional-controls-on-Plio-Pleistocene-submarine-channel-geometry-Taranaki-Basin-New-Zealand.pdf
https://www.researchgate.net/profile/Nathalia_Mattos4/publication/327328738_Structural_and_depositional_controls_on_Plio-Pleistocene_submarine_channel_geometry_Taranaki_Basin_New_Zealand/links/5ba8ad4d299bf13e6048339c/Structural-and-depositional-controls-on-Plio-Pleistocene-submarine-channel-geometry-Taranaki-Basin-New-Zealand.pdf
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Reproduced with permission from Mattos, Alves 
& Scully 2018 

Approach
Labels:

● Polygons drawn on inline sections
● Order of  25 inlines over a cropped area

ML Algorithm: Deep Fully Convolutional Network 
with MonteCarlo Dropout

Output:
● Volumetric Geobodies
● Probabilistic Volumes Mean/Variance

ASI and geobody extraction

https://www.researchgate.net/profile/Nathalia_Mattos4/publication/327328738_Structural_and_depositional_controls_on_Plio-Pleistocene_submarine_channel_geometry_Taranaki_Basin_New_Zealand/links/5ba8ad4d299bf13e6048339c/Structural-and-depositional-controls-on-Plio-Pleistocene-submarine-channel-geometry-Taranaki-Basin-New-Zealand.pdf
https://www.researchgate.net/profile/Nathalia_Mattos4/publication/327328738_Structural_and_depositional_controls_on_Plio-Pleistocene_submarine_channel_geometry_Taranaki_Basin_New_Zealand/links/5ba8ad4d299bf13e6048339c/Structural-and-depositional-controls-on-Plio-Pleistocene-submarine-channel-geometry-Taranaki-Basin-New-Zealand.pdf
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The Objective

Roof Rock

Oil Water Contact

HCIIP = GRV x N/G x POR X Shc / FVF

HCIIP = hydrocarbons in place*

GRV = gross rock volume

N/G = net / gross ratio

POR = porosity

Shc = hydrocarbon saturation

FVF = formation volume factor

*of oil, solution gs, free gas, condensate and normal surface conditions
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Interpretation of 
complex geobodies

hard-to-track basal 
surfaces

Manual (point) 
interpretation in 
traditional software 
takes time and is 
prone to errors
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Interpretation of 
complex geobodies

hard-to-track basal 
surfaces

Manual (point) 
interpretation in 
traditional software 
takes time and is 
prone to errors

Gridding of manual 
(point) interpretation 
suffers from picking 
inconsistency
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Gullies Labels

Xl4910 - crop



Gullies Labels & Predictions
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Gullies Prediction
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XL 4980

XL 4980



Property predictions

● Labels:
○ Continuous property logs (e.g. 

porosity, water saturation,  and 
lithology) at wells 

● Features:
○ Full and partial stacks
○ Interval velocity volumes
○ Attributes

● ML Algorithm
○ Deep fully convolutional neural 

network
● Output

○ 3D volumes of properties
○ 3D litho_fluid volumes
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Tied Seismic 
Wells

Depth => Time
Well Sampling => Seismic Sampling

(Domain Transfer)

Sparse Digitised Property  Target 
Labels(on SEGY Grid)

Quantitative interpretation



ML-derived 3D porosity model
inferred from seismic traces; 
near, mid, far and seismic attributes

Predicting rock- and fluid-properties from 3D seismic
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3D porosity volume Arenaria Barents Sea
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3D porosity volume Arenaria Barents Sea
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3D porosity volume Arenaria Barents Sea
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3D porosity volume Sleipner Vest North Sea
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3D multiclass lithology volume Sleipner Vest North Sea

coal

limestone

sandstone

claystone
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Deep Learning ASI with 
Uncertainty

ML inversion and/or 
contextual queries on ML 
derived POR logs

Contextual queries on 
analogous field data

ML inversion and/or 
contextual queries on ML 
derived SHC logs

ML inversion and/or 
contextual queries on ML 
derived N/G logs

Monte Carlo simulation 
based on below 
distributions

Uncertainty 





twitter: @earth_analytics

web: earthanalytics.ai


