

The OpenAIRE Research Graph Data Model

Version: 1.3 Release date: 17th of April, 2019

Authors: Paolo Manghi, Alessia Bardi, Claudio Atzori, Miriam Baglioni, Natalia Manola, Jochen
Schirrwagen, Pedro Principe

Contributors: Michele Artini, Amelie Becker, Michele De Bonis, Nikos Houssos, Katerina Iatropoulou,
Antonis Lempesis, Aenne Loeden, Stefania Martziou, Eloy Rodrigues

1 Institute of information science and technologies - CNR, Pisa, Italy
2 Interdisciplinary Centre for Mathematical and Computational Modelling - Warsaw, Poland
3 University of Minho - Minho, Portugal
4 BIelefeld University - Bielefeld, Germany
5 National Documentation Centre (EKT) - Athens, Greece
6 Athena Research & Innovation Center - Athens, Greece

Summary The purpose of the European OpenAIRE infrastructure is to facilitate, foster, support, and
monitor Open Science scholarly communication in Europe. The infrastructure has been operational
for almost a decade and successful in linking people, ideas and resources in support of the
free flow, access, sharing, and re-use of research outcomes. To this aim it offers dissemination
and training on Open Access and Open Science, facilitates exchange of knowledge, and operates the
technical services required to facilitate and monitor Open Science publishing trends and
research impact across geographic and discipline boundaries. OpenAIRE services populate a
research graph whose objects are scientific results, organizations, funders, communities,
organizations, and data sources. In this article we describe the data model, inspired by several
existing metadata standards.

https://www.cnr.it/en/institute/074/institute-of-information-science-and-technologies-alessandro-faedo-isti
http://icm.edu.pl/en/
http://icm.edu.pl/en/
https://www.uminho.pt/
https://www.uni-bielefeld.de/
http://www.ekt.gr/en
https://www.athena-innovation.gr/
http://icm.edu.pl/en/

Table of Content

Introduction 3

Rationale and background 3
CERIF influence 3
OpenAIRE Guidelines 4

The Data Model 5
General Concepts 5

OpenAIRE and the CERIF semantic layer 6
OpenAIRE entities, relationships and types 7

Core Entities 7
Core entity: Object 9
Core entity: Datasource (isA Object) 9
Sub-entity: OpenDOAR Datasource (isA DataSource) 10
Sub-entity: re3Data Datasource (isA Datasource) 10
Core entity: Organization (isA Object) 11
Core entity: Funder (isA Organization) 12
Core entity: Funding Stream 12
Core entity: Project (isA Object) 13
Core entity: Result (isA Object) 14
Sub-entity: Literature (isA Result) 16
Sub-entity: Datasets (isA Result) 16
Sub-entity: Software (isA Result) 16
Sub-entity: Other research product (isA Result) 16
Core entity: Communities 17

Linking entities 18
Linking entity: Result_Organization 18
Linking entity: Datasource_Organization 18
Linking entity: Project_Organization 18
Linking entity: Result_Project 19
Linking entity: Result_Result 19

Structured Types 19
Structured Type: Person 19
Structured Type: Creator 19
Structured Type: Provenance 20
Structured Type: Qualifier 20
Structured Type: Instance 20
Structured Type: Structured 21

Future extensions to the data model 22
Core entity: Person 22
Linking entity: Result_Person 22

Linking entity: Person_Person 23
Linking entity: Person_Project 23

Introduction

The purpose of the European OpenAIRE infrastructure is to facilitate, foster, support, and monitor
Open Science scholarly communication in Europe. The infrastructure has been operational for
almost a decade and successful in linking people, ideas and resources in support of the free
flow, access, sharing, and re-use of research outcomes. On the one hand, OpenAIRE
manages and enables an open and participatory network of people willing to identify the
commons and forums required to foster and implement OpenScience policies and practices in
Europe and globally. On the other hand, it supports the technical services required to facilitate
and monitor Open Science publishing trends and research impact across geographic and
discipline boundaries. Such services collect bibliographic citation metadata from various Internet
sources (e.g. libraries, publication repositories, publishers, author directories) and populate a
research graph whose objects are scientific results, organizations, funders, communities,
organizations, and data sources.

OpenAIRE started its mission back in 2009 focusing on monitoring the uptake of the EC Open Access
mandes for publications. Over the years, the aim of the project followed the trends of the the research
environment to naturally shift towards Open Science. Open Science scholarly communication grounds
on transparency and reproducibility of science, which cannot be achieved without publishing all
results of science. For such a reason, the OpenAIRE data model was updated to introduce the notion
of research community and research datasets, research software, and “other products”. As a result,
OpenAIRE can populate a research graph enabling monitoring of Open Science evolution, research
trends, and research impact, for funders and organization. In this article we describe the current data
model, inspired by several existing metadata standards, and how it matches this vision.

Rationale and background

The OpenAIRE data model describes structure and semantics of a research graph intended to:

● Enable citation and interlinking of scientific results across disciplines;
● Provide funders with statistics about the uptake of their Open Access mandates;
● Support research communities at publishing, interlinking, and discovering all kinds of scientific

results in respect of their community practices (e.g. vocabularies);
● Reporting research impact and research trends for funders and institutions;
● Keep track of provenance of each object, property or relationship in the graph (e.g. data

sources from which information is collected, algorithms inferring the information, system users
providing the information).

The model addresses all such requirements and takes inspiration from two main initiatives: the CERIF
data model and the OpenAIRE guidelines. In the following we present what they are and how they
contributed to the model.

CERIF influence
Due to its CRIS-like nature, the OpenAIRE data model took inspiration from the CERIF data model.

CERIF is a conceptual model of the research domain, typically applied in Common Research 1

Information Systems (CRIS). It captures research results (publications, patents, products – the latter
covering datasets, software and other types of output) as well as entities constituting the research
context, like persons, organizations, projects, funding programmes, facilities, services.

Among several others, a key feature of CERIF is the ability to represent semantic relationships (e.g.
person-publication, organization-project, project-funding programme). Relationships in CERIF are
called link entities and contain temporal information specifying the date range within which a specific
semantic relationship applies, for example person A was coordinator of project X between
01-Feb-2012 to 29-Jun-2012. The semantics of each relationship instance (e.g. the role of a person in
a project) and the associated vocabularies (i.e. potential values for roles) are not static components of
the CERIF entity structure, but can be dynamically injected into a CERIF database. This is
accomplished using the CERIF Semantic Layer, which enables the specification and maintenance of
controlled vocabularies, called classification schemes, and their terms, called classes, as well as their
association with entities. CERIF is able to represent any vocabulary structure (e.g. thesaurus) and the
mapping among terms in different vocabularies. The semantic layer is also used to directly represent
classifications of CERIF entities, example.g. terms from a subject classification vocabulary can be
assigned to a publication, organisations can be typed. While a CERIF-based system is extensible to
include any vocabulary, a set of common vocabularies is published as a separate component of the
CERIF standard. The design and structure of the semantic layer facilitates the generation of Linked
Open data from CERIF databases, which is being standardized by the Linked Open Data Task Group
of euroCRIS.

The OpenAIRE data model has adopted linked entities as a tool to flexibly include new semantics
without updating the model, and therefore the applications operating over such model. Other features
were instead disregarded for the moment (e.g. multilinguality, multiple funders for projects) while
finding a balance between development and maintenance cost, ability to collect information matching
the model (over-representation), matching application requirements, and the usual system delivery
deadlines.

OpenAIRE Guidelines

The description, citation and indexing of scientific results require a consistent use of metadata schemas
that make scientific results findable and accessible across infrastructure boundaries, ensuring sharing and
reuse of research in a transparent and reliable manner. The OpenAIRE Guidelines for Content Providers
describe different types of research artifacts, specifying basic metadata fields, vocabularies, protocols, and
illustrating best practices that come from the library world, the research data world, and the world of
research software, while covering the recent trends in research infrastructures. They are well fitted to
bridge the interoperability gaps between research infrastructures at large, their implementation being the
stepping-stone for a linked data infrastructure for research, providing a 3600 contextual view of research. In
particular, OpenAIRE offers five different sets of Guidelines for content providers covering a variety of
research repository classes:

● The Guidelines for Institutional and Thematic Repositories and Publishing Platforms are based
primarily on the description of research literature. They are intended to guide repository managers
to expose metadata of all scientific publications including, whenever applicable, references to
research projects and EU or other funders.

● The Guidelines for Data Archive Managers are based on the description of research data. They
use the well-established DataCite metadata schema, provide extensions of metadata properties
and controlled vocabularies where necessary and, describe how to interpret these metadata

1 https://www.eurocris.org/cerif/main-features-cerif

https://www.openaire.eu/openaire-releases-guidelines-for-the-scientific-content-providers-in-eosc-hub?idU=1
http://openaire-guidelines-for-literature-repository-managers.readthedocs.io/
https://guidelines.openaire.eu/en/latest/data/index.html
https://schema.datacite.org/

properties according to the nature of the respective research product. They specifically facilitate
the linking of research data to publications, software and other research products.

● The Guidelines for Software Repository Managers provide orientation for the description of
software products. These give immediate visibility of software as a “citable research product”,
having been defined with a pragmatic approach, keeping mandatory properties to the minimum,
focusing on properties for citation (attribution and access), and having the possibility for future
addition of properties, while disregarding discover-for-reuse properties. Such set of guidelines has
been inspired by several initiatives and/or endorsed by the following initiatives” Force 11 Software
Citation Principles, DataCite, OpenMinTed SHARE-OMTD, Codemeta initiative, DOE CODE
initiative.

● The Guidelines for Other Research Products (ORPs) focus on the description of research products
different from literature, data and software such as research services, protocols, workflows,
methods, virtual appliances etc. provided they are available in open access or linked to a
publication, project or research community in OpenAIRE.

● The Guidelines for CRIS Managers are designed to map comprehensive research information
using the CERIF standard. By implementing then, CRIS managers support the inclusion and
therefore the reuse of metadata in their systems within the OpenAIRE infrastructure. For
developers of CRIS platforms, the Guidelines provide guidance to add supportive functionalities for
CRIS managers and users. Finally, it is worth noting that exchange of information between
individual CRIS systems and the OpenAIRE infrastructure is an example of point-to-point data
exchange between CRIS systems, since the OpenAIRE infrastructure is itself a CRIS system.

Since we expect the data model to represent all properties that are requested to the data sources of
OpenAIRE, entities in the model match the guideline properties. Literature, software, datasets, and ORPs
results have common properties represented in the Result entity and the specific ones in the relative
sub-types.

The Data Model

General Concepts
The main entities of the OpenAIRE information space are: research results (datasets, literature,
software and other types of research products), organisations, funders, funding streams, projects, and
data sources (aka content providers).

Research results represent outcome of research activities that may be funded via a research project.
OpenAIRE initially proposed two kinds of results: datasets (e.g., experimental data, software
products) and publications. Based on common practices of scientists and to foster the adoption of
Open Science principles, OpenAIRE included research software as a research result and a generic
other research product (ORP) category for different types of research outputs. It is worth noticing that
scientific products are intended to evolve: whenever a sub-category of ORP shows to have a critical
mass in terms of usage, the OpenAIRE data curation board may decide to elect it as a “first-class
citizen” of the model, at the same league of publications, datasets, and software.

In the real world, research results have typically different “manifestations” (i.e. physical
representations). For example, the same publication may be deposited by its authors in different
repositories, exposing payload files (e.g., PDF) and with different access right (e.g. OA and non-OA).
OpenAIRE applies deduplication to detect such duplicates and create one result representing their
merge. Each manifestation is called instance, is associated with the original data source, and is part
of the representative result. The result will contain details of the instances and also include the merge
of the instance properties to build a potentially richer record.

Organizations include companies, research centers or institutions involved as project partners or as

http://software-guidelines.readthedocs.io/
https://www.force11.org/software-citation-principles
https://www.force11.org/software-citation-principles
https://www.force11.org/software-citation-principles
https://schema.datacite.org/
https://schema.datacite.org/
https://guidelines.openminted.eu/guidelines_for_providers_of_sw_resources/recommended_schema_for_sw_resources.html
https://guidelines.openminted.eu/guidelines_for_providers_of_sw_resources/recommended_schema_for_sw_resources.html
https://github.com/codemeta/codemeta/blob/master/crosswalk.csv
https://github.com/codemeta/codemeta/blob/master/crosswalk.csv
https://github.com/doecode/software-metadata
https://github.com/doecode/software-metadata
http://guidelines-other-products.readthedocs.io/
http://openaire-guidelines-for-cris-managers.readthedocs.io/
https://www.eurocris.org/cerif-cornerstone-creation-research-information-infrastructures

responsible of operating data sources. Information about organizations are collected from funder
databases like CORDA, registries of data sources like OpenDOAR and re3Data, and CRIS systems.
Of crucial interest to OpenAIRE is also the identification of the funders (e.g. European Commission,
WellcomeTrust, FCT Portugal, NWO The Netherlands) that co-funded the projects that have led to a
given result. Funders can be associated to a list of funding streams (e.g. FP7 and H2020 for the EC),
which identify the strands of fundings comprised by the funding stream. Funding streams can be
nested to form a tree of sub-funding streams, and projects are typically associated to the funding
stream “leaves” of such trees.

Finally, OpenAIRE entity instances are created out of data collected from various data sources of
different kinds, such as publication repositories, dataset archives, CRIS systems, etc. Data sources
export information packages (e.g., XML records, HTTP responses, RDF data, JSON) that may contain
information on one or more of such entities and possibly relationships between them. It is important,
once each piece of information is extracted from such packages and inserted into the information
space as an entity, for such pieces to keep provenance information relative to the originating data
source. This is to give visibility to the data source, but also to enable the reconstruction of the very
same piece of information if problems arise.

Figure 2 OpenAIRE Data Model.

OpenAIRE and the CERIF semantic layer

According to the CERIF's data model vision: (i) “horizontal” classification of entities (e.g., by
vocabularies of terms) is not modeled through properties associated to given controlled vocabularies
and (ii) semantic relationships between entities are not modeled by adding dedicated relationships. In
both cases, CERIF introduces a flexible modeling mechanism which allows injecting classification
semantics into “semantics-agnostic” entities and relationships. The mechanism is obtained by

introducing two entities Schemes and Classes such that:

● Class A Class represents one term of a classification, e.g., vocabulary, taxonomy, under a
given Scheme. As such it is characterized by the following properties: a Code, which
represents the persistent identifier associated to the term (e.g., real-world classifications, such
as ISO vocabularies for countries, have a standard identification code for terms), a name, an
acronym, a description, a StartDate, and an EndDate.

● Scheme A Scheme identifies the existence of a classification scheme, which is modeled as a
set of Class objects. A Scheme is characterized by the following properties: a Code, which
represents the persistent identifier associated to the Scheme (e.g., real-world schemes, such
as taxonomies, may have a standard identification code), a name, an acronym, a description,
a StartDate, and an EndDate.

According to the CERIF's definition, Classes and Schemes can be themselves interlinked to form
arbitrary complex lattices of Classes and Schemes, respectively. In OpenAIRE we adopt a lighter
interpretation, by introducing the pair Scheme/Class whenever we need to introduce a property of
type Qualifier, i.e. a property whose value comes from a controlled vocabulary, or a relationship
between core entities in the model. Such mechanisms allow to flexibly inject relationship semantics
and vocabularies into the data model.

OpenAIRE entities, relationships and types

The entities in the data model belong to the following categories:

● Core entities: the entities whose information is continuously and incrementally fed to the
information space and is of interest to OpenAIRE end-users; namely Result (Literature,
Dataset, Software, Other products), Organization, DataSource, Projects, Funder, Funding
Stream;

● Linking entities: entities used to model relationships, used to connect in a semantic-agnostic
way two or more main entities; namely, those denoted by an Entity1_Entity2 notation (see
aforementioned CERIF semantic layer).

● Types: types are used to define structured values for entity properties. Structured values differ
from objects in the sense they do not have an identity, i.e. cannot be referred to by
relationships from other objects.

Core Entities

In this section the core entities of the data model are introduced by describing the concept or
real-world entity they represent and introducing their descriptive properties and relationships with
other entities.

Results are intended as digital objects, described by metadata, resulting from a scientific process. Its
sub-entity types are Literature, Dataset, Software, and Other Research Product, which inherit all
Result properties and relationships with other entities and add their specific ones:

● Literature includes all digital research artefacts whose intended use is narrative storytelling of
a research activity and its results. Examples are scientific articles, reports, slides, data papers,
etc. Although there are exceptions, as each scientist has a large degree of freedom in
publishing and interlinking his artefacts, it can be generally assumed that literature artefacts
are published with a narrative intent. For those specific cases where literature is intended for
different use, we in general do not expect scientists to publish such artefacts as literature
artefacts. For example when an article is a carrier of readable datasets (e.g. articles with
tables) the article is often deposited a second time in a data repository, assigned a new DOI,

and marked as a dataset of type “textual”; in the case articles full-texts are used for natural
language processing (NLP), scientists will likely create a dataset of type “collection of articles”.

● Datasets include digital research artefacts encoding experimental or real-world
observations/measures (e.g. primary data), secondary data derived from programmatic
processing of other datasets, or more generally digital representations of facts to be
interpreted by a program. The definition is cross-discipline, hence spans across multiple
interpretations of datasets, where typologies and granularity obey to different scientific facets.
Examples include, but are not limited to: databases (e.g. Worms), records of databases (e.g.
proteins in the UniProt database), table files, queries over databases (time-series slices,
geospatial maps, SQL queries), media (e.g. images, videos) or collections of media.

● Software entities represent research software, i.e. software that is an output of a research
activity. Examples include, but are not limited to: code scripts, web services and web
applications.

● Other research products include any research output that is not literature, data, or software.
Examples include, but are not limited to: algorithms, scientific workflows/pipelines, protocols,
standard operating procedure (SOP), simulations, mathematical and statistical models, but
also research packages. Research packages can group a set of research artefacts, but can
also include the encoding of a composition logic that binds them together. For example, an
instance of a workflow is a package that describes the combination of specific artefacts to
implement a scientific process, execute an experiment, etc.

Communities Communities are intended as groups of people with a common research intent and can
be of two types: research initiatives or research communities. The former are intended to capture a
view of the information space that is “research impact”-oriented, i.e. all products generated due to my
research initiative, the latter “research activity” oriented, i.e. all products that may be of interest or
related with my research initiative. For example, the organizations supporting a research
infrastructure fall in the first category, while the researchers involved in a discipline fall in the second.

Organizations include companies, research centers or institutions involved as project partners or as
responsible of operating data sources. Information about organizations are collected from funder
databases like CORDA, registries of data sources like OpenDOAR and re3Data, and CRIS systems,
as being related to projects or data sources.

Funders, funding streams and projects. Of crucial interest to OpenAIRE is also the identification of
the funders (e.g. European Commission, WellcomeTrust, FCT Portugal, NWO The Netherlands) that
co-funded the projects that have led to a given result. Funders can be associated to a list of funding
streams (e.g. FP7, H2020 for the EC), which identify the strands of fundings. Funding streams can be
nested to form a tree of sub-funding streams. Projects are typically associated to the funding stream
“leaves” of such trees.

Data sources Finally, OpenAIRE entity instances are created out of data collected from various data
sources of different kinds, such as publication repositories, dataset archives, CRIS systems, funder
databases, etc. Data sources export information packages (e.g., XML records, HTTP responses, RDF
data, JSON) that may contain information on one or more of such entities and possibly relationships
between them. For example, a metadata record about a project carries information for the creation of
a Project entity and its participants (as Organization entities). It is important, once each piece of
information is extracted from such packages and inserted into the OpenAIRE information space as an
entity, for such pieces to keep provenance information relative to the originating data source. This is
to give visibility to the data source, but also to enable the reconstruction of the very same piece of
information if problems arise.

Objects Objects are all entities that can be collected form DataSources, for which we need to keep

provenance of collection.

Core entity: Object

Relationship Target Type Multiplicity Description
CollectedFrom Datasource 1..N A Datasource from which metadata of this instance

has been collected (e.g. an aggregator of
institutional repositories)

HostedBy Datasource 1..N The data source that hosts and makes available
the resources of this instance (e.g. an institutional
repository)

The difference between collectedFrom and hostedBy relationships is introduced to model the concept
of Aggregator data sources. Aggregator data sources are themselves aggregating information
packages from a set of data sources; they differ from the data sources they aggregate, but play an
equally important role in delivering the entities to OpenAIRE, and should therefore be given visibility.
Accordingly, in order to guarantee visibility and ROI (Return Of Investment) to all data sources
involved in this chain, when OpenAIRE collects information packages from Aggregators such
packages are characterised by the data source from which they were “collected”, i.e. the aggregator
itself, and the data sources where they were originally "hosted". Note that in the case of other
typologies of data sources (e.g. repositories) collectedFrom and hostedBy refer to the same data
source.

Core entity: Datasource (isA Object)
A Datasource is here intended as the (metadata) description/representation of a provider exporting
(meta)data about scholarly communication results. Based on the typology of the provider and of the
exported material, a Datasource is classified according to the categorization defined by the
vocabulary dnet:datasource_typologies vocabulary. Datasource objects can be registered to the
system by users or their metadata be collected from Datasources of type "Entity Registry".

Property Type Multiplici

ty
Description

Type Structured(-, Qualifier, -) 0..1 Typology of the datasource. For an updated list of
possible typologies refer to the Qualifier.scheme
dnet:datasource_typologies

OpenAIRE compatibility Structured(-, Qualifier, -) 0..1 Compatibility of the datasource with respect to the
OpenAIRE Guidelines. Qualifier.scheme is
dnet:datasourceCompatibilityLevel

Official name Structured(String,-,Provenance) 0..1

English name Structured(String,-,Provenance) 0..1

Web site url Structured(String,-,Provenance) 0..1

Logo url Structured(String,-,Provenance) 0..1

Email contact Structured(String,-,Provenance) 0..1

Namespace Prefix Structured(String,-,Provenance) 0..1

Latitude Structured(String,-,Provenance) 0..1

Longitude Structured(String,-,Provenance) 0..1

Date of validation Structured(Date,-,Provenance) 0..1

Descritpion Structured(String,-,Provenance) 0..1

Subject Structured(String,Qualifier,Proven
a nce)

1..N the scientific discipline covered by the Datasource.
The Qualifier part specifies the subject
classification scheme the value belongs to. The list
of supported subject classification schemes is
defined in Qualifier.scheme
dnet:subject_classification_typologies

Relationship Target Multiplici

ty
Description

responsibleOrganization Datasource_Organization 0..1 The Organization related to this Datasource. For
example, if the Datasource is an institutional
repository, the institution operating the Datasource.
Qualifier class and scheme is
class="isResponsibleFor"
scheme="dnet:datasource_organization_typologies
"

The two major entity registries providing Datasources for literature repositories and data repositories
are, respectively, OpenDOAR and re3data. Datasources collected from those two entity registries
feature more detailed information (see subclasses OpenDOAR Datasource and re3data Datasource).

Sub-entity: OpenDOAR Datasource (isA DataSource)
An OpenDOAR Datasource is a Datasource collected from the OpenDOAR entity registry.
The following properties of an OpenDOAR Datasource are directly mapped from the information
provided by OpenDOAR:

Property Type Multiplici

ty
Description

Number of items Structured(String,-,Provenance) 0..1

Date of number of items Structured(String,-,Provenance) 0..1

Policies Structured(String,-,Provenance) 0..1

Languages Structured(String,-,Provenance) 0..1

Content types Structured(String,-,Provenance) 0..1

Access info package Structured(String,-,Provenance) 0..1

Sub-entity: re3Data Datasource (isA Datasource)
A re3data Datasource is a Datasource collected from the re3data entity registry.
The following properties of a re3data Datasource are directly mapped from the information provided
by re3data:

Property Type Multiplici

ty
Description

Release start date Structured(String,-,Provenance) 0..1

Release end date Structured(String,-,Provenance) 0..1

Mission statement url Structured(String,-,Provenance) 0..1

Data provider Structured(Bool,-,Provenance) 0..1

Service provider Structured(Bool,-,Provenance) 0..1

Database access type Structured(String,-,Provenance) 0..1

Database access restrictions Structured(String,-,Provenance) 0..1

Data upload type Structured(String,-,Provenance) 0..1

Data upload restricitions Structured(String,-,Provenance) 0..1

Versioning Structured(Bool,-,Provenance) 0..1

Citation guideline url Structured(String,-,Provenance) 0..1

Quality management kind Structured(String,-,Provenance) 0..1

PID systems Structured(String,-,Provenance) 0..1

Certificates Structured(String,-,Provenance) 0..1

Policies Structured(Map,-,Provenance) 0..1

Core entity: Organization (isA Object)
An Organization is here intended as the (metadata) description/representation of an organization
involved in the scholarly communication chain, such as companies, research centers and institutions
involved as project partners or as responsible of operating Datasources.
Information about organizations is collected from entity registry data sources providing information
about projects and CRIS systems. Organizations collected from CORDA (datasource for the EC FP7
projects) belongs to a subclass of Organization: CORDA Organization.

Property Type Multiplici

ty
Description

persistentIdentifier Structured(String,Qualifier,-)

Legal short name Structured(String,-,Provenance) 0..1

Legal name Structured(String,-,Provenance) 0..1

Web site url Structured(String,-,Provenance) 0..1

Logo url Structured(String,-,Provenance) 0..1

Equivalent shortnames Structured(String,-,Provenance) 0..N

Equivalent names Structured(String,-,Provenance) 0..N

Relationship Target Multiplici

ty
Description

CollectedFrom Data source 1..N A Datasource from which this Organization has

been collected (e.g. an aggregator of institutional
repositories, an entity registry)

relatedDataSources Datasource_Organization 0..N The Datasources related to this Organization. For
example, if an organization operates an
institutional repositories, then the institutional
repository is a Datasource related to the
organization. Qualifier class and scheme is
class="relatedDataSource"
scheme="dnet:datasource_organization_typologies
"

isParticipantOf Organization_Project 0..N The Projects this Organization
is involved into. Qualifier class and scheme is
class="isBeneficiaryOf"
scheme="dnet:organization_project_typologies"

relatedResults Organization_Result 0..N The Results whose creators are affiliated with the
Organization. Qualifier class and scheme is
class="isRelatedWith"
scheme="dnet:organization_result_typologies"

Core entity: Funder (isA Organization)
A Funder is here intended as the (metadata) description/representation of an Organization that
provides research fundings.

Property Type Multiplici

ty
Description

Jurisdiction Structured(String,Qualifier,-) 1..N Jurisdictions of funders, e.g. the Commission, US
for NSF, countries for National funders

PID Structured(String,Qualifier,Prove
nance)

0..N unique and persistent identifier used to identify the
funder together with the relative identification
agency, e.g. FundRef (not yet used in
OpenAIRE)

Relationship Target Multiplici

ty
Description

Funds FundingStream 1..N Funding Stream of this Funder

Core entity: Funding Stream
Funding Streams identify the strands of fundings comprised by the funding stream. Funding streams
can be nested to form a tree of sub-funding streams, and projects are typically associated to the
funding stream “leaves” of such trees.
Constraint: in order to facilitate the construction of usable user interfaces, the hierarchy can be of at
most three levels starting from the funder.

Property Type Multiplici

ty
Description

Identifier String 1..1
Name String 1..1
Description String 1..1

Relationship Target Multiplici

ty
Description

funded by Funder 1..1

has sub-stream FundingStream 0..N

Core entity: Project (isA Object)
A Project is here intended as the (metadata) description/representation of a research project.

Property Type Multiplicit

y
Description

Project code Structured(String,-,Provenance) 1..1

Title Structured(String,-,Provenance) 1..1

Acronym Structured(String,-,Provenance) 0..1

Call identifier Structured(String,-,Provenance) 0..1

Contract type Structured(String,-,Provenance) 0..1

Keywords Structured(String,-,Provenance) 0..1

Web site url Structured(String,-,Provenance) 0..1

Start date Structured(Date,-,Provenance) 0..1

End date Structured(Date,-,Provenance) 0..1

Duration Structured(String,-,Provenance) 0..1

EC SC39 Structured(Bool,-,Provenance) 0..1 This property is only available for EC funded
projects

OA Mandate Publications Structured(Bool,-,Provenance) 0..1 if EC SC39 exists, this property has the same
value; for H2020 projects this property has value
TRUE;
default value FALSE

Subjects Structured(-, Qualifier, -) 0..N Set of subjects of the project. Controlled
vocabulary to be
specified soon.

EC article29-3 (field to be
confirmed, could be replaced
with a generic mandate field)

Structured(Bool,-,Provenance) 0..1 This property corresponds to the opt-in opt-out
close of the EC Data Pilot; it is only available for
EC H2020 funded projects, for others is set to
FALSE

Relationship Target Multiplicit

y
Description

CollectedFrom Data source 1..N A Datasource from which this Project has been
collected (e.g. an aggregator of institutional
repositories, an
entity registry)

Funded by FundingStream 1..N Funding Stream that funded
this project

hasParticipants Project_Organization 0..N Organizations that are beneficiaries of the
project. Qualifier class and scheme is
class="beneficiaryOf"
scheme="dnet:project_organization_typologies"

funds Result_Project 0..N Results that are co-funded by this
project. Qualifier class and scheme is
class="fundedResult"
scheme="dnet:result__project_typologies"

Core entity: Result (isA Object)
A Result is here intended as the (metadata) description/representation of a scientific output (possibly).
Results has the following sub-entities: Literature, Dataset, Software, and Other Products. Results can
be the representation of the merge of a number of equivalent results.

Property Type Multiplici

ty
Description

Title Structured(String,Qualifier,Prove
nance)

1..N the titles of the Result, each with a typology
represented by a Qualifier and Provenance
information. Qualifier.scheme
is dnet:dataCite_title.

Creator Creator 0..N The list of Creators of the Result

Date of acceptance Date 1..1
Publisher Structured(String,-,Provenance) 0..1

Description Structured(String,-,Provenance) 0..N Contains the Abstract of the
Result

PID Structured(String,Qualifier,Prove
nance)

0..N unique and persistent identifier used to
identify the result together with the relative
identification agency. The identification
agency is expressed in the Qualifier
part. Qualifier.scheme is
dnet:pid_types

Language Structured(-, Qualifier, -) 0..1 the language used in the description or body
of the Result, specified according to the
ISO639 3-letter language codes.
Qualifier.scheme is
dnet:languages

Subject Structured(String,Qualifier,Prove
nance)

0..N the scientific discipline covered by the Result.
The Qualifier part specifies the subject
classification scheme the value belongs to.
The list of supported subject classification
schemes is defined in Qualifier.scheme
dnet:subject_classification_typ
ologies

Instance Instance 1..N An Instance of the Result, which represents a
physical location where the Result files (web
resources entities, possibly identified by DOIs)
can be found

External Reference ExternalReference 0..N A link to an external resource that is not

available as an entity in OpenAIRE. A
reference is described by a web site name, a
web URL, an identifier and the type of
reference (e.g. a protein referred in a
publication is represented as an external
reference to the Protein Data Bank, with type
‘accessionNumber’)

Source Structured(String,-,Provenance) 0..N maps the dc:source element

Context Context 0..N Information about the fundings and/or
research initiatives

related to the Result
Country Structured(-, Qualifier, -) 0..N the countries of the organizations to which the

authors of the Result are affiliated to at the
moment of publishing; values specified
according to the ISO3166
2-letter country codes. Qualifier.scheme is
dnet:countries
Countries of the Organizations that are
affiliations for the result (values are kept in
sync with the country value within
Organizations related with the result).
Countries in this field may also be obtained
from the country associated with Funders or
DataSources, which indirectly indicate the
jurisdiction of the result.

Best Access Rights Structured(-, Qualifier, -) 1..1 The most "Open" license value found among
the Instance s of a Result.
Qualifier.scheme is dnet:access_modes For
Publications the value belongs
to the vocabulary [1]

Relationship Target Multiplici

ty
Description

isFundedBy Result_Project 0..N Links to the Projects that co-funded the
research underlying the
Result. Qualifier class and scheme is
class="isFundedBy"
scheme="dnet:result_project_typologies

hasAmongTopNSimilarDocume
nts/isAmongTopNSimilarDocu
ments

Result_Result 0..N Link to other Result entities considered similar
in content (e.g. similar publications). Qualifier
class and scheme is
class="hasAmongTopNSimilarDocuments/isA
mongTopNSimilarDocuments"
scheme="dnet:result_result_typologies"

hasAuthorInstitution Organization_Result 0..N Links to one or more Institutions that are
affiliations of the author of the result. The
Qualifier class/scheme is:
class="hasAuthorInstitution"
scheme="dnet:result_organization_typologies
"

aggregatedBy Result_Result 0..N Links to an ORP Result that “aggregates” the
result. Qualifier class and scheme is
class="isAggregatedBy"
scheme="dnet:result_result_typologies"

relatedCommunities Community 0..N Link to Community entities to which the

Result is relevant
isVersionOf Result 0..N Link to a Result that is another version of this

Result

[1] Access right ordering: the Best Access Rights is automatically assigned as the "openest" license
available among the licenses of the Instances of the Result based on the following ordering, from the
"openest" to the "closest":
OPEN > 6MONTHS > 12MONTHS > EMBARGO > RESTRICTED > CLOSED > UNKNOWN

Sub-entity: Literature (isA Result)

Literature entities match Result entities. They will be extended to include journal properties.

Sub-entity: Datasets (isA Result)

Literature entities match Result entities.

Sub-entity: Software (isA Result)

Software entities represent research software, i.e. software that is an output of a research activity.
Examples include, but are not limited to: code scripts, web services and web applications.
As subclass of Results, Software inherits all properties and relationships of the Result entity. In
addition, they bear the specific properties in the Table below.

Property Type Multiplicity Description

Contact person
Person

0..n
Information on the person responsible for
providing further information regarding the
resource

Contact group
String

0..n
Information on the group responsible for
providing further information regarding the
resource

Software type

String (for communities the
value is selected from
vocabulary specified by
community)

1..1 Specifies the type of the software being
described

Distribution Location URL 0..N URL of the web location from which the
software can be directly downloaded

Documentation

URL

0..N

URL to a resource that provides useful
information about the software to the
end-users, such as execution tips, FAQs, help
forums, etc.

Programming Language String 0..n Programming language in which the software
is implemented.

Version String 0..1 Version of the software

Tool
String

0..N
IT tool/service that can execute the software.
E.g. if the software is an R script, then it can be
executed by the tool "R Studio".

Distribution Form String 0..N The form in which the software is distributed.
E.g. "source code", "executable", "zip".

Sub-entity: Other research product (isA Result)
The class of Results Other Research Products includes any research output that is not literature,

data, or software. Examples include, but are not limited to: algorithms, scientific workflows/pipelines,
protocols, standard operating procedure (SOP), simulations, mathematical and statistical models, but
also research packages. Research packages can group a set of research artefacts, but can also
include the encoding of a composition logic that binds them together. Such logic must obey to
specification or programming languages, agreed on across the community, and to be interpreted by
humans or machines. For example, an instance of a workflow is a package as it describes the
combination of specific artefacts to implement a scientific process, execute an experiment, etc. It is
worth pointing out that, although strongly recommended and convenient for scientific publishing
practices, artefacts and links specified within a representation of a research package are not
necessarily represented as objects and links in the OpenAIRE research graph.
As subclass of Results, Other Research Product inherits all Result entity properties and relationships
introduced above. In addition, they bear the specific properties and relationships specified below.

Property Type Multiplicity Description

Contact person
Person

0..N
Information on the person responsible for
providing further information regarding the
resource

Contact group
String

0..N
Information on the group responsible for
providing further information regarding the
resource

Distribution Location URL 0..N URL of the web location from which the
research product can be directly downloaded

Documentation URL 0..N URL to a resource that provides useful
information about the product to the end-users.

Version String 0..1 Version of the research product

Tool

String

0..N

IT tool/service that can execute the research
product. E.g. if the product is a Taverna
workflow it can be executed with the Taverna
workbench.

Relationship Target Multiplicity Description

Aggregates Result_Result 0..N

Link the ORP to Result entities aggregated by
the ORP, if any. Qualifier class and scheme is
class="Aggregates"
scheme="dnet:result_result_typologies"

Core entity: Communities
Communities are characterised by the properties and relationships in the Tables below. Several
properties are kept outside of the model, as configuration parameters for the User Interfaces and the
Research Community Dashboard application. They are listed here in a separate table for the sake of
clarity and alignment with other documents.

Property Type Multiplicit
y Description

Name String 1 The name of the community

Relationship Target Multiplicit
y Description

hasRelevantResults Result 0..N Results relevant to the community

Configuration properties Description

relatedSubjects

Controlled vocabularies for types and formats of software
and other research product

Inference parameters

Monitoring parameters

relevantProjects Projects relevant to the community. Kept in configuration
object

hasRelevantDatasource
Datasources whose content is relevant to the community.
Each data source is accompanied by criteria of selection of
the records.

hasRelevantZenodoCommunities

Id of Zenodo communities whose products are relevant for
the community. Each Zenodo Community is accompanied
by criteria of selection of the records.

Linking entities

In line with CERIF, linked entities are introduced to generalize on the notion of relationship between
main entities of the model, in order to flexibly introduce new relationship semantics in the model
without changing its structure. A linking entity explicitly models a relationship and describes it by
means of a provenance property (e.g. when the relationship is inferred) and a Qualifier, to include the
relationship semantics as a term of a controlled by dynamic list of terms (vocabulary).

Property Type Multiplicity Description
Provenance Provenance 1..1

Qualifier Qualifier 1..1

In the following we shall introduce the vocabularies and terms currently available for the linked entities
introduced by the model.

Linking entity: Result_Organization
Currently, only one Qualifier.Scheme is available for Result_Organization relationship named
"dnet:results_organizations_typologies", whose values are:

● hasAuthorInstitution/affiliatedResults: an organization is the affiliation of authors of a result.

Linking entity: Datasource_Organization

Currently, only one Qualifier.Scheme is available for Datasource_Organization relationship named
"dnet:datasources_organizations_typologies", whose values are:

● responsibleOrganization/isResponsibleOf: an organization is responsible for a Datasource
(operation and sustainability)

Linking entity: Project_Organization

Currently, only one Qualifier.Scheme is available for Project_Organization relationship named
"dnet:project_organization_typologies", whose values are:

● isParticipantOf/hasParticipant: an Organization is participant in a Project

Linking entity: Result_Project

Currently, only one Qualifier.Scheme is available for Result_Project relationship named
"dnet:result_project_typologies", whose values are:

● isFundedBy/funds: the result has been co-funded by the project

Linking entity: Result_Result

Currently, only one Qualifier.Scheme is available for Result_Result relationship named
"dnet:result_result_typologies", whose values are:

● hasAmongTopNSimilarDocuments/isAmongTopNSimilarDocuments: r1
hasAmongTopNSimilarDocuments r2 means that Results r1 and r2 are similar and that r2
isAmongTopNSimilarDocuments of r1; r1 isAmongTopNSimilarDocuments r2 means that
Results r1 and r2 are similar and that r2 hasAmongTopNSimilarDocuments of r1;

● isRelatedTo: two results are somehow related to each other. OpenAIRE may further refine the
semantics of possible types of "relatedness" by adding new classes in the Qualifier.scheme
"dnet:result_result_typologies";

● other relationships will be included, such as isCitedBy, isVersionOf,
isAggregatedBy/Aggregates.

Structured Types

Structured Type: Person
The Person type describes the structure of a person in the model, e.g. creators, project contacts.

Property Type Multiplicity Description
Firstname String 0..1

Surname String 0..1

FullName String 1..1

Identifiers Structured(String, Qualifier, -) 0..N A list of identifiers (PIDs) such as ORCID, VIAF,
available for the author. Each value is also
qualified with the PID schema, provided via a
vocabulary of PID schemas.

Structured Type: Creator
The Creator types describes a Person that is the creator of a Result and has a specific ranking, i.e.
order of importance.

Property Type Multiplicity Description
Person Creator 1..1

Rank Number 0..1

Affiliation Organization 0..1

Structured Type: Provenance
Provenance information is always associated to either a property value (e.g. subject property of a
publication) or an object (e.g. a publication).

Property Type Multiplicity Description
Inferred Bool 1..1 TRUE if value is inferred, which includes generated

by
de-duplication process

DeletedByInference Bool 1..1 TRUE if value is logically
deleted by a process

Trust Float(0,1) 1..1 Represents level of trust of the agent that
generated
value/object

Inference provenance String 0..1 Free text specifying information about the agent
that generated the value/object, e.g. algorithm
name and version

ProvenanceAction Qualifier 1..1 terms of this qualifier are to be taken from the
following set
[1]

[1] Provenance actions in OpenAIRE (currently not thoroughly applied across infrastructure services,
needs rethinking and common agreement):

● sys:crosswalk:{data source typology}
● sys:iis:{algorithm name}
● sys:deduplication:{algorithm configuration}
● user:claim:{doi,openaire,orcid}

Structured Type: Qualifier

Property Type Multiplicity Description
Class Id String 1..1
Class Name String 1..1
Scheme Id String 1..1
Scheme Name String 1..1

Structured Type: Instance
Results are always associated to one or more instances of the results, in the sense that different
“manifestations” of the same result may exist and be comprised in the same entity. For example, the
same article may be kept in two different repositories, both exposing the payload file (e.g., PDF) at
different internet locations (URLs). Moreover, an instance of a Result is represented as a combination
of one or more web resources, i.e. URLs to the files of the Result (e.g. article PDFs, dataset files), and
are associated to the data sources hosting such resources (e.g., repositories).
Hence each results points to a list of instances, which are “surrogates” of the equivalent results it
represents. If a result is not the result of a merge of equivalent results, it still has one instance (de
facto replicating its properties).

Property Type Multiplicity Description
Title Structured(String,Qualifier,Prov

enance)
1..N the titles of the Result, each with a typology

represented by a Qualifier and Provenance
information. Qualifier.scheme
is dnet:dataCite_title.

Date of acceptance Date 1..1

Publisher Structured(String,-,Provenance

)
0..1

Description Structured(String,-,Provenance
)

0..N Contains the Abstract of the
Result

PID Structured(String,Qualifier,Prov
enance)

0..N unique and persistent identifier used to identify the
result together with the relative identification
agency. The identification agency is expressed in
the Qualifier
part. Qualifier.scheme is
dnet:pid_types

Access Rights Qualifier 0..1 Maps dc:right, describes the access rights of the
web resources relative to this instance. For
Literature and Dataset the vocabulary is OPEN >
EMBARGO > RESTRICTED > CLOSED >
UNKNOWN

Embargo end-date Date 0..1 Date when the embargo ends; empty if the
licenseClass does
not imply an embargo

Type Qualifier 0..1 Type of the result instance. Values must comply to
controlled vocabularies based on the specific
subclass. For example type of publication
instances must comply to the vocabulary
dnet_publication_resource, while dataset instances
to dnet:dataCite_resource. See also the OpenAIRE
guidelines for dc:type and datacite:resourceType.
In the case of software and other research product,
the value of this property is chosen from a
controlled vocabulary shaped by the community.

WebResource String 1..N URL of the files relative to the instance

Format Structured(String,-,Provenance
)

0..1 Maps the dc:format element, describes the file
format of the web resources relative to this
instance. Guidelines suggest the use of
mime-types.

Structured Type: Structured

A Structured Property may contain a value whose type is injected by its instantiation (e.g.
Structured(String)) and may require the presence of a Qualifier and/or Provenance information. In
order to instantiate value, the types Qualifier and Provenance can be instantiated as exemplified
below:

● Structured(String,Qualifier,Provenance): the type includes a value of type String, which can be
qualified by given Scheme and Class, and also contains provenance information relative to the
value (which process and/or which data source has provided the value);

● Structured(String,-,Provenance): the type includes a value of type String, without a qualifier,
and also contains provenance information relative to the value (which process and/or which
data source has provided the value);

● Structured(-, Qualifier, -): the type does not include a value and relative provenance
information, but only a given qualifier Scheme and Class; in other words, it defines the usage
of a controlled vocabulary.

Property Type Multiplicity Description
Value inherited from type

instantiation
0..1

Qualifier Qualifier 0..1

Provenance Provenance 0..1

Future extensions to the data model

The following entities are under definition and will be included in the model in the future.

Core entity: Person
A Person is here intended as the (metadata) description/representation of a person involved in the
scholarly communication chain, such as scientific publications' authors, contributors, data scientists
and project coordinators.

Property Type Multiplici

ty
Description

First name Structured(String,-,Provenance) 0..1

Family name Structured(String,-,Provenance) 0..1

Full name Structured(String,-,Provenance) 0..1

Fax Structured(String,-,Provenance) 0..1

Email Structured(String,-,Provenance) 0..1

Phone Structured(String,-,Provenance) 0..1

Nationality Structured(-, Qualifier, -) 0..1 Nationality of the person. Qualifier.scheme is
dnet:countries and its classes the standard ISO
3166-1
alpha-2 country codes

PID Structured(String,Qualifier,Prove
nance)

0..N unique and persistent identifier used to identify the
person together with the relative identification
agency. The identification agency is expressed in
the Qualifier part. Qualifier.scheme is
dnet:pid_types

Relationship Target Multiplici

ty
Description

CollectedFrom Datasource 1..N A Datasource from which this has been collected
(e.g. an aggregator of institutional repositories, an
entity registry)

Person_Project Project 0..N The Project this Person is
somehow involved

Person_Result Result 0..N Result related (e.g. authored
by) to this Person

Person_Person Person 0..N Link to other Person entities
(e.g. co-authors)

Linking entity: Result_Person

Property Type Multiplicity Description
Provenance Provenance 1..1

Qualifier Qualifier 1..1

Currently, only one Qualifier.Scheme is available for Result_Person relationship named
"dnet:person_result_typologies", whose values are:

● hasAuthor: the result has been authored by the person
● isAuthorOf: inverse relationship of "hasAuthor"

Linking entity: Person_Person

Property Type Multiplicity Description
Provenance Provenance 1..1

Qualifier Qualifier 1..1

Currently, only one Qualifier.Scheme is available for Person_Person relationship named
"dnet:person_person_typologies", whose values are:

● isCoAuthorOf: relationship between two persons that co-authored a Publication. Currently not
used by OpenAIRE.

● merges: A Person p1 merges p2 when the OpenAIRE de-duplication system identified a group
of duplicate records (that includes p2) and generated a representative record p1 that merges
them all.

● isMergedIn: inverse relationship of "merges"

Linking entity: Person_Project

Property Type Multiplicity Description
Provenance Provenance 1..1

Qualifier Qualifier 1..1

Currently, only one Qualifier.Scheme is available for Result_Project relationship named
"dnet:project_person_typologies", whose values are:

● isContact: the Person is the contact person for the project
● hasContact: inverse relationship of "isContact"

