
Lazy, parallel multiple value reductions in Common Lisp
Marco Heisig

FAU Erlangen-Nürnberg

Cauerstraße 11

Erlangen 91058, Germany

marco.heisig@fau.de

ABSTRACT

Reductions, folds, or catamorphisms are an important component

of every functional programmer’s toolbox. However, common

manifestations of these operators can only operate on a single

sequence at once and don’t have any potential for parallel execution.

We present a new, parallelizable reduction operator that can

simultaneously reduce k arrays at once, using a function with 2k
arguments and k return values. We then discuss an e�cient imple-

mentation of this new reduction operator as part of the Petalisp

project.

CCS CONCEPTS

•So�ware and its engineering →Functional languages; Data

�ow languages; Parallel programming languages; Just-in-time

compilers;

KEYWORDS

Common Lisp, Reductions, Lazy Evaluation, Parallelism

ACM Reference format:

Marco Heisig. 2019. Lazy, parallel multiple value reductions in Common

Lisp. In Proceedings of the 12th European Lisp Symposium, Genova, Italy,

April 01–02 2019 (ELS’19), 6 pages.

DOI: 10.5281/zenodo.2642164

1 INTRODUCTION

�e reduction is one of the most versatile tools of the functional

programmer. Figure 1 de�nes the exemplary reduction operator

fold. Despite its simplicity, it captures the essence of what we �nd

in the standard libraries of Scheme, Haskell, Common Lisp and

many other programming languages: recursive processing of a data

structure and combination of values with a binary function.

(defun fold (f z l)1

(if (null l)2

z3

(fold f (funcall f (first l) z) (rest l))))4

Figure 1: A simple reduction operator: fold.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ELS’19, Genova, Italy

© 2019 Copyright held by the owner/author(s). 978-2-9557474-3-8. . .$15.00

DOI: 10.5281/zenodo.2642164

�e simple four line function in �gure 1 is quite powerful, as

long as we con�ne ourselves to the domain of lists. Depending on

the supplied binary function and initial value, we can express a

variety of concepts:

• sum

(fold #’+ 0 numbers)
• product

(fold #’* 1 numbers)
• maximum

(fold #’max 0 non-negative-numbers)
• reversal

(fold #’cons ’() list)
• �ltering

(fold (lambda (i j) (if (oddp i) (cons i j) j))
’() list)

�e good news is that due to its tail-recursive structure, our

fold function can be run very e�ciently on a serial processor. �e

bad news, however, is that this function is completely unsuited for

execution on parallel hardware. �is gets apparent if we visualize

the data �ow of a particular call, as in �gure 2.

f

f

f

f

z (�rst l)

(second l)

(third l)

(fourth l)

Figure 2: Data-�ow graph of a call to fold.

A call to fold results in a dependency chain that has the same

length as the list being worked on and, consequentially, there is

zero potential for parallel execution. In a world of ubiquitous multi-

core processors, this is a huge and growing problem. Or, as Guy

Steele put it, “foldl and foldr Considered Slightly Harmful”[9].

In this paper, we present a reduction operator that has inher-

ent parallelism, addresses simultaneous reduction of multiple se-

quences and reductions of multi-dimensional arrays.

ELS’19, April 01–02 2019, Genova, Italy Marco Heisig

2 PETALISP

�is work has been developed as part of the Petalisp project[5, 6].

�e goal of Petalisp is to provide a model for data parallel program-

ming that �ts nicely into the existing general purpose programming

language Common Lisp. Petalisp programs are composed of only

a tiny number of core operators — parallel map, parallel reduce,

a�ne-linear data motion and data fusion — and only a single data

structure — the lazy array. Lazy arrays can be evaluated, i.e., turned

into Lisp arrays with the function compute.

As a convenience feature, Petalisp functions implicitly convert

arguments that are regular Lisp arrays to lazy arrays, and converts

all other arguments to lazy arrays of rank zero. Because of this im-

plicit conversion, most of the discussion in this paper can be carried

out without worrying about Petalisp at all, apart from inserting an

occasional call to compute for explicit evaluation.

�e minimalist set of features in Petalisp unlocks a lot of power-

ful optimizations, but means that its programs are fundamentally

limited by the semantics of its core operators. �at is one of the

reasons why we put so much e�ort into the de�nition of parallel

reduction.

3 RELATEDWORK

We do not explicitly list each and every kind of reduction through-

out the computer science landscape, but report only operators that

have either inherent parallelism, or special support for handling

multiple values.

• �e Scheme languages includes a variety of operators for

folding and reducing list elements in SRFI-1[8]. Many of

them can operate on multiple lists at once, in which case

the combining function will receive one argument for the

accumulating value and one argument per list. However,

no special provisions exist for reducing multiple values at

once, and none of the functions is inherently parallel.

• �e parallel programming language NESL[1] permits hi-

erarchical reduction similar to ours, since its language

core supports nested parallel constructs. However, the ad-

vantage of our technique is that it is embedded into the

powerful general purpose language Common Lisp instead

of being a standalone tool. Furthermore, we are not aware

that NESL has capabilities for handling multiple values.

• �e MPI standard[4] for distributed programming includes

primitives for reducing potentially distributed data in par-

allel. It also permits reductions with user-de�ned functions

and, with the right annotations, changes to the order of

evaluation. But all MPI reductions are limited to reducing

a single array with a binary function.

• �e programming model of MapReduce[2] is similar to

the model provided by Petalisp. Here, processes are split

into a Mapper function to express embarrassingly parallel

tasks and a Reducer function describe how data is to be

accumulated. While MapReduce has excellent support for

parallelism, each Reducer function takes only a single key-

value pair and therefore su�ers from the same limitations

as most other reductions.

• Connection Machine Lisp[10] features a syntactic con-

struct for parallel, unordered reduction, named β. �is

construct has not only in�uenced the design of our reduc-

tion operator, it is also the origin of our operator’s name.

4 OUR TECHNIQUE

What follows is the de�nition of our reduction operator β.

function β f array &rest more-arrays → result*

�e supplied function f must accept 2k arguments and return k
values, where k is the number of supplied arrays in array and more-

arrays. All supplied arrays must have the same shape S , which is the

cartesian product of some ranges, i.e., S = r1 × . . . × rn , where each

range rk is a set of integers, e.g., {0, 1, . . . ,m}. �en β returns k
arrays of shape s = r2 × . . .× rn , whose elements are a combination

of the elements along the �rst axis of each array according to the

following rules:

(1) If the given arrays are empty, signal an error.

(2) If the �rst axis of each given array contains exactly one

element, drop that axis and return arrays with the same

content, but with shape s .
(3) If the �rst axis of each given array contains more than one

element, partition the indices of this axis into a lower half

l and an upper half u, such that r1 = l ∪ u and such that

either |l | = |u |, or |l | = |u | + 1. �en split each given array

into a part with shape l × s and a part with shape u × s .
Recursively process the lower and the upper halves of each

array independently to obtain 2k new arrays of shape s .
Finally, combine these 2k arrays element-wise with f to

obtain k new arrays with all values returned by f . Return

these arrays.

4.1 A Simple Example

Let us illustrate this de�nition with a simple example. If we apply

β to a binary function f and a vector with four elements, we start

out with k = 1 and the shape S = {(0), (1), (2), (3)}. We are dealing

with a rank one array, so the result will be a rank zero array.

Since the given array is neither empty, nor has just a single

element, we start out with an application of rule 3. �at means we

split the given array into a lower half with indices {(0), (1)} and an

upper half with indices {(2), (3)} and process each half recursively.

�e lower half is again subject to rule 3 and split into a part with

the sole index {(0)} and one with the sole index {(1)}. Further

recursive processing of each of these one-element arrays results in

an application of rule 2, where the given rank one array are turned

into equivalent rank zero array. �ese rank zero arrays are returned

to the previous application of rule 3, where their sole elements are

combined with the function f to form the content of the rank zero

array that is the value of the lower half. �e upper half is processed

analogously. Finally, these arrays are combined by yet another

application of the function f to obtain the �nal result. Figure 3

illustrates this process.

4.2 Discussion

We will now motivate and justify the individual design decisions

we made when de�ning β.

Lazy, parallel multiple value reductions in Common Lisp ELS’19, April 01–02 2019, Genova, Italy

f

f

(elt a 0) (elt a 1)

f

(elt a 2) (elt a 3)

Figure 3: Data-�ow graph of a call to β on a four element

vector.

Handling of Empty Arrays. It is common for reduction operators

to take an explicit initial element that is returned when processing

an empty sequence. �e function β, however, simply signals an

error for this case. �is behavior is best explained by looking at the

two cases how initial elements are typically used:

In the �rst case, the initial element has the same type as the

elements of the sequence and both arguments of the combining

function therefore have the same type. In this case, it is sometimes

possible to �nd a suitable initial element, e.g., zero for addition. But

in general there is no such element. A prominent example for this

general case is computing the maximum of a sequence of integers.

�e only sane initial element would be −∞, which is not an integer.

In the second case, the initial element has a di�erent type than

the elements of the sequence and, consequently, the arguments of

the combining function must be heterogeneous. In essence, the

initial element acts as an accumulator that is threaded through all

sequence elements sequentially. �is would directly con�ict with

our goal to allow parallel execution. Luckily, there is a suitable

equivalent for accumulation in our β operator, which is to convert

the array of values to an array of accumulators �rst, and to de�ne

the combining function such that it merges given accumulators
1
.

�e di�erence can be seen in �gure 4, where we use lists as ac-

cumulators and the function append as combining function. �e

function α that we use in this �gure is the lazy, parallel mapping

operator of Petalisp. Its semantics is similar to that of cl:map.

(defparameter *a* #(1 2 3 4 5 6))1

2

;; inherently serial3

(reduce #'cons *a* :initial-value '() :from-end t)4

5

;; parallel alternative6

(compute (β #'append (α #'list *a*)))7

Figure 4: Two ways to convert an array to a list.

�e Name β. Some readers might frown at the decision to use

a greek le�er as a function name. One frequent complaint is that

this renders any code using this function non-portable. �e other

frequent complaint is that modern keyboards o�er no easy way to

1
Some readers might worry about the cost of creating an array of accumulators �rst.

But thanks to lazy evaluation, Petalisp can eliminate this temporary array and move

the creation of the accumulator directly into the reduction.

insert Greek le�ers. To the �rst complaint, we reply that parallel

programming is already outside of the scope of the Common Lisp

speci�cation, so the concern would only apply to the hypothetical

implementations that support concurrency, but not Unicode. To the

second complaint, we reply that there is plenty of IDE support for

inserting nonstandard characters, and that parallel programming is

so hard that the time spent typing should be negligible in contrast

to the time spent thinking.

Rank Zero Arrays Instead of Scalars. By de�nition, or function β

can never return scalar values, only arrays of rank zero. �is could

be an annoyance for the simple, frequent case of reducing vectors.

�e solution we developed here is that Petalisp treats scalars and

arrays of rank zero interchangeably. And, most importantly, when

calling compute to trigger explicit evaluation, all arrays of rank

zero are automatically converted to scalars.

Choice of Axis. According to our de�nition, reductions apply

only to the �rst axis of a given array. Another option would have

been to reduce along a speci�ed axis and to reduce the entire array

if no axis is explicitly speci�ed. While this would add some conve-

nience for the user, it would make β less orthogonal to the existing

set of Petalisp primitives. �e choice of axis can already be achieved

by permuting an array’s indices, which is already supported by

another Petalisp primitive. And the reduction of an entire array

with rank n can be emulated by n successive reductions. Figure 5

illustrates these techniques.

Subdivision Strategy. �e current subdivision strategy is to split

the �rst axis of an array into two equal halves, until the axis has

been reduced to a single index. As it can be seen in �gure 3, the

e�ect is that all array elements are e�ectively combined along the

nodes of a binary tree. One might wonder whether a di�erent

or more �exible subdivision strategy could be more e�cient, but

we decided not to pursue this thought further until we have an

excellent implementation of reduction on a binary tree.

One argument in favor of this reduction order is that it pro-

duces deterministic results. Since all Petalisp programs are just a

combination of core operators, and all other core operators are al-

ready deterministic, we gain the property that all Petalisp programs

are fully deterministic — a very desirable property for a parallel

programming language.

Arrays Only. Our de�nition of β requires that all its arguments

but the combining function are arrays (or, lazy arrays) and not, e.g.,

arbitrary sequences. �e reason for this is that e�cient execution

requires that both the shape and the elements of each argument

must be accessible in O(1) time. However, it is conceivable that

future versions of Petalisp will also support lazy arrays whose

backing storage is a user de�ned sequence with fast random access,

e.g., as proposed by Rhodes[7].

Multiple Values. Coming from statically typed functional lan-

guages, one might wonder why we bother with functions returning

multiple values, when we just could have used tuples and let the

compiler optimize them away. One reason is that this way, even

code without su�cient static type information can be run e�ciently

and without additional consing. �e other reason is that we would

have had to introduce static, immutable tuples into Common Lisp

ELS’19, April 01–02 2019, Genova, Italy Marco Heisig

and force every user of our reduction operator to use them, whereas

multiple values are already part of the language.

5 EXAMPLES

In the following section, we show how our reduction operator can

be used in practice.

5.1 Numeric Accumulation

In this �rst example, in �gure 5, we show how β can be used to

express the sum and product of some numbers. �is illustrates

also how some seeming de�ciencies like lack of an initial value can

be overcome with a suitable abstraction. In this case, we call this

abstraction β*. It correctly handles the case of receiving an empty

array, and, for further convenience, reduces the whole array if no

explicit axis is supplied.

(defun β* (f z x &optional axis)1

(cond ((empty-array-p x)2

z)3

((integerp axis)4

(β f (exchange-axes x 0 axis)))5

((loop until (zerop (rank x))6

do (setf x (β f x))7

finally (return x)))))8

9

(defun sum (x &optional axis)10

(β* #'+ 0 x axis))11

12

(defun product (x &optional axis)13

(β* #'* 1 x axis))14

Figure 5: Using β for numeric accumulation.

5.2 Computing the Maximum and its Index

In this second example, in �gure 6, we show how to perform a

reduction on multiple values. Our goal is to e�ciently obtain both

the maximum of a vector, and the corresponding index. To do so,

the function max*, supplies two arrays to β — the array itself, and

an array of the same shape containing the indices of the axis zero

corresponding to each array element. �ese two arrays are then

reduced with a four argument function that forwards either the two

le� arguments or the two right arguments, depending on which

side yields the larger value.

As discussed later in section 6, the function max* is probably

more e�cient than a programmer would assume by looking at its

de�nition. Not only can large parts of it be run in parallel, it is also

possible to completely eliminate the lazy array that is given as the

last argument to β, by computing its elements into a function of

the currently processed index.

6 IMPLEMENTATION

In �gure 7, we show a naı̈ve implementation of β. �e only user-

visible di�erence between this naı̈ve code and the one Petalisp

(defun max* (x)1

(β (lambda (lv li rv ri)2

(if (> lv rv)3

(values lv li)4

(values rv ri)))5

x (indices x 0)))6

Figure 6: Computing the maximum element and its index.

actually uses is that there is no implicit broadcasting of argument

arrays, no error handling, and no support for lazy arrays. But

what this code shows is that a naı̈ve implementation will always

be prohibitively slow. Neither the dimensions of the given arrays,

nor their rank, nor their element type are known at compile time.

Not even the number of arrays k is known statically. To tackle this

problem regardless, we have to make use of higher-order functions

and relatively expensive constructs like multiple-value-list and

(apply #’aref).

We see that the crucial question regarding an e�cient imple-

mentation of our proposed β operator is how to deal with the large

amount of compile time uncertainty. One possible approach would

be to write or generate multiple versions of the code for each possi-

ble invocation, e.g., using the technique of Strandh[3]. �e problem

is that in our case, the space of possible arguments and types is

extremely large. Assuming we wanted to create special versions

just for the case of reducing up to three arrays with a rank below 3

and for every specialized array element type. �en, assuming an

implementation with 20 specialized array types
2
, we would end up

with 2(20
1 + 20

2 + 20
3) = 16840 di�erent versions. Such an amount

of specialization is unreasonable, even on a modern computer with

plenty of memory.

What we do instead is that we generate specialized reduction

functions on demand, using the existing framework of Petalisp.

�is has multiple advantages:

• Data �ow analysis prevents unnecessary evaluation. If

parts of the result of a reduction are not used, the corre-

sponding inputs will also not be computed.

• If the inputs of a reduction are lazy arrays, the code that

computes the contents of these arrays can o�en be inlined

directly into the reduction, thus avoiding an unnecessary

intermediate array.

• Specialized code is cached e�ciently, such that future in-

vocations with a similar signature can reuse the previously

compiled code.

• �e programmable type inference engine of Petalisp can

o�en statically deduce the element type of the results of a

reduction and allocate them in a suitable specialized array.

• �e size of the argument arrays is known during code

generation. �is makes it possible to generate and use

di�erent variants, e.g., to avoid thread parallelization when

the workload is known to be small.

2
Having 20 specialized array types is a conservative estimate. SBCL on a 64bit archi-

tecture recognizes 34 subtypes of array, CCL even 38.

Lazy, parallel multiple value reductions in Common Lisp ELS’19, April 01–02 2019, Genova, Italy

(defun β (f array &rest more-arrays)1

(let* ((arrays (list* array more-arrays))2

(k (length arrays))3

(r (array-dimension array 0))4

(dims (rest (array-dimensions array)))5

(results6

(loop repeat k7

collect (make-array dims))))8

(map-indices9

(lambda (indices)10

(mapcar11

(lambda (o v)12

(setf (apply #'aref o indices) v))13

results14

(multiple-value-list15

(labels16

((divide-and-conquer (start end)17

(if (= start end)18

(values-list19

(mapcar20

(lambda (a)21

(apply #'aref a22

(list* end indices)))23

arrays))24

(multiple-value-bind (ls le us ue)25

(split-range start end)26

(values-list27

(subseq28

(multiple-value-list29

(multiple-value-call f30

(divide-and-conquer ls le)31

(divide-and-conquer us ue)))32

0 k))))))33

(divide-and-conquer 0 (1- r))))))34

dims)35

(values-list results)))36

37

(defun split-range (start end)38

(let ((mid (floor (+ start end) 2)))39

(values start mid (1+ mid) end)))40

41

(defun map-indices (fn dims)42

(if (null dims)43

(funcall fn '())44

(apply #'alexandria:map-product45

(alexandria:compose fn #'list)46

(mapcar #'alexandria:iota dims))))47

Figure 7: A possible implementation of β.

In order to support the new reductions, we also had to make

several changes to the Petalisp internals. �e most challenging task

was to add support for functions returning multiple values. �is

change has profound implications, as it turns what used to be data-

�ow trees into directed acyclic data-�ow graphs, and because it

touches many optimization passes, such as common subexpression

elimination and hoisting of loop invariant code.

We are happy to report that this transition is now complete, and

that Petalisp now has full support for functions returning multiple

values. �ese changes a�ect not only reductions, but also parallel

mapping. It is now also possible to, e.g., map the function floor
over a single array to obtain one array with all the quotients and

one array with all the remainders.

To give a glimpse into the workings of our code generator, we

show in �gure 8 a part of the code generated during the �rst eval-

uation of a call to the function max* from �gure 6 on a vector.

�is snipped of generated code shows how the number of values

has been turned into a compile time constant, how the reference

to the second array has been reduced to (identity index) and

how the reference to the �rst array has been lowered to a call to

row-major-aref with a simple o�set.

...1

(labels2

((divide-and-conquer (min max)3

(declare (type fixnum min max))4

(if (= min max)5

(let ((index (+ min (* #:g3 #:g4))))6

(let* ((v (row-major-aref a0 index))7

(i (identity index)))8

(values v i)))9

(let ((mid (+ min (floor (- max min) 2))))10

(multiple-value-call11

(lambda (l0 l1 r0 r1)12

(multiple-value-bind (r0 r1)13

(funcall f l0 l1 r0 r1)14

(values r0 r1)))15

(divide-and-conquer min mid)16

(divide-and-conquer (1+ mid) max))))))17

(divide-and-conquer 0 (/ (- #:g5 #:g3) #:g4)))18

...19

Figure 8: An excerpt from the code generated for a call to

max*.

7 PERFORMANCE

We have not yet implemented all optimizations that we envision,

so it is too early for a detailed performance analysis. But we can

already outline the most important performance characteristics of

our technique. Our measurements show that for large vectors, our

operator is about half as fast as SBCL’S built-in function cl:reduce,

despite being vastly more general. �e downside of on-demand

code selection or generation is that it incurs a constant overhead

of several microseconds, making it unsuitable for reductions of

small arrays. However, we expect that we can lower this constant

overhead in the future by switching to more e�cient data structures

and by caching some expensive intermediary steps.

ELS’19, April 01–02 2019, Genova, Italy Marco Heisig

8 CONCLUSIONS AND FUTUREWORK

We have presented a reduction operator β that is simple, power-

ful and has plenty of inherent parallelism. Most importantly, our

reduction operator supports accumulation of multiple values at

once. �us, it greatly extends the range of programs that can be

expressed as a single reduction. e.g., for �nding both the minimum

and maximum of a sequence, or for accurate summation of �oating

point numbers, using a second value to accumulate errors.

We have carefully presented our design considerations, espe-

cially with respect to inherent parallelism and simplicity. �e value

of simplicity is still underappreciated in modern parallel program-

ming. We think that in order to obtain both correctness and speed,

it is sometimes be�er to go for clean, robust approaches — such

as reducing along a binary tree only — instead of chasing a�er the

last few percent of performance.

As a second contribution, we have presented an implementation

technique — on-demand compilation of specialized code at run time

— that allows us to turn this operator into e�cient, highly special-

ized code. To do so, we use the existing data-�ow analysis and

compiler infrastructure of Petalisp. All our code is freely available

under a copyle� license
3
.

�is paper marks the end of the design process of the parallel pro-

gramming library Petalisp. �is doesn’t mean we are �nished with

Petalisp development, but we will now focus exclusively on under-

the-hood improvements, such as be�er thread-level parallelization,

faster dispatch, SIMD vectorization and, ultimately, distributed

parallelization.

9 ACKNOWLEDGMENTS

We would like to thank all the people in the #petalisp IRC channel.

REFERENCES

[1] Guy E. Blelloch, Siddhartha Cha�erjee, Jonathan C. Hardwick, Jay Sipelstein,

and Marco Zagha. Implementation of a portable nested data-parallel language.

Journal of Parallel and Distributed Computing, 21(1):4–14, April 1994.

[2] Je�rey Dean and Sanjay Ghemawat. Mapreduce: Simpli�ed data processing on

large clusters. Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-0782. doi:

10.1145/1327452.1327492. URL h�p://doi.acm.org/10.1145/1327452.1327492.

[3] Irène Durand and Robert Strandh. Fast, maintainable, and portable sequence

functions. In Proceedings of the 10th European Lisp Symposium, ELS2017. Euro-

pean Lisp Scienti�c Activities Association, 2017.

[4] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,

Version 3.1. High Performance Computing Center Stu�gart (HLRS), 2015. URL

h�ps://www.mpi-forum.org/docs/.

[5] Marco Heisig. Petalisp: A common lisp library for data parallel programming. In

Proceedings of the 11th European Lisp Symposium on European Lisp Symposium,

ELS2018, pages 1:4–1:11. European Lisp Scienti�c Activities Association, 2018.

ISBN 978-2-9557474-2-1.

[6] Marco Heisig and Harald Köstler. Petalisp: Run time code generation for oper-

ations on strided arrays. In Proceedings of the 5th ACM SIGPLAN International

Workshop on Libraries, Languages, and Compilers for Array Programming, ARRAY

2018, pages 11–17, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5852-1.

doi: 10.1145/3219753.3219755. URL h�p://doi.acm.org/10.1145/3219753.3219755.

[7] Christophe Rhodes. User-extensible sequences in common lisp. In Proceedings

of the 2007 International Lisp Conference, ILC ’07, pages 13:1–13:14, New York,

NY, USA, 2009. ACM. ISBN 978-1-59593-618-9. doi: 10.1145/1622123.1622138.

URL h�p://doi.acm.org/10.1145/1622123.1622138.

[8] Olin Shivers. Sr�-1: List library, 1998. URL h�ps://sr�.schemers.org/sr�-1/sr�-1.

html.

[9] Guy L. Steele, Jr. Organizing functional code for parallel execution or, foldl

and foldr considered slightly harmful. SIGPLAN Not., 44(9):1–2, August 2009.

ISSN 0362-1340. doi: 10.1145/1631687.1596551. URL h�p://doi.acm.org/10.1145/

1631687.1596551.

3
h�ps://github.com/marcoheisig/Petalisp

[10] Guy L. Steele, Jr. and W. Daniel Hillis. Connection machine lisp: Fine-grained

parallel symbolic processing. In Proceedings of the 1986 ACM Conference on LISP

and Functional Programming, LFP ’86, pages 279–297, New York, NY, USA, 1986.

ACM. ISBN 0-89791-200-4. doi: 10.1145/319838.319870. URL h�p://doi.acm.org/

10.1145/319838.319870.

http://doi.acm.org/10.1145/1327452.1327492
https://www.mpi-forum.org/docs/
http://doi.acm.org/10.1145/3219753.3219755
http://doi.acm.org/10.1145/1622123.1622138
https://srfi.schemers.org/srfi-1/srfi-1.html
https://srfi.schemers.org/srfi-1/srfi-1.html
http://doi.acm.org/10.1145/1631687.1596551
http://doi.acm.org/10.1145/1631687.1596551
https://github.com/marcoheisig/Petalisp
http://doi.acm.org/10.1145/319838.319870
http://doi.acm.org/10.1145/319838.319870

	Abstract
	1 Introduction
	2 Petalisp
	3 Related Work
	4 Our Technique
	4.1 A Simple Example
	4.2 Discussion

	5 Examples
	5.1 Numeric Accumulation
	5.2 Computing the Maximum and its Index

	6 Implementation
	7 Performance
	8 Conclusions and Future Work
	9 Acknowledgments
	References

