A water budget dichotomy of rocky protoplanets from ²⁶Al-heating

Tim Lichtenberg

Gregor Golabek (BGI Bayreuth) Michael Meyer (U Michigan) Taras Gerya (ETH Zürich)

Remo Burn (U Bern) Yann Alibert (U Bern / CSH) Christoph Mordasini (U Bern / CSH)

UK Exoplanet Community Meeting, ICL, 15 April 2019

²⁶Al key control on rocky planet composition

A water budget dichotomy of rocky protoplanets from ²⁶Al-heating Lichtenberg, Golabek, Burn, Meyer, Alibert, Gerya, Mordasini *Nature Astronomy 3, 307–313 (2019)* | *arXiv:1902.04026*

- Fraction of planetary systems enriched with ²⁶Al
 - Volatile loss & differentiation in planetesimals
- Systemic dichotomy:
 - Enriched: water-poor (proto-)planets
 - Not-enriched: ocean worlds
- Statistically traceable w/ near-future data?
 - Discernible by transit radius alone
 - Increasing statistics on M star systems

Exoplanet diversity

Modified from Kaltenegger 17

 H_2O

Fe

H₂/He

$100\% \ H_2O$

50% H₂O

25% H₂O

MgSiO₃ (rock) 25% Fe 50% Fe

100% Fe

Water carrier during accretion?

A. Angelich (NRAO/AUI/NSF)/ALMA (ESO/NAOJ/NRAO)

Plethora of water worlds (?)

e.g., Kuchner 03, Leger+ 04, Sotin+ 07, Tian & Ida 15, Noack+ 16/17, Alibert & Benz 17, Simpson 17, Ramirez & Levi 18, Zain+ 18, Izidoro+ 19

Radiogenic heating in early Solar System

Radiogenic heating in early Solar System

Geodynamic evolution of planetesimal interiors

Water loss from planetesimals

Planet accretion altered by ²⁶Al

Enrichment with short-lived radionuclides (²⁶Al + ⁶⁰Fe)

 $\sim 10^2 - 10^8 \times Earth's$ present-day interior radiogenic heating

Lichtenberg+ 16b

²⁶Al-heated icy planetesimals forming planets

A. Angelich (NRAO/AUI/NSF)/ALMA (ESO/NAOJ/NRAO)

Rapid dehydration of water-rich planetesimals

²⁶Al-heated icy planetesimals forming planets

A. Angelich (NRAO/AUI/NSF)/ALMA (ESO/NAOJ/NRAO); ESA/NASA/M.A.Garlick

²⁶Al controls bulk water content

Synthetic exoplanet populations

Accretion & decreasing water abundance in planetesimals

²⁶Al controls bulk water content

 $f_{\rm w} > 0, M_{\rm P} < 10 M_{\rm Earth}, G stars$

Lichtenberg+ 19b

²⁶Al controls bulk water content

Leger+ 04, Sotin+ 07, Alibert 14, Noack+ 16/17

Synthetic exoplanet populations

²⁶Al shapes exoplanet structure

²⁶Al shapes distribution systematics

²⁶Al shapes distribution systematics

21

²⁶Al key control on rocky planet composition

A water budget dichotomy of rocky protoplanets from ²⁶Al-heating Lichtenberg, Golabek, Burn, Meyer, Alibert, Gerya, Mordasini Nature Astronomy 3, 307–313 (2019) | arXiv:1902.04026

- Fraction of planetary systems enriched with ²⁶Al
 - Volatile loss & differentiation in planetesimals
- Systemic dichotomy:
 - Enriched: water-poor (proto-)planets
 - ➡ Not-enriched: ocean worlds
- Statistically traceable w/ near-future data?
 - Discernible by transit radius alone
 - Increasing statistics on M star systems

