
The	opinions	of	the	authors	expressed	in	this	document	do	not	necessarily	reflect	the	
official	opinion	of	the	BioExcel	partners	nor	of	the	European	Commission.	

H2020	EINFRA-5-2015	

www.bioexcel.eu

Project Number 675728

D1.1 – Specification of software
engineering, testing & QA

WP1: Software Scalability & Usability

	

Copyright©	2016	The	partners	of	the	BioExcel	Consortium	
	
	

	 This	work	is	licensed	under	a	Creative	Commons	
Attribution	4.0	International	License.	

	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 2	
	

	

Document	Information	
	
Deliverable	Number	 D1.1	
Deliverable	Name	 Specification	of	software	engineering,	testing	&	QA	
Due	Date	 2016-12-31	(PM14)	
Deliverable	Lead	 KTH	

Authors	
Mark	 Abraham	 (KTH),	 Alexandre	 Bonvin	 (UU),	 Adrien	
Melquiond	 (UU),	Emiliano	 Ippoliti	 (Juelich),	Bert	de	Groot	
(MPG)	

Keywords	 Project	Management,	software	engineering	
WP	 WP1	
Nature	 Report	
Dissemination	Level	 Public	
Final	Version	Date	 2016-12-28	

Reviewed	by	
Ian	 Harrow	 (IHC),	 Erwin	 Laure	 (KTH),	 Rossen	 Apostolov	
(KTH),	 Stian	 Soiland-Reyes	 (UNIMAN),	 Carole	 Goble	
(UNIMAN)	

MGT	Board	Approval	 2016-12-28	
	
	 	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 3	
	

	

Document	History	
	
Partner	 Date	 Comments	 Version	

KTH	 2016-03-01	 First	draft	 0.1	
KTH	 2016-03-28	 Draft	for	final	review	 0.2	
KTH	 2016-03-31	 Final	 1.0	
KTH	 2016-12-12	 Draft	for	final	review	 1.1	
KTH	 2016-12-22	 Draft	for	PMB	review	 1.2	
KTH	 2016-12-23	 Draft	for	PMB	review	 1.3	
KTH	 2016-12-28	 Final	version	 1.4	
	
	 	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 4	
	

	

Executive	Summary	
	
This	document	reports	on	the	planning	within	BioExcel	WP1	for	software-
engineering	tasks.	It	describes	the	current	state	of	testing	and	quality	assurance	
for	the	pilot	codes	CPMD,	GROMACS	and	HADDOCK,	and	the	GROMACS	input-
preparation	software	pmx.	It	also	specifies	the	plans	within	BioExcel	for	
implementing	established	best	practices	for	software	engineering	processes	
while	extending	code	usability,	functionality	and	performance.	These	plans	are	
intended	to	provide	high	value	to	the	biomolecular	simulation	community	that	
BioExcel	serves	by	delivering	effective	and	usable	software	that	will	be	
sustainable	and	portable	through	the	transition	to	the	exascale	era.	Aspects	of	
engineering	process	that	are	useful	to	unify	across	the	development	sub-teams	
will	be	discussed	first,	and	then	a	detailed	description	for	each	sub-team	will	
follow,	describing	the	current	status	and	plans	for	the	future	where	we	have	
identified	priorities	for	improvements	to	our	development	process.	
	
There	is	a	large	range	of	reasonable	practice	in	software	engineering,	and	the	
efficacy	of	many	of	them	is	still	under	debate.	Further,	that	efficacy	varies	with	
the	kind	of	software	being	developed,	the	funding	model,	the	team	doing	the	
development,	and	the	risks	acceptable	to	its	users.	Accordingly,	this	document	
does	not	attempt	an	exhaustive	description	of	possible	approaches,	nor	to	
determine	which	practices	are	best.	It	does	refer	to	existing	work	in	this	area,	
and	specifies	how	the	BioExcel	software	developers	have	chosen	to	develop,	test	
and	assure	the	quality	of	their	software.	
	 	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 5	
	

	

	
Contents	
1	 INTRODUCTION	...	6	

2	 UNIFIED	 PROCESS	 FOR	 GATHERING	 REQUIREMENTS	 AND	 PLANNING	
DEVELOPMENTS	...	8	

3	 DEVELOPMENT	PROCESS	DETAILS	FOR	GROMACS	...	9	

4	 DEVELOPMENT	PROCESS	DETAILS	FOR	HADDOCK	..	16	

5	 DEVELOPMENT	PROCESS	DETAILS	FOR	CPMD	QM/MM	...	22	

6	 DEVELOPMENT	PROCESS	DETAILS	FOR	PMX	...	26	

7	 CONCLUDING	REMARKS	..	30	

8	 REFERENCES	..	30	
	 	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 6	
	

	

1 Introduction	
	
The	 pilot	 applications	 in	 BioExcel	 (GROMACS,	 QM/MM	 CPMD,	 and	 HADDOCK)	
are	 committed	 to	 delivering	 high	 quality	 life-science	 software	 that	 meets	 its	
users’	needs	by	following	accepted	best	practice	in	software	engineering,	to	the	
extent	that	available	resources	permit.	
	
Much	scientific	software	is	written	to	serve	the	needs	of	a	single	researcher	or	a	
single	short-term	research	project,	and	it	can	be	appropriate	to	write	such	code	
without	considering	whether	it	will	be	re-used.[1-3]	However,	some	of	the	pilot	
codes	 for	 BioExcel	 have	 matured	 to	 the	 point	 where	 they	 serve	 the	 needs	 of	
thousands	 of	 life	 scientists,	 and	 the	 success	 of	 the	 consortium	 depends	 on	
expanding	the	user	base	and	range	of	quality	software	that	serves	it.	Each	code	
may	be	 exposed	 to	hardware	 and	 software	 changes	during	 the	 transition	 from	
the	peta-	 to	 exascale	 era.	These	 concerns	 strongly	 suggest	 a	more	professional	
approach	 to	 justify	 the	 investment	 of	 further	 development	 resources,	 and	 to	
reduce	 the	 risk	 associated	 with	 widespread	 use.	 The	 software	 development	
within	BioExcel	will	incorporate	existing	recommendations	for	best	practice	for	
scientific	computing.[4]	However,	the	different	applications	within	BioExcel	

• are	written	in	different	programming	languages,	
• have	matured	independently	and	to	different	extents,	
• address	different	kinds	of	biomolecular	simulation	problem,	
• are	delivered	to	end	users	differently,	and	
• are	 implemented	by	very	small	numbers	of	 software	developers	 located	

at	different	institutions,	
so	few	details	of	the	software-engineering	process	can	be	usefully	unified	across	
BioExcel.	This	document	will	describe	the	processes	that	can	be	usefully	unified	
across	the	consortium.	It	will	also	record	the	details	of	the	state	and	plans	for	the	
sub-teams	within	 the	 consortium.	 These	 vary	 between	 sub-teams,	 because	 the	
needs,	priorities	and	capabilities	do	differ.	This	record	will	serve	as	a	model	for	
future	improvements	within	the	teams,	for	expansion	to	include	new	teams,	and	
future	unification	of	elements	that	become	common	to	sub-teams.	
	
Much	 has	 been	 written	 about	 how	 to	 implement	 best	 practice	 in	 software	
engineering.	Best	practice	 in	 this	 field	 is	also	evolving	rapidly	as	 the	hardware,	
languages	and	tools	evolve.	One	important	work	identified	seven	basic	principles	
for	 successful	 large-scale	 commercial	 software	 delivery.[5]	 Many	 of	 these	 are	
generally	 applicable	 to	 the	 software	 engineering	 effort	 in	 BioExcel,	 and	 are	
consistent	with	published	best	practice	for	scientific	software	development.[4]	A	
description	 of	 each	 follows,	 and	 the	 way	 in	 which	 the	 BioExcel	 software	
development	will	address	them	is	described	in	italics.	These	approaches	will	be	
expanded	upon	in	the	following	sections	for	the	pilot	codes.	

1. Manage	 using	 a	 phased	 life-cycle	 plan,	 to	 specify	 what	 will	 be	 done,	
recognizing	 that	 effort	 in	 design	 phases	 leads	 to	 shorter	 coding,	
debugging	and	validation	times.	
The	Description	of	Action	and	Deliverable	1.1	forms	part	of	that	plan	for	the	
overall	 consortium.	 For	 each	 new	 feature,	 individual	 sub-teams	 within	
BioExcel	will	 produce	written	 plans,	 and	 consult	with	 other	 teams	 on	 the	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 7	
	

	

kinds	of	high-level	aspects	where	independent	perspective	can	lead	to	better	
development	results.	

2. Perform	continuous	validation	after	having	agreed	on	expectations	for	the	
software,	to	review	progress,	and	automatically	test	results.	
Each	 BioExcel	 software	 sub-team	 will	 develop	 or	 expand	 automated	
techniques	 for	 testing	 their	 software	 for	 desirable	 properties	 such	 as	
correctness	 or	 performance.	 This	 is	 a	 key	 requirement	 for	 all	 kinds	 of	
software,	 but	 scientific	 user	 communities	make	 particular	 demands	 for	 it,	
and	our	development	processes	will	specifically	address	it.	

3. Maintain	disciplined	product	control,	in	particular	to	avoid	opportunistic	
changes	to	the	plan,	or	promising	more	than	the	available	developer	effort	
will	permit.	
Resources	are	 limited	and	 the	 scope	of	 the	work	within	 the	Description	of	
Action	 is	 large,	 so	 the	 BioExcel	 software	 development	 efforts	will	 need	 to	
choose	manageable	sub-projects	with	a	view	to	being	able	to	deliver	quality	
software	 in	 suitable	 graduations	 over	 the	 lifetime	 of	 the	 project.	 This	will	
permit	the	consortium	to	show	value	in	the	hands	of	users	by	the	time	of	the	
final	 review,	 and	 ensures	 that	 some	 software	 has	 been	 delivered	 even	 if	
progress	in	some	aspects	has	been	slower	than	anticipated.	

4. Use	 modern	 programming	 practices,	 in	 particular	 to	 use	 development	
techniques	 such	 as	 encapsulation,	 modularity,	 version	 control,	 issue	
tracking,	code	review,	automated	code	analysis,	and	unit	testing	to	make	
most	efficient	use	of	time	in	the	long	term.		
These	 are	 well	 established	 and	 standardised	 techniques	 that	 BioExcel	
developers	 will	 follow	 because	 they	 provide	 demonstrated	 value	 in	
producing	 software	 that	 is	 correct,	 can	 be	maintained	 and	 extended,	 and	
which	provide	resilience	in	the	face	of	anticipated	changes	to	hardware	(e.g.	
new	accelerators,	processors	and	memory)	and	libraries	as	we	approach	the	
exascale	era.	Different	approaches	will	be	used	by	each	sub-team	to	suit	the	
needs	 of	 software	 delivered	 in	 different	 ways	 and	 written	 in	 different	
languages.	

5. Maintain	 clear	 accountability	 for	 results,	 in	 particular	 that	 useful	
progressive	milestones	exist	for	individuals	and	teams	
BioExcel	 software	 development	 naturally	 has	 high-level	 accountability	 in	
the	agreed	deliverables	and	their	need	to	respond	to	user	feedback.	Each	of	
the	sub-teams	structures	their	work	plans	with	the	local	context	and	broad	
objectives	in	mind.	

6. Use	better	and	fewer	people,	to	avoid	communication	overheads	
This	principle	 is	generally	 inapplicable	to	academic	software	development,	
such	as	done	 in	BioExcel,	because	 the	desired	scientific	domain	knowledge	
and	 software-engineering	 expertise	 are	 normally	 incompatible	 with	
university	 salary	 structures	 and	 the	 lack	 of	 clear	 career	 path	 within	
academe	 where	 software	 is	 generally	 not	 recognized	 as	 a	 worthwhile	
output.	BioExcel	can	only	afford	a	few	software	developers,	so	this	principle	
of	software	development	is	not	a	problem	for	BioExcel	to	manage.	

7. Maintain	a	commitment	to	improve	the	process	
BioExcel	 software	 developers	 are	 committed	 to	 improving	 their	 process,	
investing	 time	 in	areas	 that	have	been	 shown	 to	be	deficient	 (e.g.	because	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 8	
	

	

problems	 have	 arisen),	 while	 recognizing	 that	 overall	 resources	 are	 very	
limited	and	must	be	shared	across	multiple	endeavours.	

Preparing	for	the	exascale	era	is	of	paramount	importance	for	the	development	
of	 the	 BioExcel	 codes.	 New	 hardware	 (CPUs	 and	 accelerators),	 middleware,	
libraries	 and	 programming	 paradigms	 will	 emerge,	 rapidly.	 All	 the	 BioExcel	
codes	 leverage	 established	 technologies	 that	 provide	 good	 prospects	 for	 long-
term	portability	and	performance.	These	technologies	include	git,	Jenkins,	Gerrit,	
GitHub,	 GitLab,	 CUDA,	 OpenCL,	 python,	 Flask,	 Grid	 engines,	 CNS,	 CPMD,	
GROMACS,	FFTW,	Fortran,	C++	and	CMake,	alongside	purpose-built	components	
such	as	the	GROMACS	SIMD	portability	layer.	The	technology-watch	components	
and	deliverables	of	WP1	serve	to	prompt	the	BioExcel	developers	to	review	the	
suitability	 of	 these	 decisions	 as	 future	 directions	 become	 clear.	 Most	 of	 the	
software	 developed	 for	 the	 BioExcel	 pilot	 codes	 is	 not	 at	 risk	 when	 new	
hardware	emerges,	with	the	notable	exception	of	GROMACS,	whose	development	
and	testing	process	described	below	caters	directly	to	mitigating	this.	
	
We	 have	 consulted	 with	 the	 UK-based	 Software	 Sustainability	 Institute	
(https://www.software.ac.uk/)	 to	 get	 valuable	 input	 from	 them	 into	 our	
software-engineering	process.	Representatives	of	BioExcel	have	attended	some	
of	their	events,	and	our	teams	follow	the	excellent	advice	in	many	of	their	guides	
(https://www.software.ac.uk/resources/guides).	 We	 have	 completed	 their	
software	 evaluation	 process	 to	 get	 direct	 feedback	 on	 our	 process,	 and	 will	
continue	to	collaborate	with	them	to	ensure	our	knowledge	stays	current.	
	
New	 software	 functionality	will	 be	made	 available	 in	project	 deliverables	 after	
17	and	36	months,	and	reported	in	scientific	publications	authored	by	BioExcel	
participants,	but	it	is	recognized	that	the	true	utility	in	scientific	software	is	that	
it	 permits	 its	 users	 to	 innovate	 effectively.[2]	Demonstrating	 the	quality	 of	 the	
output	 of	 the	 software	 can	 be	 more	 important	 than	 new	 functionality,	
particularly	if	it	permits	users	to	adopt	more	recent	versions	of	the	software	with	
confidence	that	old	results	are	reproducible,	or	clearly	corrected.	In	BioExcel,	the	
quality	 of	 the	 software	 output	 will	 be	 assured	 through	 extensive	 testing,	
monitored	via	feedback	from	the	BioExcel	interest	groups,	and	feedback	used	to	
guide	future	development	efforts.	New	software	and	modules	developed	within	
BioExcel	will	be	released	under	licenses	consistent	with	CC-BY	models.	

2 Unified	 process	 for	 gathering	 requirements	 and	 planning	
developments	

The	major	 unifying	 thread	 across	 the	 BioExcel	 software	 development	 teams	 is	
that	 they	 include	 practising	 scientists	 with	 experience	 of	 using	 a	 range	 of	
scientific	 software	 to	 solve	 biomolecular	 problems,	 and	 developers	 of	 such	
software.	 It	 is	 widely	 agreed	 that	 effort	 spent	 in	 planning	 phases	 of	 software	
development	projects	delivers	tangible	benefits	in	the	form	of	faster	progression	
through	 coding,	 testing	 and	 acceptance	 phases.[6]	 The	 BioExcel	 development	
sub-teams	will	conduct	feature	development	after	a	planning	phase	that	includes	

• consulting	with	prospective	users	about	functionality	changes,	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 9	
	

	

• assessing	that	the	available	coding	resources	are	adequate,	
• deciding	 that	 potential	 risks	 to	 the	 usefulness	 of	 the	 software	 once	

complete	are	acceptable,	
• drafting	a	user	interface,	and	
• producing	a	written	plan.	

In	 particular,	 the	 draft	 user	 interfaces	 and	 development	 plans	 will	 be	 shared	
across	 the	 software-development	 teams	 for	 feedback	 on	 the	 proposed	 user	
interface,	 and	 development	 plan.	 This	 leverages	 the	 different	 experience	 and	
perspective	of	developers	from	other	sub-teams	to	add	useful	value	via	this	form	
of	peer	review.	Prospective	users	will	also	be	consulted	to	improve	the	chances	
that	 the	 implementation	 is	 fit	 for	 its	purpose.	 It	 is	expected	that	success	of	 this	
model	 within	 BioExcel	 will	 motivate	 other	 developers	 within	 the	 broader	
application	development	teams	to	participate	and	perhaps	provide	a	consultative	
service	 to	 the	 broader	 biomolecular	 simulation	 software	 development	
community.	We	will	monitor	and	report	on	this	process	internally	and	at	formal	
project	reviews.	

3 Development	process	details	for	GROMACS	
	
GROMACS[7]	 is	 a	molecular	 dynamics	 simulation	 engine	 that	 can	 simulate	 the	
Newtonian	 equations	 of	 motion	 for	 systems	 with	 hundreds	 to	 millions	 of	
particles.	 It	 is	primarily	designed	 for	 simulations	of	biochemical	molecules	 like	
proteins,	 lipids	 and	 nucleic	 acids,	 which	 have	 a	 lot	 of	 complicated	 bonded	
interactions.	 Its	 chief	 virtue	 is	 that	 it	 is	 extremely	 fast	 at	 calculating	 the	 non-
bonded	 interactions	necessary	 for	 such	 systems.	 It	 is	 a	 state-of-the-art	best-in-
class	 implementation	 of	 molecular	 dynamics,	 with	 high-performance	
implementations	 for	 a	wide	 range	 of	 commodity	 CPUs	 and	 GPUs,	 including	 all	
current	and	several	anticipated	future	HPC	platforms.	It	is	in	use	by	thousands	of	
scientists,	leading	to	citations	of	associated	scientific	articles	currently	in	excess	
of	2000	per	year.	
	
Figure	 1	 depicts	 the	 current	 state	 of	 GROMACS	 code	 development	 process.	
Having	 made	 appropriate	 plans	 before	 writing	 code,	 developers	 upload	
proposed	 changes	 for	 review	 on	 our	 Gerrit	 code-review	 server,	 triggering	
automated	continuous-integration	testing	via	Jenkins,	and	awaiting	review	from	
other	 developers.	 Automatic	 cross-references	 to	 the	 Redmine	 bug	 reports	 and	
feature	requests	are	made.	Once	code	is	accepted	into	the	master	branch	of	the	
repository,	it	is	automatically	pushed	to	our	Github	backup	repository.	
	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 10	
	

	

	
Figure	1	GROMACS	development	workflow	description	at	the	start	of	the	BioExcel	project	

3.1 Copyright	and	License	
GROMACS	is	released	under	the	Lesser	GNU	General	Public	License	(LGPL)	v2.1.	
Each	source	code	file	has	a	copyright	statement,	which	is	automatically	updated	
for	each	applicable	year	that	it	changes,	which	is	necessary	for	the	license	to	be	
effective.	Source	tarballs	contain	the	appropriate	COPYING	file,	that	additionally	
notes	 the	 origin	 of	 code	 bundled	 along	with	 GROMACS,	 and	 the	 license	 under	
which	it	is	redistributed.	

3.2 Architecture	
GROMACS	 includes	 a	 high-performance	 simulation	 engine	 mdrun,	 several	
independent	 tools	 for	 preparing	 simulations,	 and	 a	 suite	 of	 around	 50	 post-
simulation	analysis	packages.	Currently	all	are	run	on	a	command-line	terminal	
from	 a	 common	 gmx	 wrapper	 binary	 by	 naming	 the	 required	 sub-tool.	 This	
provides	 a	 small	 surface	 area	 for	 potential	 conflicts	 with	 other	 software	 on	 a	
user’s	system,	and	many	convenient	features	including	the	ability	to	deprecate	or	
rename	tools	while	still	retaining	a	way	for	users	to	learn	whether	and	where	the	
old	 functionality	 is	 still	 available.	Much	of	 the	 approximately	 2	million	 lines	 of	
code	is	specific	to	mdrun,	and	much	is	shared	across	all	the	tools,	and	the	long-
term	future	of	the	package	will	require	extensive	reorganization	to	reflect	which	
components	 support	 which	 functionality,	 on	 which	 kinds	 of	 existing	 and	
emerging	 hardware	 architectures,	 and	 thus	 require	 particular	 focus	 when	
developing	 and	maintaining	 the	 software.	 However,	 no	 substantial	 changes	 to	
the	 user	 interface	 are	 planned,	 although	 simplifying	 the	 performance-oriented	
interface	 to	 mdrun	 would	 offer	 substantial	 improvements	 to	 user	 results	 and	
experience.	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 11	
	

	

3.3 Feature	request	handling	
Current:	Anyone,	 including	 regular	developers,	may	 search	and	open	 issues	 at	
https://redmine.gromacs.org	to	seek	interest,	find	common	ground	and	identify	
strategies.	 Usually	 proceeding	 to	 actual	 development	 will	 require	 someone	
actively	 finding	 a	 source	 of	 funding	 and	 a	 suitably	 experienced	 developer,	 and	
enough	time	and	enthusiasm	in	the	rest	of	the	developer	community	for	testing	
and	code	review.	
Future:	 In	 future	phases	of	BioExcel,	provide	opportunity	 for	clients	 to	discuss	
e.g.	development	of	new	features	on	a	contract	basis.	

3.4 Bug	tracking	
Our	 Redmine	 server	 https://redmine.gromacs.org	 also	 allows	 any	 user	 to	
register	 an	 account	 and	 file	 a	 bug	 report,	 along	 with	 uploaded	 input	 files.	
Developers	 regularly	 browse	 for	 relevant	 issues	 and	 engage	 in	 productive	
discussions	 with	 the	 reporter(s)	 and	 each	 other.	When	 fixes	 are	 uploaded	 for	
code	review,	they	can	cross-reference	the	bug	report,	and	automatic	HTML	cross	
links	are	created.	Release	notes	can	then	note	that	the	bug	was	fixed	and	provide	
links	to	more	detail	as	required.	

3.5 Version	policy	
Formerly:	 GROMACS	 used	 a	major.minor.patch	 numbering	 system	 (e.g.	 4.6.3).	
Patch	 releases	 could	only	 fix	 things	 that	didn’t	work.	Ad	hoc	decisions	 led	 to	a	
new	version	being	described	with	a	major	or	minor	version	increase.	
Current:	GROMACS	numbers	each	release	as	year.patch	(e.g.	2016.1)	so	that	it	is	
clear	to	users	how	old	their	version	is,	and	that	the	release	was	made	because	it	
was	 time	 to	 do	 the	 annual	 release.	 Since	 software	 development	 can	 generally	
produce	 only	 two	 out	 of	 three	 of	 high	 quality,	 on	 time,	 or	 with	 specified	
functionality,	we	focus	on	the	former	two	so	that	users	can	benefit	from	the	new	
functionality	 that	 has	 been	 completed,	without	 risk	 of	 open-ended	waiting	 for	
other	functionality.	This	provides	the	wider	development	team	with	confidence	
that	an	accepted	feature	will	get	into	the	hands	of	users	without	having	to	wait	
for	completion	of	some	other	feature	intended	to	go	into	the	next	release.	
Future:	No	changes	are	planned.	Current	resources	do	not	permit	more	than	one	
annual	major	release.	

3.6 Version	control	
Git	is	used	for	version	control.	All	code	development	should	start	from	the	official	
git	 repository	 (git.gromacs.org)	 or	 one	 of	 its	 mirrors	 (including	
github.com/gromacs).	 Developers	modifying	 GROMACS	will	 benefit	 from	being	
able	 to	 use	 git	 tools	 such	 as	 grep	 and	 rebase	 to	 work	 with	 the	 code.	 Code	
development	 should	 not	 start	 from	 a	 release	 tarball,	 but	 if	 this	 has	 happened	
then	it	can	be	copied	onto	a	git	repository.	

3.7 Branching	
A	stable	master	branch	will	exist,	and	is	generally	open	for	both	refactoring	and	
functionality	 changes	 including	 adding	 and	 removing	 features.	 Stability	will	 be	
assured	through	code	review	and	continuous	integration	testing.	When	it	is	time	
for	a	new	annual	release,	a	named	branch	is	made	to	reflect	this.	No	changes	to	
the	scope	of	functionality	are	expected	after	this	time,	while	any	issues	of	module	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 12	
	

	

integration	are	 resolved	before	 the	actual	 release.	After	 the	 release,	 fixing	may	
continue	on	the	release	branch	according	to	policy,	and	such	fixes	will	be	merged	
into	any	more	recent	release	branches,	and	then	into	the	master	branch.	

3.8 Modularization	
Current:	 GROMACS	 is	making	 a	 transition	 from	 C89	 to	 a	modular,	 unit-tested	
modern	C++11	library.	This	transition	is	slow	and	costly,	but	expected	to	deliver	
long-term	 benefits	 from	 lower	maintenance,	 easier	 support	 of	 new	 simulation	
methodology,	 better	 extensibility	 to	 emerging	 hardware	 platforms,	 and	 higher	
portability	across	them.	The	classes	within	these	modules	encapsulate	behaviour	
alongside	 the	 data	 necessary	 to	 implement	 it,	 and	 require	 full	 Doxygen	
documentation	 of	 files,	 classes,	 members	 and	 methods.	 The	 modules	 follow	 a	
layered	design	that	is	enforced	by	checking	scripts.	
Future:	Draft	a	target	module	hierarchy	for	the	wider	development	community	
to	use	as	a	mental	model	during	the	refactoring	process.	

3.9 Development	process	details	
Current:	Developers	are	generally	autonomous	academics	who	propose	ideas	on	
the	gmx-developers	mailing	list,	or	on	Redmine,	and	interested	other	developers	
contribute	 ideas.	 These	 evolve	 on	 an	 ad	 hoc	 basis.	 Developers	 progress	 to	
develop	working	 code	which	 is	 then	uploaded	 for	peer	 review.	Developers	 can	
propose	 code	 changes	 that	 are	 tagged	 “request	 for	 comment”	 or	 “work	 in	
progress”	 so	 that	 reviewers	 know	 that	 high-level	 feedback	 is	 needed	 now.	 An	
ongoing	 challenge	 is	 to	 motivate	 others	 in	 the	 developer	 community	 to	
contribute	 to	 design	 and	 review	 stages	 in	 a	 timely	 fashion,	 because	 most	
developers	 are	 academics	 with	 multiple	 responsibilities	 and	 GROMACS	
development	 is	 only	 a	 small	 fraction	 of	 their	 output	 (and	 not	 always	 clearly	
recognized	for	career	progression).	However,	since	all	developers	are	subject	to	
the	 same	 review	and	 testing	process,	 all	 do	already	 recognize	 that	nobody	 can	
progress	in	isolation.	
Developers	require	active	encouragement	to	remember	to	separate	changes	that	
refactor	 the	code	 from	 those	 that	 change	 the	 functionality,	because	 the	 time	of	
code	reviewers	is	a	particularly	scarce	resource,	and	such	separation	maximises	
the	value	delivered	by	reviewer	time.	
Future:	 BioExcel	 developers	will	 lead	 the	way	 in	 producing	 a	written	 plan,	 in	
particular	for	how	the	user	interface	will	evolve	alongside	features.	

3.10 Review	Process	
Current:	 All	 code	 changes	 go	 through	 two-person	 review,	 one	 core	 developer,	
and	 one	 other	 developer.	 Preferably	 at	 least	 one	 of	 those	 has	 previously	
contributed	 to	 code	 in	 this	 area,	 so	 they	 are	 able	 to	make	 an	 informed	 review	
reasonably	 efficiently.	 Review	 is	 difficult	 for	 both	 parties,	 so	 feedback	 and	
responses	 need	 to	 be	 considered	 carefully	 and	 should	 be	 technical	 and	
impersonal.	Proposed	changes	do	not	have	to	be	perfect	to	pass	review,	but	they	
should	 represent	 a	 clear	 improvement	 in	 at	 least	 some	 aspect	 without	 undue	
compromise	on	other	aspects.	Authors	may	declare	a	reviewer	suggestion	out	of	
their	 intended	 scope,	 in	which	 case	 the	 discussion	 should	move	 to	 a	 Redmine	
issue	 for	 future	 consideration.	 Authors	may	 negotiate	 that	 someone	 else	 takes	
over	responsibility	for	the	patch.	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 13	
	

	

Future:	 The	 most	 important	 quality	 of	 scientific	 code	 is	 its	 correctness	 at	
implementing	 the	method	claimed.	Only	a	subset	of	kinds	of	proposed	changes	
have	the	ability	to	compromise	this	with	GROMACS.	It	is	inefficient	to	require	the	
same	level	of	developer	scrutiny	on	all	changes,	particularly	when	the	number	of	
developer	 hours	 available	 to	 the	 project	 is	 strictly	 limited.	 In	 concert	 with	
improved	testing,	identify	areas	of	the	code	for	which	greater	risk	is	acceptable,	
e.g.	refactoring	of	modules	already	under	high	quality	unit	 tests,	 improvements	
to	user	or	developer	documentation.	

3.11 Integration	approach	
Current:	No	 long-term	development	branches	exist,	 so	proposed	code	changes	
are	normally	based	off	a	recent	master-branch	commit,	and	thus	can	be	readily	
rebased	for	integration	with	the	current	HEAD	commit	of	the	master	branch.	
Future:	 Some	 larger	 development	 efforts	 may	 benefit	 from	 a	 long-running	
feature	 branch,	 which	would	 then	 need	 to	 be	 integrated	 back	 into	 the	master	
branch.	A	git	merge	is	perfect	from	a	technical	point	of	view,	but	does	not	meet	
the	needs	of	a	policy	where	code	review	must	occur	before	acceptance	into	the	
master	branch.	Given	the	limited	developer	effort	available	for	code	review,	code	
needs	 to	be	presented	 for	 review	 in	 small	pieces	 that	each	passes	 its	own	unit	
tests,	and	any	available	integration	or	end-to-end	test.	Any	move	to	implement	a	
long-running	 feature	 branch	must	 present	 and	 justify	 and	 process	 that	 would	
lead	to	effective	review.	

3.12 Testing	requirements	
Current:	 All	 proposed	 code	 changes	 are	 tested	 automatically	 by	 our	 Jenkins	
continuous-integration	server.	 It	builds	the	code	and	runs	the	tests	on	multiple	
compilers,	 operating	 systems,	 standard	 libraries,	 accelerators	 and	 CPU	 types.	
This	 caters	 directly	 to	 ensuring	 long-term	 portability	 of	 the	 code	 base	 to	 the	
anticipated	 features	 of	 the	 exascale	 landscape.	 Several	 static	 analysis	 tools	 are	
also	run.	All	tests	must	pass	before	a	change	can	be	acceptable.	The	range	of	tests	
and	 tools	 are	 reviewed	 and	 updated	 continuously.	 See	
http://jenkins.gromacs.org/job/Documentation_Nightly_master/javadoc/dev-
manual/jenkins.html	for	more	details.	Released	versions,	e.g.	source	tarballs	are	
tested	on	a	range	of	configurations	before	release.	
Future:	 Since	 the	 range	of	 testing	needs	 to	 expand,	we	wish	 to	use	more	 than	
one	tier	of	testing,	to	limit	the	number	of	machines	required	for	doing	the	builds.	
Fast-running	 tests	 will	 run	 for	 each	 proposed	 code	 change	 on	 important	
platforms,	and	longer	running	tests	will	also	run	on	a	wider	range	of	platforms	
once	the	proposed	code	has	been	accepted.	
Specific	activities	to	be	achieved	over	the	course	of	BioExcel	are:	

• expanding	 test	 coverage	 (particularly	 including	 rerun,	multi-simulation,	
and	replica-exchange	functionality),	

• replacing	old	testing	Perl	driver	script	with	GoogleTest	C++	driver,	
• deploying	automated	single-node	performance	 regression	 testing	on	 the	

performance	 benchmark	 suite,	 perhaps	 deploying	 tools	 such	 as	 Allinea	
Performance	Reports	or	Intel	VTune	Amplifier,	

• manual	benchmarks	and	testing	on	existing	petascale	resources	(though	
this	 is	 currently	 of	 dubious	 value,	 because	 GROMACS	 is	 extremely	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 14	
	

	

sensitive	 to	 network	 latency,	 and	 typically	 that	 latency	 is	 affected	
irreproducibly	by	every	job	that	shares	the	network	on	the	machine),	

• deploying	 Docker-based	 multi-tier	 CI	 builds	 to	 streamline	 the	
implementation,	giving	developers	faster	feedback,	

• continuing	 to	 add	 support	 for	 warning-free	 builds	 for	 up-to-date	
compilers,	code	analyzers,	and	libraries,	

• deploying	pre-release	testing	suite	that	verifies	correctness	of	ensembles	
produced,	perhaps	using	the	Copernicus	workflow	engine,	and	

• adding	support	 for	 the	Memory,	Leak	and	UndefinedBehaviour	Sanitizer	
code-analysis	tools	to	the	CI	configuration,	

• report	annual	increases	in	test	coverage.	

3.13 Release	Process	
Current:	 Formal	 releases	 will	 only	 be	 made	 from	 release	 branches,	 and	 will	
follow	 the	 versioning	 scheme	 in	 use	 at	 the	 time	 that	 branch	 forked	 from	 the	
master	branch.	Generally	at	least	one	release	candidate	is	made	available	for	the	
community	 for	 around	 a	 month	 of	 informal	 testing	 before	 the	 final	 release.	
During	this	time	users	and	developers	are	encouraged	to	attempt	to	validate	that	
their	 simulations	 of	 interest	 work	 at	 least	 as	well	 (or	 better)	 than	 previously.	
Debian	and	Fedora	projects	already	test	GROMACS	on	a	wide	range	of	platforms,	
and	 they	will	 be	 invited	 to	help	with	 this	 effort.	The	eventual	 source	 and	 tests	
tarballs	for	the	release	are	built	by	Jenkins	from	a	commit	in	the	repository	that	
will	later	be	tagged	with	the	release	number.	That	tarball	is	automatically	tested	
by	 the	 Jenkins	 continuous-integration	 server	 on	 a	 range	 of	 installation	
configurations,	 to	 verify	 that	 the	 build	 works	 and	 the	 tests	 pass.	 The	
documentation	 that	 matches	 the	 release	 is	 automatically	 generated	 from	 the	
tarball,	 and	 prepared	 for	 easy	 deployment	 to	 web	 servers.	 The	 stages	 of	 the	
release	 process	 are	 shared	 with	 the	 wider	 community	 through	 emails	 to	 the	
users,	developers	and	announcement	mailing	lists,	posts	on	social	media	outlets	
(Facebook,	Google+,	Twitter),	and	both	the	GROMACS	and	BioExcel	websites.	
Future:	 Finalize	 automation	 of	 final	 details	 of	 an	 automatic	 release	 build,	
including	 construction	 and	 deployment	 of	 the	 release	 notes,	 and	 embedding	
tarball	checksums	in	the	appropriate	locations.	

3.14 Deprecation	
When	a	feature	is	identified	as	superseded,	is	no	longer	functioning,	or	is	lacking	
developer	support	for	maintenance	then	after	due	consultation	with	the	user	and	
developer	 community,	 it	will	 be	 deprecated.	 Generally	 it	will	 be	 deprecated	 in	
the	next	annual	release,	so	that	users	who	run	the	code	have	warning	that	they	
are	at	risk	of	depending	on	code	that	will	not	be	maintained	in	future.	Thereafter	
it	may	be	removed	at	the	discretion	of	the	developer	community.	When	code	is	
known	 to	 have	 been	 broken	 for	multiple	 years	 already,	 and	 thus	 cannot	 be	 in	
active	 use	 in	 a	maintained	branch,	 it	might	 be	 removed	without	 a	 deprecation	
notice	in	the	software,	but	this	will	be	acknowledged	in	the	release	notes	of	the	
next	 annual	 release.	 Support	 for	 older	 hardware	 platforms	 is	 also	 removed	
gradually,	 to	 make	 effective	 use	 of	 developer	 time	 porting	 to	 new	 hardware;	
older	versions	of	the	code	still	run	on	the	older	hardware	for	those	who	cannot	
upgrade	usefully.	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 15	
	

	

3.15 Retirement	
Current:	Each	(annual)	major	release	has	one	year	of	best	effort	by	developers	
to	 fix	 any	 shortcoming	 in	 the	 implementation	 of	 functionality	 intended	 to	 be	
supported	in	that	release.	That	includes	code	correctness,	accuracy	and	presence	
of	 documentation,	 functioning	 of	 build	 system,	 and	 simulation	 performance,	
whether	reported	by	users	or	developers.	The	stability	of	related	code	paths	will	
form	part	of	the	decision	about	whether,	where	and	how	to	fix	a	bug.	If	a	bug	fix	
is	 not	 feasible,	 then	 we	 will	 alter	 the	 code	 to	 prevent	 future	 releases	 from	
running	 that	 wrong	 code,	 and	 report	 this	 to	 the	 user	 in	 subsequent	 bug-fix	
releases.	After	one	year,	there	will	be	a	further	year	of	best	effort	to	fix	any	issue	
that	affects	scientific	correctness	(whether	in	mdrun	or	tools).	
The	developers	reserve	the	option	to	fix	a	bug	only	in	the	master	branch	if	that	
seems	the	most	practical	course.	In	particular,	because	large	scale	refactoring	of	
the	code	base	is	underway,	it	is	impractical	to	remember	all	the	details	of	several	
implementations	that	were	used	in	past	years,	current	implementations,	and	the	
proposed	 future	 implementations,	 and	bugs	 and	developer	 conflicts	 have	 been	
introduced	because	of	such	lapses	in	understanding.	
Future:	 It	may	become	feasible	to	support	release	branches	for	 longer	periods.	
We	 have	 identified	 several	 improvements	 that	 will	 make	 this	 feasible;	 the	
transition	to	a	modular	C++11	library	needs	to	be	substantially	complete,	the	test	
infrastructure	must	 be	 contained	 in	 the	 source-code	 repository,	 an	 automated	
suite	of	performance	tests	must	be	available	and	automated,	and	a	wide	range	of	
simulation	 quality	 tests	 must	 be	 available	 and	 automated.	 When	 a	 GROMACS	
library	API	is	developed	(which	is	a	key	outcome	of	a	funded	NIH	project),	then	
we	will	consider	whether	the	point	of	long	term	support	becomes	the	version	(or	
level)	 of	 the	 API,	 rather	 than	 the	 release	 version,	 and	 again	 the	 existence	 of	
automated	testing	and	the	stability	of	the	GROMACS	source-code	infrastructure	
will	be	key	components	in	this	decision.	

3.16 Code	commenting	
Code	is	commented	with	a	view	to	explaining	what	the	code	is	doing,	rather	than	
how.	 If	 it	 is	 not	 obvious	 how	 the	 code	 is	working,	 then	 prefer	 to	 improve	 the	
naming	of	variables	and	methods,	use	better	control	flow,	or	show	examples	with	
working	 tests.	 New	 and	 newly	 refactored	methods	 and	 source	 files	must	 have	
Doxygen-style	 comments	 that	 are	 automatically	 built	 into	 the	 developer	 guide	
available	 at	
http://jenkins.gromacs.org/job/Documentation_Nightly_master/javadoc/#docu
mentation-for-developers.		

3.17 Coding	standards	and	styles	
Current:	The	GROMACS	style	is	 loosely	based	upon	the	Google	C++	Style	Guide	
(https://google.github.io/styleguide/cppguide.html),	with	the	notable	exception	
that	we	permit	the	use	of	C++	exceptions.	In	practice,	we	will	avoid	writing	code	
that	might	 throw	 exceptions	 in	 our	 performance-sensitive	 kernels	 because	we	
have	 great	 experience	 in	 writing	 these	 kernels	 such	 that	 there	 will	 be	 no	
checkable	 error	 conditions.	 See	
http://jenkins.gromacs.org/job/Documentation_Nightly_master/javadoc/dev-
manual/style.html.	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 16	
	

	

Future:	 Update	 these	 to	 account	 for	 new	 recommendations	 in	 the	
CppCoreGuidelines	 (https://github.com/isocpp/CppCoreGuidelines),	 following	
the	best	practice	 and	wisdom	of	 the	 larger	modern	C++	developer	 community,	
who	largely	share	our	interests	in	correctness	and	high	performance,	by	default	
and	by	construction.	

4 Development	process	details	for	HADDOCK	
	
HADDOCK[8,	 9]	 is	 an	 integrative,	 information-driven	 docking	 approach	 which	
supports	 the	 incorporation	 of	 a	 large	 variety	 of	 data	 from	 NMR	 and	 other	
biophysical	 methods	 (e.g.	 cross-links	 from	 MS,	 EPR-derived	 distances,	
mutagenesis	 data,	 as	well	 as	 the	 use	 of	 SAXS	 and	 IM-MS	data	 to	 filter	 docking	
solutions).	 The	 software	 is	 made	 available	 through	 a	 user-friendly	 web	
interface,[10,	11]	which	has	attracted	a	large	user	community	worldwide	(8000+	
users)	 and	 resulted	 in	over	120	deposited	 structures	of	 complexes	 in	 the	PDB.	
HADDOCK	 has	 demonstrated	 a	 strong	 performance	 in	 the	 blind	 docking	
experiment	CAPRI,	belonging	to	the	best	performing	approaches	and	is	currently	
the	most	 cited	 software	 in	 its	 field.	 HADDOCK	 is	 currently	 available	 both	 as	 a	
software	 for	 local	 installation	 and	 as	 a	 web-server.	 The	 stable	 release	 of	 the	
software	and	web	server	is	HADDOCK	2.2.[11]		
Both	 the	 stand-alone	 version	 and	 the	most	 commonly	 used	 (>90%	of	 the	 user	
base,	 >8000	 registered	 users)	 web	 portal	 version	 of	 HADDOCK	 implement	 a	
complex	workflow	managed	at	a	higher	level	by	a	Python	code	components,	with	
the	web	 server	 implementation	 adding	 several	 pre-	 and	 post-processing	 steps	
not	 available	 in	 the	 current	 local	 version	 of	 the	 software.	 These	worflows	 are	
depicted	in	Figure	2	and	Figure	3.	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 17	
	

	

	
Figure	2	Workflow	description	of	the	HADDOCK	web	portal.

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 18	
	

	

	
Figure	3	Internal	workflow	of	HADDOCK.

	
The	actual	computations	are	performed	using	the	CNS	(Crystallography	&	NMR	
System)	engine	(http://cns-online.org),	which	comes	with	its	own	test	suite.	All	
the	docking	and	refinement	protocols	in	HADDOCK	are	coded	at	the	level	of	CNS	
scripts.	This	means	that		development	does	not	require	coding	in	the	CNS	source	
code	(Fortran77)	unless	new	functions	need	to	be	implemented.	 	

4.1 Architecture	
The	architecture	is	quite	static	for	HADDOCK,	the	server	drives	local	work,	which	
drives	 the	 grid	 submission/polling	 engines.	 It	 is	 unlikely	 to	 change	 much.	
HADDOCK	can	exploit	both	grid	HTC	or	 local	 cluster	 resources	 for	distributing	
the	 workload.	 It	 has	 also	 run	 on	 HPC	 systems	 under	 several	 HPC-Europe	 and	
HPC-Europe2	programmes.	

4.2 Design	
Current:	The	web	 portal	 design	 has	 since	 the	 start	 been	 geared	 toward	 user-
friendliness,	 providing	 foldable	 menus	 to	 hide	 forms	 when	 not	 used.	
Furthermore,	 several	 access	 level	 to	 the	 portal	 are	 offered	 that	 only	 expose	 a	
limited	or	more	extended	sets	of	 input	options	depending	on	the	complexity	of	
the	scenario.		
Future:	Usability	and	scenario-specific	web	forms	is	something	that	will	remain	
central	in	any	future	development.	

4.3 Release	Process	
Current:	New	 features	 are	 implemented	 in	 local	 development	 versions	 of	 the	
software	and	 then	added	 to	 the	web	 front	 end.	The	 latter	part	 is	 currently	 the	
limiting	factor	in	releasing	new	versions	because	of	the	old	framework	on	which	
the	portal	has	been	built.	We	are	currently	rewriting	the	web	portal	into	a	Flask	
framework	which	should	allow	much	 faster	 implementation	of	new	 features	 in	
the	web	portal.		
Incremental	 bug	 fixing	 alongside	 minor	 feature	 development	 are	 constantly	
implemented.	These	are	first	tested	in	a	development	version	of	the	web	portal,	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 19	
	

	

which	can	also	be	accessed	by	users	for	testing	purposes.	Once	these	have	been	
properly	tested	and	validated,	the	changes	are	pushed	to	the	production	version	
of	 the	 web	 portal	 and	 the	 stand	 alone	 software	 distribution	 is	 updated	
accordingly.	 This	 process	 does	 not	 result	 in	 a	 new	 version	 release	 since	 it	
remains	rather	transparent	to	the	end	users	(i.e.	no	new	input	forms	are	typically	
added	to	the	server).		
Future:	All	changes	will	be	properly	documented	(using	Git	with	good	messages	
and	 self-contained	 commits),	 clearly	 separating	 for	 fixes	 and	 features,	 to	 ease	
making	release	notes.		

4.4 Review	Process	
Current:	A	 number	 of	 core	 HADDOCK	 developers	 can	 submit	 pull	 requests	 in	
Github.	Rights	to	accept	commits	will	be	given	to	a	few	selected	core	reviewers	
as	well	as	the	main	reviewer	(Alexandre	Bonvin).	
Any	 new	 feature	 added	 to	 HADDOCK	 (e.g.	 the	 support	 for	 a	 new	 type	 of	
information)	should	be	accompanied	with	an	associated	test	and	example	runs.	
Further,	the	complete	test	and	example	suite	should	be	run	and	demonstrated	to	
lead	to	similar	results.	
For	bug	fixes	and	minor	features,	successful	execution	of	the	test	suite	should	be	
demonstrated	(see	testing	process	below).	

4.5 Feature	request	handling	
Current:	New	features	are	often	added	as	result	of	new	challenges	and	scientific	
questions.	Currently	users	will	directly	contact	the	developers	via	email	(either	
directly	 via	 our	 university	 emails,	 or	 through	 our	 user	 support	 email:	
haddock.support@gmail.com.	 The	 http://ask.bioexcel.eu	 HADDOCK	 forum	
provides	 another	 feedback/requirement	 mechanism.	 Considering	 the	 limited	
funding	and	the	absence	of	core	and	permanent	software	developer,	new	feature	
requests	are	prioritized	based	on	the	scientific	interest	and	expected	impact	on	
the	user	community.		
Future:	Under	BioExcel	we	will	make	us	of	 the	 “issues”	mechanism	offered	by	
GitHub	 to	 add	 and	 track	 feature	 requests.	 GitHub	 allows	 to	 classify	 issues	 in	
various	 categories,	 including	 “enhancement,”	 which	 will	 be	 used	 for	 feature	
requests.	 	 This	 will	 allow	 referring	 to	 them	when	 committing	 software	 in	 the	
HADDOCK	GitHub	repository	that	addresses	a	feature	request.	

4.6 Bug	tracking	
Current:	 Bug	 tracking	 has	 been	 done	 via	 internal	 documents	 shared	 between	
core	developers.	The	input	is	typically	collected	via	direct	emailing	(see	Feature	
request	handling)	and	via	the	BioExcel	support	forum.	
Future:	Under	BioExcel	we	will	make	us	of	 the	 “issues”	mechanism	offered	by	
GitHub	 to	 add	 and	 track	 bugs.	 GitHub	 allows	 to	 classify	 issues	 in	 various	
categories,	 including	 “bug”.	This	will	 allow	 referring	 to	 them	when	 committing	
software	in	the	HADDOCK	GitHub	repository	that	fixes	the	bug.	

4.7 Testing	requirements	
Current:	Any	bug	fixes	should	be	validated	by	running	the	test	suite	in	the	local	
version	and	demonstrating	that	similar	results	are	obtained.	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 20	
	

	

Any	 new	 feature	 should	 be	 accompanied	 with	 a	 well-documented	 test	 and	
example	with	all	required	input	data	and	an	example	output	file	
Any	feature/bug	fix	pushed	to	the	web	portal	should	be	first	tested	and	validated	
on	the	development	version	of	the	web	portal.	
Future:	For	new	features,	a	single,	self-contained	haddockparameter	file	should	
be	provided	to	allow	simple	testing	via	the	“file	upload”	interface	of	the	server.	

4.8 Testing	process	
Current:	 HADDOCK's	 development	 currently	 uses	 a	 private	 repository	 on	
GitHub.	 Test	 modules	 are	 separated	 from	 the	 code	 on	 their	 own	 GitHub	
repository.	These	run	the	full	workflow	for	the	local	version	of	the	software	with	
reduced	settings	 to	make	sure	 that	everything	 is	working	properly,	allowing	 to	
execute	the	complete	test	suite	 in	 less	than	one	hour	on	a	 laptop.	Examples	for	
various	scenarios	are	separated	 from	the	code	on	their	own	GitHub	repository.	
These	 run	 the	 full	 workflow	 with	 standard	 or	 optimal	 setting	 for	 the	 various	
scenarios.	The	current	examples	are:	 	

• protein-DNA	
• protein-ligand	
• protein-peptide-ensemble	
• protein-peptide	
• protein-protein	docking	using	NMR	chemical	shift	perturbation	restraints	
• protein-protein	docking	using	NMR	diffusion	anisotropy	restraints	
• protein-protein	docking	using	NMR	pseudo-contact	shift	restraints	
• single	structure	refinement	with	NMR	restraints	
• protein-trimer	docking	
• solvated	protein-protein	docking	
• multi-body	docking	of	a	C4	tetramer	with	a	coarse	grained	representation	
• protein-protein	docking	using	cryo-EM	restraints	 	 	

	
	
Any	update	pushed	to	the	web	portal,	should	first	be	successfully	tested	on	the	
development	 version	 of	 the	 web	 portal,	 ensuring	 that	 the	 various	 scenarios	
provided	 in	 the	 example	 set	 are	 all	 successfully	 running	 on	 the	 web	 portal,	
including	 the	 pre-	 and	 post-processing	 steps	 not	 offered	 by	 the	 standalone	
version	 of	 the	 software.	 For	 this,	 version-specific,	 self-contained	 single	
haddockparameter	files	should	be	used	via	the	“file	upload”	interface	of	the	web	
server.		
Future:	Those	files	will	be	added	to	the	test	suite	on	GitHub.	Note	that	this	is	a	
computationally	demanding	process	since	full	runs	should	be	performed	at	this	
stage,	which	will	typically	take	days	to	over	one	week	to	complete	depending	on	
the	number	of	example	cases	and	the	load	on	our	server.	

4.9 Development	process	details	
Future:	 Any	 new	 development	 should	 be	 linked	 to	 an	 identified	 feature	
documented	as	an	 issue	 in	GitHub.	This	will	 allow	 for	discussion,	planning	and	
review	as	the	work	on	a	feature	progresses.	The	following	steps	will	be	followed:	

1. Identify	and	describe	a	new	feature/development	by	creating	an	issue	in	
the	haddock	GitHub	repository	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 21	
	

	

2. Write	a	development/implementation	plan	and	solicit	feedback	from	the	
HADDOCK	developers	(eventually,	if	needed	from	other	BioExcel	experts).	

3. Plan	tests	
4. Attempt	 implementation	 and	 testing	 by	 creating	 a	 new	 branch	 of	 the	

current	version	of	HADDOCK	
5. Finish	code,	add	test	and	example	to	the	test/example	suite	
6. Run	the	full	test/example	suite	for	validation	
7. Submit	to	main	developer	for	review	
8. Merge	code	upon	approval	
9. Run	 the	 entire	 test/example	 suite	 in	 the	 merged	 version	 for	 final	

validation	
Any	developments	affecting	the	web	portal	will	follow	the	same	mechanism,	with	
the	additional	requirement	that	single,	self-contained	haddockparameter	files	be	
generated	to	test	the	new	feature	via	the	“file	upload”	interface	of	the	web	portal.	
Validation	using	all	test	cases	will	be	performed	on	the	devel	version	of	the	web	
portal.	 Depending	 on	 the	 impact	 of	 a	 new	 feature	 and	 the	 number	 of	 new	
features	 implemented,	either	a	minor	update	of	 the	software/portal	or	a	major	
release	will	be	rolled	out.	

4.10 Integration	approach	
The	HADDOCK	developers	will	work	on	 their	own	separate	branch	of	 the	code	
using	standard	GitHub	mechanisms	for	this.	Integration	will	happen	by	merging	
into	the	main	branch	following	the	development	process	described	above.		

4.11 Retirement	
Current:	 Historically	 the	 lifetime	 of	 a	 release	 is	 undefined.	 While	 the	
development	 version	 of	 HADDOCK	 is	 constantly	 updated	 as	 new	 features	 are	
added,	the	officially	distributed	stand	alone	version	is	kept	as	the	same	level	as	
the	 web	 server	 version	 (currently	 HADDOCK2.2),	 since	 this	 allow	 for	 a	 much	
smoother	 user	 support	 by	 pointing	 users	 to	 the	 web	 portal	 in	 case	 of	 local	
installation	problems	or	setup	issues.		
Currently	we	support	two	versions	of	the	web	portal	for	HADDOCK	2.1	and	2.2,	
because	 of	 third	 party	 software	 connecting	 directly	 to	 the	 2.1	 version	 of	 the	
portal.	Developers	have	been	contacted	to	upgrade	to	the	latest	version.		
Future:	For	future	releases	of	the	web	portal	and	associated	stand	alone	version,	
we	will	implement	a	retirement	policy	that	will	support	and	maintain	a	previous	
version	 of	 the	 software	 and	web	 portal	 for	 a	maximum	 of	 two	 years	 after	 the	
release	of	a	new	version	of	those.	While	two	years	might	seem	rather	 long,	our	
web	portals	are	not	updated	that	often	(except	for	minor	fixes),	and	this	is	also	
needed	 since	 the	 duration	 of	 research	 projects	 might	 be	 quite	 long	 and	 it	 is	
important	 to	 allow	 users	 to	 complete	 their	 research	 work	 using	 one	 and	 the	
same	version	of	the	software	for	consistency.	

4.12 Deprecation	
Current:	No	policies	 in	place	 for	deprecation.	Users	with	older	 versions	of	 the	
software	 requesting	 support	 are	 encouraged	 to	 upgrade	 to	 the	 most	 current	
version.	
Future:	 All	 references	 and	 entry	 points	 to	 the	 various	 web	 portals	 will	 be	
updated	to	point	to	the	latest	official	release	and	a	note	will	be	added	to	the	older	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 22	
	

	

versions	 clearly	 stating	 the	 end	 date	 of	 the	 service	 and	 support	 (at	 least	 6	
months	before	the	planned	retirement).	Third	party	software	developers	relying	
on	the	web	portal	will	be	notified	directly	after	 the	release	of	a	new	version	of	
the	portal.	

4.13 Code	commenting/standards/styles	
Code	is	commented	with	a	view	to	explaining	what	the	code	is	doing	and	why	a	
specific	 part	was	 added,	 rather	 than	 how.	 If	 it	 is	 not	 obvious	 how	 the	 code	 is	
working,	then	the	naming	of	variables	and	methods	should	be	improved.		
HADDOCK	 is	 consisting	 mainly	 of	 Python	 code	 and	 CNS	 scripts,	 with	 some	
additional	C	code	and	a	collection	of	various	scripts	(csh,	sh,	awk,	perl).	For	the	
Python	part	we	aim	at	following	the	Google	Python	style	guide	recommendations	
https://google.github.io/styleguide/pyguide.html.	
For	 the	 CNS	 scripts,	 proper	 indenting,	 commenting	 and	 clear	 variable	 naming	
should	be	followed.	

5 Development	process	details	for	CPMD	QM/MM	
CPMD	 (http://cpmd.org/)	 is	 an	 ab	 initio	 (or	 quantum)	 molecular	 dynamics	
software	 package	 developed	 and	maintained	 by	 IBM	 Research.	 It	 employs	 the	
density	functional	theory	to	solve	the	many-electron	problem	and	a	plane-wave	
basis	 set	 to	 expand	 the	 wave	 function.	 To	 perform	 the	 time	 evolution	 of	 the	
quantum	 system	 it	 implements	 both	 the	 Born-Oppenheimer	 and	 the	 Car-
Parrinello	 molecular	 dynamics	 approaches.[12]	 It	 was	 reported	 to	 be	 able	 to	
scale	 up	 to	 several	 million	 threads	 on	 a	 16.32	 PFLOPS	 supercomputer	 with	
almost	100%	efficiency.[13]	
		
However,	even	such	highly-parallel	ab	initio	code	can	only	treat	relatively	small	
systems	 (few	 thousands	 of	 atoms),	 while	 many	 applications,	 in	 particular	
biological	 ones,	 require	 to	 process	 systems	 containing	 hundreds	 of	 thousands	
and	 millions	 of	 atoms.	 Such	 simulations	 are	 not	 feasible	 using	 full	 quantum	
methods	 and	 multiscale	 approaches,	 where	 different	 parts	 of	 the	 systems	 are	
treated	at	different	levels	of	accuracy	and	resolution,	are	employed.	The	QM/MM	
methods	 are	 those	 two-layer	 multiscale	 approaches	 where	 the	 (small)	 region	
that	 requires	 the	 most	 accurate	 description	 (QM	 part)	 is	 treated	 at	 quantum	
level,	while	 the	rest	of	 the	system	(MM	part)	 is	described	with	a	classical	 force	
field.	
		
CPMD	has	a	built-in	QM/MM	interface[14]	designed	and	developed	by	the	group	
of	Prof.	Ursula	Röthlisberger	at	EPFL	(Lausanne,	Switzerland)	that	couples	CPMD	
with	 the	 old	 GROMOS96	 (van	 Gunsteren	 et	 al.	 1996)	 classical	 molecular	
dynamics	 routines	 to	 perform	 a	 QM/MM	 molecular	 dynamics	 simulation.	
However,	 this	 implementation	 suffers	 from	a	 set	 of	 drawbacks.	 First,	 the	 force	
fields	 that	 can	 be	 used	 to	 describe	 the	 MM	 part	 are	 only	 GROMOS96	 and	
AMBER99.	Then,	the	scalability	of	the	MM	part	is	limited	due	to	the	fact	that	the	
version	of	GROMOS96	 employed	has	 only	OpenMP	parallelization	without	MPI	
part.	 Therefore,	 only	 one	 node	 can	 be	 used	 for	 classical	 part	 which	 leads	 to	
scaling	issues	in	case	of	large	MM	parts	on	massively	parallel	architectures	(like	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 23	
	

	

IBM	Blue	Gene).	Finally,	GROMOS96	has	a	commercial	license,	which	requires	a	
user	to	buy	it	before	using	the	QM/MM	interface	in	CPMD.	
		
In	 order	 to	 address	 those	 issues	 a	 novel	QM/MM	 interface	 is	 being	developed.	
The	 designed	 workflow	 of	 a	 QM/MM-enabled	 simulation	 based	 on	 CPMD	 is	
shown	in	Figure	4.	
	

	
Figure	4	CPMD	QM/MM-enabled	simulation	workflow.

	
	

5.1 Design	
The	design	of	the	novel	QM/MM	interface	has	been	devised	having	in	mind	the	
execution	 model	 based	 on	 the	 multiple	 program	 multiple	 data	 (MPMD)	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 24	
	

	

approach.	 In	 this	model	 CPMD	 and	 the	 classical	molecular	 dynamics	 code	 run	
independently	 occasionally	 exchanging	 data.	 In	 order	 to	 establish	 the	 data	
connection	 an	 ad-hoc	 communication	 library	 is	 used.	 The	 advantages	 of	 this	
approach	 are	 i)	 the	 possibility	 to	 couple	 CPMD	 virtually	 with	 any	 classical	
molecular	dynamics	code	(and	consequently	to	employ	any	force	field	in	the	MM	
part)	 with	 minimal	 code	 intervention;	 ii)	 benefitting	 from	 the	 parallelization	
scheme	of	both	the	classical	molecular	dynamics	code	and	CPMD;	iii)	overcome	
possible	licensing	conflicts	between	the	CPMD’s	proprietary	license	and	the	one	
of	the	classical	molecular	dynamics	code.	

5.2 Copyright	and	License	
Future:	 Discussion	 about	 under	 which	 kind	 of	 license	 to	 release	 the	 new	
QM/MM	interface	is	ongoing	among	the	developer	team.	The	Lesser	GNU	General	
Public	 License	 (LGPL)	 v2.1	 appears	 currently	 the	 preferred	 choice	 even	 if	 this	
would	prevent	the	new	QM/MM	interface	to	be	distributed	inside	the	tarball	of	
the	 CPMD	 source	 code	 that	 can	 be	 downloaded	 from	 the	 CPMD	 website	
(www.cpmd.org),	due	to	the	restrictions	of	the	IBM	general	license	under	which	
CPMD	is	made	available.		

5.3 Version	control	
Git	 is	 used	 for	 version	 control.	 For	 the	 initial	 stage	of	 the	development	we	are	
using	the	merge-based	Github	workflow.	A	stable	master	branch	will	be	used	to	
create	builds.	All	changes	should	be	done	on	a	separate	branch.	Feature	branches	
are	 merged	 into	 master	 branch	 through	 merge	 requests.	 Before	 the	 review	
process	 an	 automatic	 build	 and	 testing	 procedure	 is	 triggered.	 A	 two-level	
testing	procedure	is	planned	to	be	used	as	soon	as	the	initial	development	stage	
is	over.	The	first	 level	of	testing	is	the	unit	testing	checking	the	validity	of	code	
changes	 introduced	 in	 separate	 modules.	 After	 the	 successful	 passing	 of	 unit	
tests,	a	set	of	integration	tests	will	be	triggered.	Since,	currently	we	do	not	have	
enough	 coding	base	 to	 build	 integration	 tests	we	 are	 currently	 using	 only	 unit	
tests.	 The	 testing	 procedure	 is	 handled	 by	 the	 Gitlab	 continuous	 integration	
system.	An	approval	of	at	least	two	members	of	the	development	team	is	needed	
to	fulfill	the	merge	request.	

5.4 Feature	request	handling	and	bug	tracking	
Future:	 An	 issue	 tracking	 system	 will	 be	 used	 for	 reported	 bugs	 and	 feature	
requests	 when	 the	 program	 will	 be	 released	 for	 the	 user	 test	 phase.	 At	 the	
moment	a	Gitlab	issues	tracker	is	planned	to	be	used,	with	a	possible	fallback	to	
Redmine	in	case	if	the	Gitlab	functionality	proves	not	to	be	sufficient.	

5.5 Testing	requirements	
A	PFUnit	unit-testing	framework	is	used	to	write	automated	tests.	All	functional	
parts	of	the	code	(i.e.	not	constructors,	accessors,	etc.)	have	to	be	covered	by	unit	
tests.	 Failing	 to	 comply	 with	 this	 requirement	 results	 in	 the	 rejection	 of	 the	
proposed	 changes.	 A	 feature	 incorporating	 multiple	 code	 units	 should	 have	 a	
sensible	 integration	 test	 provided.	 Lack	 of	 an	 integration	 test	 without	 a	 valid	
reason	stated	will	 also	 result	 in	 the	code	rejection.	Tests	are	 run	automatically	
using	Gitlab	continuous	integration	system	on	several	build-servers,	running	on	
different	hardware	and	 software	 in	order	 to	assure	 the	portability	of	 the	 code.	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 25	
	

	

Once	a	viable	product	exists,	 its	performance	overhead	compared	to	e.g.	a	pure	
QM	 calculation	 will	 be	 measured	 to	 see	 if	 	 performance	 optimization	 is	
warranted.	

5.6 Development	process	details	
Current:	 The	 team	 of	 developers	 is	 currently	 a	 small	 number	 of	 autonomous	
academics	in	different	Institutions	that	coordinate	the	general	development	lines	
through	 short	 face-to-face	or	 Skype	meetings.	As	 soon	as	 the	development	has	
reached	the	release	state,	the	development	process	will	become	more	open.	
The	 code	 development	 process	 is	 organized	 following	 the	 GitHub	 workflow,	
based	on	a	Gitlab	service.	After	the	code	changes	are	committed	to	the	repository	
an	automatic	build	 is	 triggered,	 running	automated	 tests	 following	 the	build.	 If	
tests	are	successful	a	code	review	process	is	started.	If	the	proposed	changes	are	
approved	by	two	other	members	of	the	team	then	these	changes	are	merged	into	
a	master	branch.	This	workflow	is	depicted	in	Figure	5.	

5.7 Code	commenting	
Every	 type	and	 subroutine	 (except	 constructors	 and	accessor	methods)	 should	
have	a	doxygen-format	comments	stating	its	purpose	(i.e.	explaining	what	code	
is	doing).	

5.8 Code	standards	and	styles	
The	code	is	being	developed	to	comply	with	Fortran2008	standard.	Coding	style	
is	 loosely	 based	 on	 the	 Best	 Practices	 proposed	 here:	
http://www.fortran90.org/src/best-practices.html.	 Execution	 flow	 can	 only	 be	
controlled	 using	 if	 and	 do	 statements	 -	 usage	 of	 goto	 statements	 is	 strictly	
forbidden.	 On	 top	 of	 that	 a	 usage	 of	 OOP	 techniques	 is	 encouraged	 (though	
sometimes	is	limited	due	to	the	language	issues	or	performance	considerations)	
in	order	to	make	the	maintenance	of	the	code	easier.	
	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 26	
	

	

	
Figure	5	QM/MM	development	workflow	during	initial	MiMiC	development	phase.	

	

6 Development	process	details	for	pmx	
	
pmx	 is	 a	 Python-based	 software	 package	 [15,	 16]	 that	 provides	 utilities	 for	
handling	 biomolecular	 structure	 and	 topology	 files	 directly	 compatible	 with	
GROMACS.	The	particular	strength	of	the	pmx	libraries	lies	in	their	application	to	
the	 hybrid	 structure	 and	 topology	 generation	 for	 alchemical	 single	 topology	
based	 free	 energy	 simulations.	 The	 automated	 pmx	 based	 procedures	 readily	
allow	 the	 calculation	 of	 free	 energy	 changes	 due	 to	 amino	 acid	 mutations	 in	
several	 contemporary	molecular	mechanics	 force	 fields.[17]	 The	 basic	 scheme	
underlying	 the	 workflow	 of	 the	 automated	 hybrid	 protein	 structure/topology	
generation	 is	 depicted	 in	 Figure	 6.	 Preparation	 of	 the	 system	 for	 alchemical	
molecular	 dynamics	 simulations	 following	 this	 scheme	 is	 available	 via	 a	
command	line	interface.	A	user	friendly	web-based	infrastructure	implementing	
the	outlined	workflow	is	currently	under	development.	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 27	
	

	

	
Figure	6	Workflow	of	the	pmx-based	hybrid	structure/topology	generation	for	an	amino	acid	
mutation.

6.1 Architecture		 		 		 	
pmx	 implements	 a	 number	 of	 classes	 for	 the	 structure	 and	 topology	 handling	
(Figure	7).	The	setup	for	the	alchemical	single	topology	simulations	of	the	amino	
acid,	dna	or	 ligand	modifications	comprises	a	number	of	scripts	(Figure	6)	that	
utilize	 the	 data	 structures	 in	 Figure	 6.	 All	 the	 utilities	 provided	 by	 pmx	 are	
available	 via	 command-line	 interface.	 The	 amino	 acid	 mutation	 setup	 is	 also	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 28	
	

	

available	as	an	online	web-server.	Online	access	to	the	other	features	is	planned	
for	the	future	development.	
	

	
Figure	7	The	main	classes	underlying	the	pmx	architecture.

6.2 Design	
A	command-line	interface	is	designed	as	a	convenient	medium	for	a	power	user	
who	needs	to	perform	a	large	scale	amino	acid/DNA/ligand	modification	scan,	as	
it	 allows	 for	 convenient	 scripting	 also	 on	 architectures	 without	 a	 graphical	
interface,	 such	 as	 remote	 supercomputer	 clusters.	 The	 pmx	 scripts	 can	 be	
executed	on	a	local	machine	or	on	a	cluster	in	an	automated	manner.	pmx	can	be	
incorporated	 into	 a	 workflow	management	 system	 for	 a	 fully	 automated	 high	
throughput	computational	mutation	screening.	
An	online	web-server	provides	a	user	friendly	means	to	obtaining	the	amino	acid	
mutation	structures	and	topologies	without	the	need	to	have	a	local	installation	
of	pmx.	The	web-server	also	provides	a	 feature	of	generating	 files	 required	 for	
the	mutational	scans	of	a	full	protein	by	a	user	selected	amino	acid.	

6.3 Development	process	details	 		 		 		 	
There	 are	 two	 main	 forces	 driving	 the	 pmx	 development.	 Firstly,	 the	
development	is	guided	by	scientific	questions	which	dictate	the	direction	for	the	
new	features	to	be	implemented.	Secondly,	major	changes	in	the	Gromacs	force	
field	organization	and	structure/topology	handling	utilities	require	adjustments	
to	 the	 pmx	 code.	 These	 are	 discussed	 in	 detail	 between	 the	 pmx	 and	Gromacs	
developers.	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 29	
	

	

6.4 Integration	approach			 		 		 	
Current:	 pmx	 has	 only	 one	 active	 developer,	 therefore	 the	 bug-fixes	 and	 new	
features	are	 integrated	 into	 the	master	branch	as	soon	as	 they	pass	 the	 testing	
phase.	
Future:	introduce	code	review	when	resources	permit	

6.5 Review	Process	 	
pmx	is	actively	developed	by	one	person,	thus	no	independent	review	process	is	
currently	implemented.	
Future:	when	resources	permit,	and	the	benefit	 to	enough	users	 is	clear,	add	a	
code	review	process	

6.6 Testing	requirements	 		 		 		 	
The	first	level	check	for	a	newly	generated	mutation	library:	The	hybrid	topology	
needs	 to	 contain	 all	 the	 bond/angle/dihedral	 parameters	 of	 the	 non-hybrid	
topologies	representing	physical	states.	
Second	level	check:	Test	cases	have	been	set	up	that	must	yield	zero	as	computed	
free	 energy.	 The	majority	 of	 errors	 that	 can	occur	will	 lead	 to	 deviations	 from	
zero	and	therefore	these	calculations	provide	an	excellent	quality	control:	these	
thermodynamic	cycles	must	converge	to	zero	for	every	new	mutation	library	and	
software	version.	

6.7 Testing	process	 		 	
Currently	 the	 testing	 is	 performed	 internally	 after	 generating	 new	 mutation	
libraries	and	software	releases.	
Future:	The	standardized	scripts	required	for	the	testing	procedure	are	planned	
to	be	shipped	together	with	the	pmx	package	for	the	user	to	test	the	installation	
as	well	as	offer	the	possibility	to	utilize	these	tests	to	check	newly	implemented	
user-features.	

6.8 Release	Process	 		 		 		 	
The	 releases	 are	 guided	 by	 the	 implementation	 of	 new	 features	 and	 bug-fixes.	
The	updated	versions	are	immediately	pushed	onto	GitHub.	The	version	control	
and	documentation	of	the	changes	is	provided	by	the	Git	version	control	system.	

6.9 Bug	tracking	 		 		 		 	
Users	 can	 report	 bugs	 as	 GitHub	 issues	 at	
https://github.com/dseeliger/pmx/issues	 that	 pmx	 developers	 can	 act	 upon,	
however	 the	 testing	 process	 (described	 below)	 serves	 as	 the	main	method	 for	
preventing	bugs	before	users	find	them.	

6.10 Retirement	
pmx	 is	 dependent	 on	 the	 Gromacs	 infrastructure	 for	 handling	 structures	 and	
topologies.	Hence,	 the	 retirement	 of	 outdated	pmx	versions	 is	 tightly	 linked	 to	
the	 changes	 in	 the	Gromacs	 force	 field	organization	and	 the	 tools	handling	 the	
structure/topology	 operations.	 Following	 a	 substantial	 change	 in	 the	 Gromacs	
force	field	structure,	the	old	pmx	version	is	retired	immediately	once	an	update	
is	released.	Older	versions	can	still	be	downloaded	and	used,	but	are	no	 longer	
actively	supported.	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 30	
	

	

6.11 Deprecation	 		 		 		 	
Features	in	pmx	currently	are	not	deprecated.	When	a	newer	version	of	a	feature	
is	implemented,	the	old	version	remains	available	to	the	users.	

6.12 Feature	request	handling	 		 	
Addition	of	new	 features	 is	 stimulated	by	 the	 scientific	 questions	 to	be	 solved.	
Also,	updates	are	considered	upon	request	from	the	user	side.	The	requests	can	
be	 sent	 by	 email	 directly	 to	 the	 developers	 or	 posted	 on	 GitHub.	 Major	 novel	
features	to	be	added	in	the	near	future	are	support	for	nucleic	acids	and	ligands.	

6.13 Code	commenting/standards/styles		 		 		 	
pmx	 is	 written	 in	 Python	 2.	 The	 code	 does	 not	 adhere	 to	 any	 specific	 style	
recommendations.	The	pmx	source	code	contains	a	bare	minimum	of	comments,	
but	 tries	 to	 maintain	 an	 understandable	 class,	 method	 and	 variable	 naming	
convention.	This	has	proven	a	robust	and	extendable	 framework	since	the	 first	
release	in	2010.	

7 Concluding	remarks	
Each	of	the	software	sub-teams	within	Work	Package	1	of	BioExcel	has	described	
their	 current	 software-development	 process,	 including	 plans	 for	 quality	
assurance	and	testing,	along	with	improvements	they	plan	to	make.	These	plans	
and	this	document	are	 intended	to	ensure	the	 long-term	usefulness	of	 the	pilot	
codes,	 with	 a	 particular	 view	 to	 smoothing	 over	 expected	 hardware-related	
turbulence	 in	 the	 exascale	 era.	 Progress	 in	 biomolecular	 science	 requires	 that	
hardware	 and	 human	 resources	 are	 used	 efficiently,	 and	 must	 be	 based	 on	
results	 that	 are	 capable	 of	 reproduction	 in	 the	 long	 term,	 and	 the	 BioExcel	
software	development	processes	 are	 likely	 to	 achieve	 this,	 given	 the	 resources	
available.	
	
In	project	month	17,		two	further	deliverables	are	due.	Deliverable	1.2	will		make	
a	project	release	of	all	the	codes,	implementing	appropriate	stages	of	the	work	in	
the	 Description	 of	 Action.	 Deliverable	 1.3	 will	 describe	 a	 roadmap	 of	 future	
hardware	relevant	to	exascale	development,	with	a	focus	on	the	interests	of	the	
biomolecular	simulation	community,	and	long-term	development	plans	for	each	
pilot	code.	If	appropriate	based	on	subsequent	developments,	 improvements	to	
this	specification	may	be	noted	then.	
	

8 References	
	
1.	 Kelly,	 D.F.,	 A	 Software	 Chasm:	 Software	 Engineering	 and	 Scientific	

Computing.	IEEE	Software,	2007.	24(6):	p.	120-119.	
2.	 Killcoyne,	 S.	 and	 J.	 Boyle,	Managing	 Chaos:	 Lessons	 Learned	 Developing	

Software	in	the	Life	Sciences.	 Computing	 in	 science	 &	 engineering,	 2009.	
11(6):	p.	20-29.	

3.	 Segal,	J.	and	C.	Morris,	Developing	Scientific	Software.	IEEE	Software,	2008.	
25(4):	p.	18-20.	

D1.1	–	Specification	of	software	engineering,	testing	&	QA
	 	 31	
	

	

4.	 Wilson,	G.,	 et	 al.,	Best	Practices	for	Scientific	Computing.	 PLoS	Biol,	 2014.	
12(1):	p.	e1001745.	

5.	 Boehm,	 B.W.,	 Seven	 basic	 principles	 of	 software	 engineering.	 Journal	 of	
Systems	and	Software,	1983.	3(1):	p.	3-24.	

6.	 Kroll,	 P.	 and	 P.	 Kruchten,	 The	 rational	 unified	 process	 made	 easy:	 a	
practitioner's	 guide	 to	 the	 RUP.	 2003:	 Addison-Wesley	 Longman	
Publishing	Co.,	Inc.	397.	

7.	 Abraham,	 M.J.,	 et	 al.,	 GROMACS:	High	performance	molecular	 simulations	
through	multi-level	parallelism	from	laptops	to	supercomputers.	SoftwareX,	
2015.	1–2:	p.	19-25.	

8.	 Dominguez,	 C.,	 R.	 Boelens,	 and	 A.M.J.J.	 Bonvin,	 HADDOCK: 	 A	
Protein−Protein	 Docking	 Approach	 Based	 on	 Biochemical	 or	 Biophysical	
Information.	 Journal	 of	 the	American	Chemical	 Society,	 2003.	125(7):	 p.	
1731-1737.	

9.	 de	 Vries,	 S.J.,	 et	 al.,	 HADDOCK	 versus	 HADDOCK:	 New	 features	 and	
performance	 of	 HADDOCK2.0	 on	 the	 CAPRI	 targets.	 Proteins:	 Structure,	
Function,	and	Bioinformatics,	2007.	69(4):	p.	726-733.	

10.	 de	Vries,	S.J.,	M.	van	Dijk,	and	A.M.J.J.	Bonvin,	The	HADDOCK	web	server	for	
data-driven	biomolecular	docking.	Nat.	Protocols,	2010.	5(5):	p.	883-897.	

11.	 van	 Zundert,	 G.C.P.,	 et	 al.,	 The	 HADDOCK2.2	 Web	 Server:	 User-Friendly	
Integrative	 Modeling	 of	 Biomolecular	 Complexes.	 Journal	 of	 Molecular	
Biology.	

12.	 Car,	 R.	 and	 M.	 Parrinello,	 Unified	Approach	 for	Molecular	Dynamics	 and	
Density-Functional	 Theory.	 Physical	 Review	 Letters,	 1985.	 55(22):	 p.	
2471-2474.	

13.	 Weber,	V.,	 et	 al.,	Shedding	Light	on	Lithium/Air	Batteries	Using	Millions	of	
Threads	on	the	BG/Q	Supercomputer,	 in	Proceedings	of	the	2014	IEEE	28th	
International	Parallel	 and	Distributed	Processing	 Symposium.	 2014,	 IEEE	
Computer	Society.	p.	735-744.	

14.	 Laio,	A.,	J.	VandeVondele,	and	U.	Rothlisberger,	A	Hamiltonian	electrostatic	
coupling	scheme	for	hybrid	Car–Parrinello	molecular	dynamics	simulations.	
The	Journal	of	chemical	physics,	2002.	116(16):	p.	6941-6947.	

15.	 Seeliger,	 D.	 and	B.L.	 de	 Groot,	Protein	Thermostability	Calculations	Using	
Alchemical	Free	Energy	Simulations.	Biophysical	 Journal,	2010.	98(10):	p.	
2309-2316.	

16.	 Gapsys,	 V.,	 et	 al.,	 pmx:	 Automated	 protein	 structure	 and	 topology	
generation	 for	 alchemical	 perturbations.	 Journal	 of	 Computational	
Chemistry,	2015.	36(5):	p.	348-354.	

17.	 Gapsys,	 V.,	 et	 al.,	 Accurate	 and	 Rigorous	 Prediction	 of	 the	 Changes	 in	
Protein	Free	Energies	in	a	Large-Scale	Mutation	Scan.	Angewandte	Chemie	
International	Edition,	2016.	55(26):	p.	7364-7368.	

	

