Enable Co-Simulation for Industrial Automation by
an FMU Exporter for IEC 61499 Models

Jose Cabral, Monika Wenger, Alois Zoitl
fortiss GmbH
Forschungsinstitut des Freistaats Bayern fiir softwareintensive Systeme und Services
Miinchen, Deutschland
Email: {cabral, wenger, zoitl } @fortiss.org

Abstract—Different causes have contributed to the shift of
paradigm in the automation field from centralized to modular
and distributable. Software and hardware of Programmable
Logic Controllers (PLCs) have evolved to be synchronized with
the demands nowadays and new standards are trying to follow
this trend. One of them is the IEC 61499 standard, which is
intended for modelling distributed industrial solutions with a
vendor-independent format. This shifting is also bringing new
challenges and this paper focuses on the virtual commissioning
of plants, which can become a harder task when the system
is distributed and involves different interconnected modules.
A major problem when doing a virtual commissioning is the
coupling between the different physical systems and controlling
tools since many vendors still offer closed integrated solutions.
Functional Mockup Interface (FMI) is a standard for a co-
simulation interface which intends to fill the gaps between
different modelling tools, by packaging the models into Func-
tional Mockup Unit (FMU) and allowing a co-simulation master
algorithm to have access to the inside model through the proposed
interface. This paper presents a mapping between IEC 61499
models and the FMI standard and an implementation of a tool
that can export IEC 61499 models into FMUs, which would allow
the co-simulation of physical plants and the PLCs software that
controls it. An experiment is shown where a simple Proportional-
Integral-Derivative (PID) controller of a tank system is exported
as an FMU and co-simulated together with a tank system
modelled using OpenModelica.

I. INTRODUCTION

The fourth revolution in the industry (Industry 4.0 or Smart
Factory) wants to transform industry the same way the Internet
transformed the computers, and even go further. Although the
concept of Industry 4.0 may not be the same for all involved
parts, some concepts have a strong presence. The Internet
is again one of the main actors in this revolution, bringing
connectivity to the smallest components in the automation
chain. As the revolution is encouraging the flexibility of its
parts, centralized systems are evolving to more distributed and
modular ones [1].

The heart of these systems is the PLC controlling the logic
of the automation. Transforming automation systems from
centralized to more modular ones, triggered the creation of
the IEC 61499 [2] standard, which complements the well
established IEC 61131 [3] and focuses on the missing qualities
of distributed systems, not present in the IEC 61131 or even
needed in the times it was written.

As in other fields, the automation software to be deployed
into the real systems must be tested beforehand, because stops
in the production of any kind, desired or not, cost money. In
the automation field, the need for these steps can be higher
since an error can not only stop the production but also damage
machines and even humans involved.

When one talks about virtual commissioning in the automa-
tion field, the logic of PLCs is tested against the virtual rep-
resentations of the systems they are controlling. This reduces
the actual commissioning time and in case of software updates,
these can be safely tested. In many cases, the testing starts with
Software-in-the-loop (SIL) where the software to be tested
runs on a computer different to the one where it will finally
run. Digital inputs and outputs are simulated and connected to
a virtual system. On a second step, in Hardware-in-the-loop
(HIL) tests, the software runs on the real hardware where it
will run once the installation is completed. The inputs and
outputs of the hardware are actually triggered, and some type
of coupling is added to connect these to the virtual system to
be controlled [4].

In both cases, normally both logic and the virtual representa-
tion of a system are tightly coupled, and combining tools from
different vendors can be a hard task. With the new paradigm
of distributed systems, the integration of different tools from
different vendors is a greater need. The term co-simulation
can be seen as SIL where models from different fields are
simulated together by a master that controls them. One of the
standards in co-simulation that has gained attention in the last
years is FMI [5], which defines an interface between models
that are packaged in so-called FMUs.

FMI can be very useful to automation systems, where
hardware’s manufacturers can offer their FMU (intellectual
property can be maintained) to software developers to test their
controlling software against it. FMI allows the co-simulation to
be tool-independent, making the integration of several models,
normal in distributed systems, an easier task.

This paper presents a mapping between IEC 61499 models
to the FMI standard and an FMU exporter from a model in
IEC 61499, allowing the developer to test the logic of the
system against physical models from domain-specific tools.

In Section II an overview of the work being done that
is related to this paper is presented, together with a brief
presentation of the key players to this paper. In Section III the

mapping between FMI and IEC 61499 model is explained, to
see the relation between types and other characteristics. The
actual exporter is introduced in Section IV, together with the
tools used for it. Section V presents an experiment that was
done for testing the exporter, where a controller modelled in
IEC 61499 is tested against a system of a tank modelled in
OpenModelica, using a master algorithm which co-simulates
both FMUs. Finally, a conclusion is presented in Section VI,
where an overview of the work done in the paper is presented
and possible future work that can spaw from this.

II. STATE OF THE ART

In this section, the two key players of this work are
presented. Besides that, related work about co-simulation with
FMI is described.

A. Background on IEC 61131 and IEC 61499

During decades, the industry got used to the well estab-
lished centralized architecture of automation, where one PLC
controls one system. The blooming of technology in this
field brought with it a number of vendors offering different
solutions which made the different stakeholders look for a
solution to all the interoperability problems that come with
the lack of a standard. In the early nineties, the standard
IEC 61131 was the first step to overcome this issue, especially
in its third part, stating different programming languages for
PLCs, among them, and interesting for this paper, the Function
Block Diagram (FBD), which is a graphical programming
language with Function Blocks (FBs) representing functions
and input and output variables connected between them with
lines [3].

Even though the aforementioned standard helped to fill
some interoperability gaps on a high level, especially for the
PLC programmer, it did not prevent some other issues. As
an example, a software developed for a brand of PLC using
one of the standard programming languages was not portable,
or at least easily portable, to a PLC from another vendor.
This means that industries were normally tied to a vendor,
and the incorporation of new vendors wasn’t easy since it
would require re-programming of software that was already
tested and implemented. Also, since the IEC 61131 standard
was written in a time when the industry and the automation
were designed using a centralized architecture, communication
between PLCs wasn’t properly covered, producing more issues
when using PLCs from different vendors. This last issue was
exacerbated in the following decades with the tendency of the
production and automation to being more flexible.

The IEC 61499 standard [2] (from now on, when the word
“standard” is alone, it will refer to IEC 61499) is a domain-
specific modelling language intended for distributed systems
in the automation field. It was created not as a replacement
of IEC 61131, but as an extension of it. It even uses the
same data types as IEC 61131. The standard describes several
models which help to describe distributed automation systems
on a high level. The modelling is platform independent and
a eXtensible Markup Language (XML) schema is provided

to overcome portability issues. Four of the models described
in the standard are presented in this paper since they are of
bigger interest for the objectives of it.

= vaentIn1 EventOut1
= Eventln2 EventOut2
FunctionBlock
1.0
tH—»= Dataln1 DataOut1 £
£ Dataln2 DataOut2s—+1
- J

Fig. 1: Example of an interface of a Function Block

The FB model is the base model of the standard and it is
used to represent an encapsulated functionality. In IEC 61499
global variables are forbidden. A big difference with the FB
from IEC 61131 is the introduction of events, which are
separated from data and they trigger the FB and control when
data is refreshed, governing the sequence to be executed in
a network of FB. The interface of a FB is composed of
the input and output events (top of the FB), and the input
and output data (bottom of the FB) and their types. This
interface should be made public by the developer of the FB for
their portability, but the internal behaviour can be maintained
private. An example of an interface is shown in Fig. 1. There
are three types of FBs and this classification is important when
implementing an FMU:

\ Eventan

Initiglized

EventIn1[TRUE = Dataln1]

| NormalOp |— g [EventOut2

START
T 1
1
EventIn1[FALSE = Dataln1]

Fig. 2: Example of an ECC of a Basic Function Block

o Basic Function Block (BFB): their functionality is
defined by an Event Execution Control (ECC) (Fig. 2),
a state diagram with internal variables and algorithms
written in programming languages stated in IEC 61131-
3 or compliant to IEC 61499. The algorithm execution,
state changes and output events are controlled by the
arriving events to the FB.

o Composite Function Block (CFB): the internal function-
ality is defined by a network of FBs of any type (Fig. 3).

Eventin1«p-
EventIn2=p-
Dataln1=p- |

p=EventOut1
P=EventOut2
»=DataOut1

Dataln2«»— ESR —p=DataOut2
;ﬁ)-
xR
ESR
[a Y e
— E_SWITCH
Bl EQ0p—
EO1
jE,SW/TCH
e

Fig. 3: Example of an internal network of a Composite
Function Block

o Service Interface Function Block (SIFB): their be-
haviour is user defined and is normally used to access
hardware resources or platform dependent features like
inputs, outputs or communication.

The Application model is a network of FBs with event
and data connections between them (Fig. 4). The model
also specifies where each FB is executed since applications
can be deployed on different devices. A chain of events is
generated from a SIFB that leads the execution of the FBs,
by following the output event of a FB to the input event
of the next one and so on. The Device model is used to
show the resources inside it. Applications are deployed into
the resources. Resources independently (from other resources
on the same device) control the execution of any FB network
that has been deployed to it. This means that resources deliver
any external event to the FB network they maintain, and they
take care that only one event per time is delivered and no
external event gets lost. Finally, the System model represents
the devices and the relation between them in a distributed
system.

IN_ANY OUT_ANY
=INIT INITO= :\N\T INITO=
*REQ INDj INT2INT_0 F_ADD INT2INT —PREQ CNFy
INANY ¢ 3 ¢ 3 J | ouT ANY
- —»=REQ CNF ***{REQ CNFp—————— P{REQ CNF P -~
BOOU;:]'\C}V' 0%?'\ ,J INT2INT | FADD INT2INT 1=al Qo
v > @ >IN
IN OUTH——— IN1T OUT#——————
INT s TYPE \J mmg:wz > "N ol 208W
O=IVAL i INT =TYPE

0=IVAL

Fig. 4: Example of a simple application

B. Key aspects of FMI

The FMI [5] was developed after the need for a better
interaction between models defined in different modelling
tools by the partners of the MODELISAR project!. Nowadays,
more than a hundred tools have implemented some type of
FMI support?. The standard is in its second version, and this
work focuses on this one rather than the previous one.

The interface is a set of C functions that a model must
implement. The exported file is called FMU, a zip file with
the “.fmu” extension. The standard details the structure of the
FMU, as well as the minimum content of it. The core parts of

Thttps://itea3.org/project/modelisar.html
Zhttp://fmi-standard.org/

it are a Model Description in terms of an XML file, with the
definitions of all exposed variables, inputs and outputs among
them, other static information of the FMU, and the binary or
C files for the model that actually implements the C interface.

The FMI standard specifies the variable types to be used
in the FMUs. They are defined in a header file which can
be uniquely identified using the interface. The main data
types are fimi2Real, fmi2lnteger, fmi2Boolean and fmi2String,
which are used to represent floating point numbers, signed
integer numbers, boolean numbers and character strings (*\0’
terminated, UTF-8 encoded) respectively. Different other types
of structures and pointers are defined but are not presented
here, since they are related to the internal implementation of
the FMU exporter, and not to the IEC 61499 model itself.
The size of the data types is not fixed but it is provided by
the environment where the FMU shall be used. The variables
of an FMU’s model should be mapped to one of the four
types presented. The C interface has functions to get and set
the inputs, outputs and internal variables according to the type,
e.g. fmi2GetReal, fmi2SetReal, fmi2GetBoolean and so on. The
master algorithm knows how to reference each variable in the
model by reading the Model Description XML file.

The above-mentioned characteristics are common for all
FMUs, but the standard is divided into two main parts, with
functions that are common for both parts and specific ones
that only need to be implemented for one of these parts.

e Model Exchange (ME): In ME, the model is represented
using equations. The FMI for ME provides the access to
these equations. The tool that uses FMI for ME should
then have a solver for the equations.

o Co-Simulation (CS): The CS has the solver in the FMU
itself and could be seen as a black-box that is simulated
independently. Exchange of data between FMUs for CS
is restricted to discrete communication points, and are
not direct, but through the master algorithm, which is
in charge of controlling each independent simulation and
doing the transferring of the data. The master algorithm
is not part of the FMI standard. The functions for CS
in the C interface allow to do a step in the simulation
and cancel it. The interface also provides the means to
allow the FMU to interpolate the continuous real inputs
between communication points, and to retrieve the actual
status of the simulation.

C. Co-Simulation with Functional Mockup Units

Co-simulation is not a new concept, and it has been a subject
of studies for many years. A very comprehensive work was
done in [6] where cases and studies from different disciplines
are analyzed. It presents approaches, challenges and a detailed
taxonomy according to different aspects of state of the art of
co-simulation. A focus is made on the importance of FMI,
and the difficulties that arise when the co-simulation is taken
to the field of Cyber-Physical System (CPS), a key player in
automation.

In [7], the authors present a co-simulation case of a CPS
containing a diesel engine and its controller. The controller

runs on an embedded system, so in order to simulate this,
they pack the entire Real-Time Operating System (RTOS) as
a library in the FMU and hook the Operating System (OS)
clock to control it from the FMI interface. A similar approach
is taken in [8], where the authors use TinyOS as OS. With
intermediate steps which transform applications to SysML and
adding an emulator of the OS, an FMU is generated. The
interface of the FMU is taken from an XML file exported
by the compiler of the source files. Another co-simulation
test is done in [9] using Vienna Development Method - Real
Time (VDM-RT), a formal method used in the development
of computer systems, for the modelling of the controller of a
Heating, ventilation, and air conditioning (HVAC) system.

A work using FMI and IEC 61499 is done in [10], but
in this work, a model in IEC 61499 is used to handle the
communication to ME FMUs, and no CS FMU s is used. In
[11] the authors modelled both, a system of a box filler and
its controller, using IEC 61499 and then deployed them in
connected PLCs for an HIL simulation. In this case, the model
of the plant is too simplified and can lack needed physical
details.

Most studies which use FMI come from the physical field
and the FMU of the controller is generated specifically for the
study. By exporting an FMU from an IEC 61499 model, the
controller is modelled in a higher level language and remains
vendor-independent.

III. MAPPING OF IEC 61499 MODELS INTO FMI FOR
CO-SIMULATION

This section presents a co-relation between the key concepts
of both standards, like inputs and outputs, variables, types and
others, that will later serve as a base for the exporter. This
was done by analyzing the requirements of both standards and
finding the correlation between them.

A. Devices as FMUs

Each device in the System Model in IEC 61499 (normally a
PLC in the system) can be mapped to an FMU, and the input
and outputs of the device can be mapped to inputs and outputs
of the FMU. Creating several instances of the FMU would
mean creating instances of the devices with all resources and
applications specific to each instance. Resources in the device
are executing in parallel the chain of events of the application
deployed in them. For the co-simulation FMU, the resources
should be executed only when the FMI function doStep is
called, and pausing the execution when doStep is not being
called.

This is the big difference between FMI and IEC 61499 since
FMI is time-based and IEC 61499 is event based. Also, the
execution time of each FB depends on the machine where it
is running, so the number of events to be executed in a chain
of events during the doStep call can vary from machine to
machine and losing determinism. In other modelling languages
the concept of ticks is used to define the amount of them
needed for certain code to execute. The amount of ticks per
second is then defined. One possible solution could be to set

the ticks per second of the device as a parameter, but then, the
relation between the model and the runtime would be too tight,
losing interoperability. A better solution could be to follow
annexe G of IEC 61499, which defines that every element
can have attributes. The ticks per second of the device where
the model will be running can then be defined as an attribute
of it. Another approach to a possible solution is to run the
FMU in the machine where the model is then deployed. The
FMI standard presents an infrastructure to distribute the co-
simulation using wrappers. This implementation is out of the
scope of this work, but it presents a nice opportunity for future
investigations.

B. Mapping of data types

Regarding data types, the mapping must be done both ways,
from IEC 61499 data types to FMI and the other way around.

The available data types in IEC 61499 can be mapped
to the four data types available in the FMI. This mapping
can be divided into three levels. The first one is for direct
mappings, for example boolean, real and string which have
a direct translation in data types in FMI. In a second level,
all the variations of similar data types in IEC 61499 can be
found, for example, SINT, DINT, USINT and so on, which
represent values for different combinations of the signed and
size characteristic. These are mapped to the corresponding data
types in FMI similar to the first level. And on the third level, all
the time-related data types are found. Since the store is vendor
dependent, but the representation is given in IEC 61131-3 they
are directly mapped to strings in the FMI.

The other way around, from FMU to IEC 61499 data types,
the best approach is to use the biggest container for each case,
since the actual type of the FMU depends on the exporter.
So for example, an integer from the FMI can be mapped to
LINT, a long integer of 64bits. But this representation must
be consistent only inside the FMU, so it can vary among
exporters.

C. IEC 61499 information available in the FMU as variables

The variables that the IEC 61499 model will make available
as an FMU will depend on the type of FB being used. For all
cases, the interface is always public, meaning that all data
inputs and outputs can be offered as variables. Events cannot
be directly mapped to variables, because of their nature and
they don’t have a data type, but the number of times an event
has been triggered can be treated as an integer in the FMU.
Since the IEC 61499 standard doesn’t allow two instances
of FBs to have the same name, the name of the variable in
FMU could start with the name of the FB, followed by a
concatenating character (for example a point) and the name of
the data point or event (which is also unique in the FB). From
the example in Fig. 4, the data inputs of the F_ADD FB will
be called F_ADD.IN1 and F_ADD.IN2 and will be of type
integer. For FBs which are distributed by the developer as a
black box, no other information is available.

For BFB internal variables and the state of the ECC can
be offered in the FMU. The ECC can be a string with the

name of the state, or an integer with the index of the state
according to the representation in the IEC 61499 XML. Since
internal variables cannot have a name that is already used in
the interface of the FB, the concatenation approach still holds.
For the ECC, a unique name could be chosen, which is not
present in the interface.

For CFB all the internal FBs according to the case can be
variables. The method of using concatenation for the name of
the variable also applies to this case.

SIFBs are a special case since their implementation is in
most cases hardware specific. On one side, they are used to
find the Input and Outputs (IO0s) of the model. FBs like IX,
0OX, IW and QW, defined in the standard, should be treated as
the input and output of the FMU. As an example, the Boolean
value coming from the FMU should be present in the IN data
type of the IX FB, as it is illustrated in Fig. 5. The IND event
should be triggered when there’s a new value in the input. The
method for detecting the change in the input, either polling or
triggered by hardware, should be the same as in the runtime
environment that the actual machine will be using. Similar to
10 FBs, communication FBs could be treated as additional
Inputs and Outputs, but this brings new issues especially on
identical incoming packets. Also, communication is a very
important feature in distributed systems, so its full analysis
is out of the scope of this work. In this work, communication
FBs are omitted from the examples. For all other SIFBs, they
should be avoided or have an internal twin representation in
the runtime environment that is running the FMU.

INITO=
=REQ CNF=
IND=
IX

=Ql QOs=
=PARAMS STATUS=
IN=

N

Fig. 5: IX Function Block

IV. ECLIPSE 4DIAC FRAMEWORK AS PLATFORM EXAMPLE

The Eclipse 4diac framework?® is an open-source infrastruc-
ture for developing and executing IEC 61499 models. It was
used for developing the FMU exporter, so its main parts are
presented:

o 4diac-ide: it is an Eclipse-based Integrated Development
Environment (IDE) written in Java, which allows the
user to design distributed automation systems according
to IEC 61499 in a graphical way. The user can create
applications, devices, resources, map them and also create
their own FBs.

e tool library: the library contains commonly used FBs,
like the ones that are defined in the standard itself, FBs

3https://www.eclipse.org/4diac/

Source —

EIYCIVENTS

[[EELTS)
- -

Jcumpdid

—

secondvalve

Sink

Fig. 6: Tank model in openModelica

that are equivalents from the ones IEC 61131-3 and some
others proven from experience to be useful.

o 4diac-rte: also known as forte, this runtime environment
written in C++ creates devices, loads resources and
application definitions, and executes them according to
the IEC 61499 standard. It was ported to many platforms,
among them to several OSs of PLCs.

To create the FMU, the approach for the exporter was to
create the Model Description for it and a definition of the
IEC 61499 model from 4diac-ide and use an adapted 4diac-
rte for the binaries files.

A. FMU Exporter on 4diac-ide

The IDE was extended with a plugin for exporting one FMU
for each device of a system. It creates an FMU for each device
doing the following tasks:

o Analyze the FBs and resources of the device and creates
the Model Description following the criteria specified in
section III.

o Export the model of the device in the IEC 61499 XML
format, a feature that was already implemented.

e Creates the FMU by creating the folders according to
the FMI standard, locating the IEC 61499 model in the
resource folder, and the binaries (see section IV-B) in
their respective folders and zipping them all together.

The plugin allows to export several devices in different
FMUs at the same time and allows the selection of binaries
from different platforms (Windows, Linux, x86, x64) to be
included on the FMUs.

B. FMU Exporter on 4diac-rte
The FMI feature in 4diac-rte was realized by:

TANK_LEVEL_IN

AdjustWord2Real

ERROR_CALC

=Noise
"Kp
=Ki
=Kd
=Interval
*LIM_H

#PARAM#Kp#REAL#1
#PARAM#Ki#REAL#0
#PARAM#KA#REAL#0

FILL VALVE

AdjustReal2Word PARAMS STATUS

ouT

65535mmaxOut

Fig. 7: Controller model in 4diac-ide

o Adding a process interface for handling the Inputs and
Outputs, which basically stores the value in an internal
variable instead of accessing the hardware interface in
real PLCs.

¢ Adding a communication layer (optional) which mimics
the underlying communication interface by working in
a similar way as the added Inputs and Outputs process
interface.

o Adding special FBs for parameters of the FMU since
these should be set before starting the application.

o Enabling a feature that allows the resources to be paused
and resumed.

e Adding the FMI functions that execute the procedure
according to the FMI standard.

One big change that was required to implement the exporter
on 4diac-rte was to get rid of all present global variables in the
code. For example, the current time was one of them, but since
the FMU uses a library and many devices can be instantiated
from it, global variables will be shared between them, creating
problems in the co-simulation.

V. EXPERIMENT AND RESULTS

To test the exporter in a co-simulation environment, a simple
system of a water tank and its controller were modelled.
The water tank system, as illustrated in Fig. 6, has a valve
that is always opened that the fluid is able to escape from
the tank. To fill the tank, another valve is provided, whose
opening can be controlled and the high limit of the opening is
bigger than the constant opening of the other valve, allowing
the control system to fill the tank to the desired level. The
opening of the filling valve together with the current level
of the tank are provided as input and output of the tank
system respectively, although they are not directly provided,
but through dummy sensors and dummy actuators that convert
the physical measurements from and into 16Bits unsigned
values, which are normally used as analog values in PLCs.

The water tank was modelled using openModelica* and the
controller in 4diac-ide. The aim of this example is to test the
co-simulation between different tools, one of them being the
exported IEC 61499 model, so the level of details of the model
is kept low.

“https://www.openmodelica.org

The controller of the tank was modelled in 4diac-ide, whose
core was a BFB which implements a PID control. One FB for
each analog input and analog output were used to connect to
the tank system. The desired tank level and the constants of
the PID controller Kp, Ki and Kd were set as parameters in
the FMU in order to do a proper tuning of the controller. The
application can be seen in Fig. 7.

To orchestrate the co-simulation, the INTO-CPS tool® was
used, which allows the user to import FMUs, connect their
Inputs and Outputs, set parameters and co-simulate them. Both
models were exported as FMUs, imported in INTO-CPS and
the tank level and the valve control Inputs and Outputs were
connected accordingly. To test the co-simulation, the tuning
of the PID controller was done using the Ziegler-Nichols
method® [12]. The value of the parameters of the controller’s
model Kd and Ki were set to zero and the value of Kp was
increased until a stable and consistent oscillation was found,
called critical gain Kc. Fig. 8 shows the results of the test
tests Kp with values of 1500, 2000 and finally 2500 where
the system shows a stable oscillation. The desired and actual
tank level are shown where the Y-axis is height in meters, and
the X-axis is the time in seconds. INTO-CPS allows the user
to easily check all the values and times that were stored during
the co-simulation, so the stored data revealed in Fig. 8.c that
the period of the oscillation Tc at Kc was 0.6 seconds.

Following the Ziegler-Nichols rules for a basic PID con-
troller knowing Kc and Tc, the actual values for Kp (1500),
Kd (112.5) and Ki (5000) were calculated and set as the
parameter to the FMUs of the controller. The co-simulation
with the calculated values is shown in Fig. 9 where a stable
and with minimum error response can be seen.

VI. CONCLUSION AND OUTLOOK

This paper presents a mapping between IEC 61499 models
and the FMI, and an exporter of IEC 61499 models into FMUs.
The mapping is done by finding the correlations between
the data types of the two standards, and defining which
parts of an IEC 61499 model could be offered to the FMI
as internal variables, parameters and input or output. Since
the execution of an IEC 61499 model is not defined in the

Shttps://github.com/into-cps/intocps-ui
Shttp://www.mstarlabs.com/control/znrule.html

0.206

0.204
0.202
0.2
0.198
0.196
0.194
81 82 83 84 85
—— {tank}.tankInstance.tank.level
{controller}.controllerinstance. ERROR_CALC.IN1
0.204
0.202
0.2
0.198
0.196
0.194
81 82 83 84 85
—— {tank}.tankInstance.tank.level
{controller}.controllerinstance.ERROR_CALC.IN1
0.204

0.202

0.198
0.196

0.154

81 82 83 84 85

—— {tank}.tankInstance.tank.level
{controller}.controllerinstance.ERROR_CALC.IN1

Fig. 8: Kp = 1500 (top); Kp = 2000 (middle); Kp = 2500
(bottom)

standard, specifications for it to support co-simulation using
the FMI is presented.

The exporter was tested by modelling a PID controller of
a tank system in IEC 61499, which then was exported as an
FMU. A system of a tank was modelled using OpenModelica
and also exported as an FMU. Both FMUs were imported in
the INTO-CPS tool which allows connecting the interfaces of
different FMUs. In the experiment, the control of a valve was
offered as an output from the controller side, and the current
tank level was the offered from the tank side. The controller
also offered the constants of the PID controller as parameters,
in order to allow the tuning of it.

The presented exporter opens the way to more complex
co-simulations where more systems are involved. Vendors
can offer their products as FMU with 3D visualization, and
developers could test their controllers modelled in IEC 61499

0.215
0.21

0.205

L ———

0.195
0.19

0.185
81 82 83 84 85

—— {tank}.tankInstance.tank.level
{controller}.controllerinstance.ERROR_CALC.IN1

Fig. 9: Response with Kp = 1500, Kd = 112.5 and Ki = 5000

against it. Although more work is needed in investigating the
simulation of the networking system that connects the different
parts of the distributed systems.

ACKNOWLEDGMENT

This work is funded by the Electronic Components and
Systems for European Leadership Joint Undertaking (ECSEL
JU) under grant no. 737459 through the project Productive4.0
(https://productive40.eu).

REFERENCES

[1] M. Hermann, T. Pentek, B. Otto. Design Principles for Industrie 4.0
Scenarios. 49th Hawaii International Conference on System Sciences,
2016.

International Electrotechnical Commission. IEC 61499-, Function blocks

Part 1: Architecture. Geneva, 2012.

[3] International Electrotechnical Commission. IEC 61331, Programmable
controllers - Part 3: Programming languages. Geneva, 2003.

[4] J. Halmsjo, J. Fidlt. Emulation of a production cell - De-

veloping a Virtual Commissioning model in a concurrent envi-

ronment. [Online] Available: http://publications.lib.chalmers.se/records/

fulltext/241210/241210.pdf. 2016, pp. 4-5.

Modelica Association. Functional Mock-up Interface for Model Exchange

and Co-Simulation. [Online] Available: http://fmi-standard.org/. 2014.

[6] Claudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, Hans
Vangheluwe, Co-simulation: State of the art, [online] Available: http:
/larxiv.org/abs/1702.00686, CoRR, vol. abs/1702.00686, 2017

[7]1 N. Pedersen, T. Bojsen , J. Madsen and M. Vejlgaard-Laursen, FMI
for Co-Simulation of Embedded Control Software, The First Japanese
Modelica Conference, Tokyo. [online] Available: http://www.ep.liu.se/
ecp/124/010/ecp16124010.pdf, Linkoping University Electronic Press

[8] B. Wang and J. S. Baras, HybridSim: A Modeling and Co-simulation

Toolchain for Cyber-physical Systems, 17th IEEE/ACM International

Symposium on Distributed Simulation and Real Time Applications (DS-

RT), 2013.

J. Fitzgerald, P. Larsen, K. Pierce, M. Verhoef, and S. Wolff, Collabo-

rative Modelling and Co-simulation in the Development of Dependable

Embedded Systems, 26th Annual INCOSE International Symposium,

Edinburgh, 2016.

[10] M. Spiegel, F. Leimgruber, E. Widl and G. Gridling, On Using FMI-
Based Models in IEC 61499 Control Applications, Modeling and Simu-
lation of Cyber-Physical Energy Systems (MSCPES), Seattle, 2015.

[11] J. Yan, V. Vyatkin, G. Weber, N. Beach, Control and Hardware-In-The-
Loop Simulation of Fruit Packing Machine with IEC 61499, 10th IEEE
International Conference on Industrial Informatics (INDIN), 2012.

[12] K. Astrom and R. Murray, Feedback Systems - An Introduction for
Scientists and Engineers, 2nd ed. Princeton, United States of America:
Princeton University Press, 2008, pp. 303 - 312.

2

—

[5

—

[9

—

