
Interacting with the Arrowhead Local Cloud:
On-boarding Procedure

Ani Bicaku1,2, Silia Maksuti1,2, Csaba Hegedűs3, Markus Tauber1, Jerker Delsing2 and Jens Eliasson2

1University of Applied Sciences Burgenland - Eisenstadt, Austria
2Luleå University of Technology - Luleå, Sweden
3AITIA International Inc. - Budapest, Hungary

Abstract—Industrial automation systems are advancing
rapidly and a wide range of standards, communication protocols
and platforms supporting the integration of devices are intro-
duced. It is therefore necessary to design and build appropriate
tools and frameworks that allow the integration of devices with
multiple systems and services. In this work we present the Arrow-
head Framework, used to enable collaborative IoT automation
and introduce two support core systems, SystemRegistry and
DeviceRegistry, which are needed to create a chain of trust from a
hardware device to a software system and its associated services.
Furthermore, we propose an on-boarding procedure of a new
device interacting with the Arrowhead local cloud. This ensures
that only valid and authorized devices can host software systems
within an Arrowhead local cloud.

I. INTRODUCTION

High product variability and – at the same time – short-
ened product life-cycles require agile and flexible production
structures that can be reconfigured rapidly for new product
demands [1]. This degree of flexibility, as well as other fast
growing market demands such as sustainability, efficiency and
competitiveness cannot be achieved by traditional automa-
tion. The existing technologies can not fully address these
requirements, that is why a lot of work is being done to
transform the potentials of the upcoming digital revolution,
known as Industry 4.0, into business success. Industry 4.0 is
driven by ongoing developments and supported by emerging
technologies and concepts, including the Internet of Things
(IoT), System of Systems (SoS), Cyber Physical Systems
(CPS), cloud computing and Service Oriented Architectures
(SOA) [2]. Whilst these technologies already exist, they have
to be adapted to meet specific requirements. Here, serious
effort is needed in the scientific community to address issues
like security, latency, etc.

Traditional hierarchical automated architectures, such as
ISA95 [3] based process control systems, are migrating to
SOA-compliant control systems. First migration steps have
been successfully applied and many traditional systems al-
ready integrate communication technologies that make them
compatible for SOA based architectures. Further improve-
ments in automation systems demand more real-time data,
which is beyond the capability of existing systems. The
use of cloud technologies has become popular in production
environments and thus, enterprises can move or migrate the
load within and between their own data centers [4].

These above mentioned technologies have been in focus of
the Arrowhead project, aiming to address the capability of
building large system of systems, based on IoT by using SOA
fundamentals. The Arrowhead Framework [5], developed as
part of this project, is used to facilitate the creation of local
automation clouds, which include devices, various application-
specific systems and services to perform the automation tasks
and provide a boundary to the open internet and the outside
activities. This way Arrowhead is enabling local (on-site),
real time performance and security, paired with simple and
cheap engineering, while enabling scalability through multi-
cloud interactions. The Arrowhead Framework architecture is
composed of a number of systems: mandatory core systems,
automation support core systems and application systems.

To assure that an Arrowhead local cloud is not compromised
upon the introduction of new devices hosting a number of
software systems (SW-systems), it is important to establish a
chain of trust from the hardware device to a hosted SW-system
and its associated services. To support this approach, in this
paper, we introduce two additional Arrowhead support core
systems, the SystemRegistry system and the DeviceRegistry
system, used to provide a local cloud storage for SW-systems
and devices, respectively.

One of the fundamental criteria of IoT-platforms is the need
to integrate efficient security mechanisms [6]. To address this,
we further introduce an on-boarding/bootstrapping procedure
including both, the SystemRegistry and the DeviceRegistry
systems. A new device that wants to interact with the Ar-
rowhead local cloud should authenticate itself using a man-
ufacturer issued certificate, which can be stored e.g. in its
Trusted Platform Module (TPM). Each SW-system hosted in
this device should be provided with an Arrowhead issued
runtime certificate. Thus, every local cloud should have a
central Certificate Authority (CA) that issues and signs these
SW-systems runtime certificates. This local cloud CA system
is the root of trust within its local cloud.

The remainder of this work is organized as follows:
Section II presents an overview of existing IoT platforms. This
is followed by the description of the Arrowhead Framework,
the SystemRegistry and the DeviceRegistry systems in Sec-
tion III. In Section IV, we present the on-boarding procedure
of a new device interacting with the Arrowhead local cloud
and we conclude this work in Section V.



II. RELATED WORK

Various approaches and frameworks have been proposed
in support of the IoT. A recent review of the literature [7],
summarizes and compares the existing frameworks and plat-
forms used for IoT applications with the aim to identify gaps
in the current state of the art. In this review the platforms
are classified in: (i) IoT frameworks for home automation
including the IPSO Alliance [8], the IoTivity [9] and the
LWM2M framework [10], (ii) cloud-based IoT platforms
including ThingWorx [11] and Xively [12], (iii) device to
device platforms such as IzoT [13] and ThingSquare [14] and
(iv) platforms for cloud gateway integration including Intel,
Microsoft and IBM. The authors highlight that a successful
IoT framework should support secure APIs for third party
systems, communication protocol interoperability and should
enable management of heterogeneous networks.

LISA2.0 [15] introduces a lightweight, distributed and em-
bedded IoT bus architecture using a node centric network-
ing architecture. It is designed to provide interoperability
and mobility for facilitating the implementation of SOA in
resource-constrained devices. LISA offers service discovery,
registration and authentication features, but in comparison
with the Arrowhead Framework it does not provide system
or device registry to create a chain of trust from the hardware
device to the software system and its associated services.

Nimbits [16] is a cloud-based IoT platform used to con-
trol, manage and monitor IoT devices from the cloud. The
framework consist of: (i) Nimbits Server, which enable the
user to record, store and process data from IoT devices, (ii)
nimbits.io, a library for building IoT software, (iii) Nimbits
Android, an application in GoogleStore and (iv) Nimbits
public cloud, which is an instance of the Nimbits Server. The
communication is possible via XMPP messaging protocol and
the web-services use HTML request under JSON format. It
provides a data compression, an alert management and data
calculation based on simple mathematic formulas.

Ericsson IoT-Framework [17] developed by Ericsson Re-
search, the Swedish Institute of Computer Science (SICS)
and Uppsala University is a PaaS with centralized architecture
including a REST API, data storage functionality and OpenId
access control. The purpose of this framework is to enable
scalability and is designed to operate as a service in the back-
end. It provides an example with wireless sensors connected
to the IoT framework by a gateway, where the sensors push
time-stamped data (stream) to the framework or the data can
be pulled periodically by the framework. These streams can
be available via a RabbitMQ, allowing external users to push
their data and subscribers to consume the needed data.

OpenIoT [18] is an IoT platform offering discovery and
collection of data from mobile sensors within cloud computing
infrastructures. This is achieved through a publish/subscribe
middleware broker used for collecting data from the mobile
sensors. In terms of secure authentication, OpenIoT offers
a privacy and security module where users should provide
username and password for authentication.

Authentication solutions of IoT devices relies on traditional
machine-to-machine (M2M) systems, which makes the au-
thentication difficult on a large scale. This challenge is ad-
dressed by the Generic Bootstrapping Architecture (GBA) [19]
supporting device authentication at the transport layer. One
technology for bootstrapping in resource-constrained environ-
ments is Light Weight Machine to Machine (LWM2M) from
Open Mobile Alliance (OMA)[10]. OMA-LWM2M supports
management of a device in terms of configuration, security
and connectivity. LWM2M can be used over SMS, CoAP and
HTTP. LWM2M is a core building block for the IPSO Smart
Objects framework from IPSO Alliance. Multiple frameworks
and projects have considered using secure hardware, such as
TPM to provide a root of trust for identifying inconsistencies
and security issues. Several studies, for e.g. [20], [21], and
[22] analyzed the opportunities to provide root of trust by
investigating different types of hardware for bootstrapping
trust, security mechanisms, techniques for recording platform
state and existing proposed or deployed approaches.

Most of the identified frameworks have a REST API,
meaning that IoT platforms are working towards web ser-
vices. Only a few of the identified platforms (e.g. LISA2.0,
HAT, Ericsson IoT and OpenIoT) support service discovery
mechanisms. In comparison with the identified frameworks,
mostly based on centralized solutions, Arrowhead Framework
is an industrial framework connecting distributed applications
with the aim to integrate legacy systems with communication
and distributed SoA. Additionaly, we describe a step-by-
step on-boarding procedure, build on our previous work [23],
including SystemRegistry and DeviceRegistry systems, which
are needed to create a chain of trust from a hardware device
to a software system and its associated services.

III. ARROWHEAD FRAMEWORK

A. Arrowhead Framework Architecture

The objective of the Arrowhead Framework architecture is
to facilitate the creation of local automation clouds and enable
local real time performance and security, interoperability,
simple and cheap engineering and scalability through multi
cloud interaction [5]. The architecture addresses the move
from large monolithic organisations towards multi-stakeholder
cooperations, thus addressing the high level requirements in
today’s society such as sustainability, flexibility, efficiency and
competitiveness. The architecture is build based on the SOA
fundamentals: (i) loose coupling, which supports autonomy
and distributed services, (ii) late binding, which makes possi-
ble to use the information any time by connecting to the correct
resources and (iii) lookup that is used to publish services to
notify others about endpoints, which information then can be
used to discover already registered services.

In terms of the Arrowhead Framework, a service is an
information exchange from a providing system to a consuming
system. A SW-system provides and/or consumes multiple
services. A hardware device is a piece of equipment, machine
or hardware with computational, memory and communication
capabilities, which can host one or several SW-systems.



The Arrowhead Framework architecture is composed of a
number of systems, including mandatory and automation sup-
port core systems and application systems. The mandatory core
systems include ServiceRegistry, Authorisation and Orchestra-
tion systems. The ServiceRegistry system is used to provide
storage of all active services registered within a local cloud
and enables the discovery of them. The Authorisation system
is used to provide authentication, authorisation and optionally
accounting of service interactions. The Orchestration system
is used to provide a mechanism for distributing orchestration
rules and service consumption patterns, thus providing service
endpoints to specific requests. The application systems are
used to implement application functionalities and services
aiming to fulfill application requirements. They should be
consuming at minimum the three mandatory core services of
the Arrowhead local cloud, thus ServiceDiscovery produced
by ServiceRegistry system, AuthorisationControl produced
by Authorisation system and OrchestrationStore produced by
Orchestration system. In order to define an Arrowhead local
cloud the three mandatory core systems and at least one ap-
plication system deployed are required, as shown in Figure 1.

Fig. 1. Arrowhead Framework architecture

The automation support core systems such as, PlantDescrip-
tion, EventHandler, Configuration, etc., are used to facilitate
automation application design, engineering and operation.
They should be able to support the implementation of plant
automation, housekeeping within the local cloud, inter-cloud
service exchange, system and service interoperability and
secured on-boarding/bootstrapping procedure of a local cloud.

To assure that the Arrowhead local cloud is not compro-
mised upon the introduction of new devices and systems an on-
boarding/bootstrapping procedure is needed to make possible
their registration to the specific registries and to be available
within the local Arrowhead network. In order to support this
procedure, we introduce two additional support core systems,
the SystemRegistry system and the DeviceRegistry system.
They are necessary to create a chain of trust from a hardware
device to a hosted SW-system and its associated services. Both
systems are explained in the following sections.

B. SystemRegistry System

An Arrowhead Framework SW-system is what is providing
and/or consuming services. A system can be the service
provider of one or more services and at the same time
the service consumer of one or more services. A system is
implemented in software and executed on a hardware device.

The SystemRegistry system is used to provide a local
cloud storage holding the information on which systems are
registered within a local cloud, meta-data of these regis-
tered systems (vendor, requirements, Service Level Agreement
(SLA) etc.) and the services these systems are designed to
consume. The SystemRegistry holds for the Arrowhead local
cloud unique system identities for systems deployed within it.

Fig. 2. SystemRegistry system in the Arrowhead Framework. It consumes the
Arrowhead mandatory core services and produces SystemDiscovery service
used to register, unregister and find systems within the local cloud

The SystemRegistry system produces one service, Sys-
temDiscovery, and consumes the three mandatory core ser-
vices, as shown in Figure 2. All Arrowhead Framework
SW-systems within a local cloud shall register within the
SystemRegistry system by using the SystemDiscovery service.
As such SystemDiscovery is regarded as a well known service,
and shall be accessible using a multitude of SOA protocols
(e.g. REST, CoAP, MQTT, etc). The SystemDiscovery service
is used to register and unregister systems and their produced
services, as well as to find systems among the registered
systems.

The SystemDiscovery service interface is defined according
to Figure 3. The interface is defined using three main methods.
The publish method is used to register a system. The systems
will contain a symbolic name as well as a physical endpoint.
The instance parameter represents the endpoint information
that should be registered. The unpublish method is used
to unregister a system that no longer should be used. The
instance parameter contains the necessary information to find
the system to be removed. The lookup method is used to find
and translate a symbolic system name into a physical endpoint,
IP address and a port. The query parameter is used to request
a subset of all the registered systems in the SystemRegistry
system based on a specified criteria, for e.g. meta-data.

Fig. 3. SystemDiscovery service interface and data types



The information model holds two data types: (i) System-
Record and (ii) Query, as shown in Figure 3.

The SystemRecord data type contains information of a
system endpoint, such as name and physical address. System
metadata can also be added here. The metadata should be
provided using key pairs such as, encode = syntax, e.g. encode
= xml, compress = algorithm, e.g. compress = exi, semantic =
XX, e.g. semantic = senml. The Query datatype represents a
query that can be sent to the system provider in order to filter
the stored systems to return a proper subset.

C. DeviceRegistry System

An Arrowhead Framework compliant device is a piece
of equipment, machine, hardware, etc. with computational,
memory and communication capabilities, which hosts one
or several Arrowhead Framework SW-systems and can be
bootstrapped in an Arrowhead local cloud. Any other de-
vice, equipment, machine, hardware, component etc., is non-
Arrowhead compliant.

The DeviceRegistry system is used to provide a local
cloud storage holding the information on which devices are
registered within a local cloud, meta-data of these registered
devices including a list of the systems that are deployed to each
of them. The DeviceRegistry system holds for the Arrowhead
local cloud unique device identities.

Fig. 4. DeviceRegistry system in the Arrowhead Framework. It consumes
the Arrowhead mandatory core services and produces the DeviceDiscovery
service used to register, unregister and find devices within the local cloud

The DeviceRegistry system shall be accessible using differ-
ent SOA protocols (e.g. REST, CoAP, MQTT). It provides one
service, DeviceDiscovery and consumes the three mandatory
core services, as shown in Figure 4. The DeviceDiscovery
service is used to register and unregister devices as well as
to find devices among the registered devices.

The DeviceDiscovery service interface is defined according
to Figure 5. The interface is defined using three main methods.
The publish method is used to register a device. The device
will contain a symbolic name. The instance parameter repre-
sents the endpoint information that should be registered. The
unpublish method is used to unregister a device that no longer
should be used. The instance parameter contains the necessary
information to find the device that should be removed. The
lookup method is used to find and translate a symbolic device
name into a physical endpoint, such as Media Access Control
(MAC) address, IP address, hostname and port.

The information model holds two data types: (i) DeviceRe-
cord and (ii) Query, as shown in Figure 5. The DeviceRecord
data type contains information of a device, such as name, IP

address, port and MAC address. Device metadata can also be
added here, same as explained for SystemDiscovery service.
The Query data type represents a query that can be sent to the
provider in order to filter the stored devices and to return a
proper subset.

Fig. 5. DeviceDiscovery service interface and data types

As mentioned above, both systems shall be accessible
using SOA protocols in order to increase interoperability via
Uniform Resource Identifiers (URI) for identifying services
by bringing them to the browser, meaning that the services
can be retrieved by using a standard URI (e.g. http :
//app.arrowhead.eu/ahf/Temp1/8090/). This enables the
communication with any device, system or service in the
Arrowhead local cloud while neither requiring to know about
the exact details of the underlying infrastructure.

IV. ON-BOARDING PROCEDURE

In the previous section we have presented the characteristics
of the Arrowhead Framework, as well as SystemRegistry and
DeviceRegistry systems in general. In this section, the on-
boarding procedure and its underlying steps are described. To
illustrate the proposed approach, in Figure 6 is provided a
simple use case where a new device interacts with the core
systems of the Arrowhead local cloud.

A. Use Case

Fig. 6. The on-boarding procedure of an IoT device, with IoT system A
requesting to interact with the Arrowhead local cloud

Here, a new device produced by a specific vendor (e.g.
Siemens), containing a security controller (e.g. TPM), wants
to interact with the Arrowhead local cloud. In general, a
TPM hardware is a special variant of a security controller
with a standardized feature set for the integration into various



Fig. 7. The sequence diagram for the on-boarding procedure of a new device interacting with the Arrowhead local cloud

computing platforms [24]. TPMs can be used to identify a
device and to also check the software of the device on startup
to ensure that the OS and programs are not manipulated.

The root of trust is a non-volatile memory able to securely
store cryptographic material. This material can be used for
encryption or signing of data to ensure the integrity, con-
fidentiality and authenticity. Furthermore, TPMs provide a
standardized interface, which makes it very easy to integrate
them in any gateway. The TPM certificates for the new device
might not be Arrowhead issued but own manufacturer issued.

B. On-Boarding/Bootstrapping Procedure

The bootstrapping procedure is needed between a device
and a local cloud, that have no previous knowledge of each
other. This is especially needed when the device that wants
to connect to the Arrowhead local cloud is a very resource
constrained device and may not have an UI.

Here, we are assuming that the ServiceRegistry system, the
DeviceRegistry system and the mandatory core systems are
established in the network in a secure way. To assure that the
cloud is not compromised upon the arrival of a new device, it
is important to establish a chain of trust from the new hardware
device, to its hosted SW-systems and their services. For this
purpose a secured initiation or bootstrapping process starting
from the device is needed. Bootstrapping procedure makes
possible that the device, systems and services are authenticated
and authorized to connect to the Arrowhead local cloud.

As described in the use case above a new device with at least
one SW-system, installed in a secure way with a software key
(SW-key) and associated services shall be introduced to the
Arrowhead local cloud. To enable a device to be trusted, it has

to have specific hardware providing storage and computation
of pre-shared authentication keys, which shall be secure and
tamper free. Such hardware security controllers (e.g. TPMs),
are provided by a couple of vendors (e.g. Siemens, Infineon,
etc.). The device further needs both a network interface and
some type of short range communication (e.g. Near-Field
Communications, NFC [25]). This will enable an operator
identification of a device via key authentication over the near-
field communication link. Such authentication will allow the
generation of a device-key to be transferred to and stored in
the security controller. Following we provide a step-by-step
on-boarding procedure as shown in Figure 7.

1) We are assuming that a new device has a device-key
(e.g. a manufacturer issued certificate). This might be
acquired through an operator identification in a two-way
communication schema or the device has a device-key
stored in the TPM.

2) The new device uses the DNS-SD of Arrowhead (e.g.
auto-configured through DHCP) as ServiceDiscovery and
looks up the endpoints of the DeviceDiscovery and Sys-
temDiscovery services.

3) Using the obtained endpoints the new device begins
the registration with the DeviceRegistry through the
DeviceDiscovery “publish” interface authenticating itself
with the device-key obtained previously, in step 1).

4) The DeviceRegistry verifies the received device-key with
the local cloud CA system and registers the device if au-
thententication is successful. The Arrowhead local cloud
CA issues local-cloud-SW-keys (i.e. runtime certificates)
for each SW-system hosted on the device.

5) The SW-system on the new device begins the registration



with the SystemRegistry through the SystemDiscovery
“publish” interface authenticating itself with its new, Ar-
rowhead issued local-cloud-SW-key obtained in step 4).

6) The SystemRegistry verifies both the local-cloud-SW-
key and the SW-key with the Authorisation system and
registers the SW-system if authorised. This is repeated
for all SW-systems residing on the new device.

7) The SW-system next registers its produced services with
the ServiceRegistry using the “publish” interface of the
ServiceDiscovery service over a secure channel.

8) The ServiceRegistry verifies with the Authorisation sys-
tem and, if authorised, allows the registration of the
service(s). This is repeated for all services running on
the SW-system.

9) Every SW-system starts its execution and look up the end-
point of the Orchestration service in the ServiceRegistry.

10) Every SW-system requests Orchestration using the ob-
tained endpoint for every connection it wants to establish,
services it wants to consume.

11) The Orchestration system cross-checks with authorisation
and an Arrowhead session access token [26] might be
generated for every connection attempt during the orches-
tration process.

When any of the SW-systems hosted on the device shuts
down, the device contacts the DeviceRegistry system and
requests a destroyal of the local-cloud-SW-keys. The local
cloud CA system puts them in the blacklist and removes them
from the registry.

Such on-boarding procedure requires that the cloud operator
has already configured the mandatory core systems, for e.g.,
orchestration rules, authorisation status and other support core
systems such as, PlantDescription system. It uses the meta-data
information stored in the SystemRegistry and DeviceRegistry
to compare the existing plant model with the current imple-
mentation.

V. CONCLUSION

In this paper we have introduced two additional automa-
tion support core systems of the Arrowhead Framework:
SystemRegistry and DeviceRegistry systems. These are both
used to provide a special storage, the SystemRegistry system
stores SW-systems registered within the local cloud and the
DeviceRegistry system stores devices registered within the
local cloud. These systems are needed to create a chain of
trust from the hardware device, to its hosted SW-systems and
their services whenever a new device wants to interact with
the Arrowhead local cloud. To show how this is done, we have
presented a step-by-step on-boarding procedure, including the
Arrowhead mandatory core systems and the two additional
systems presented in this paper.

ACKNOWLEDGMENT

Research leading to these results has received funding from
the EU ECSEL Joint Undertaking under grant agreement n◦

737459 (project Productive4.0) and from the partners’ national
programmes/funding authorities.

REFERENCES

[1] S. Weyer, M. Schmitt, M. Ohmer, and D. Gorecky, “Towards industry
4.0-standardization as the crucial challenge for highly modular, multi-
vendor production systems,” IFAC-PapersOnLine, vol. 48, no. 3, 2015.

[2] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manufacturing
Letters, vol. 3, pp. 18–23, 2015.

[3] B. Scholten, The road to integration: A guide to applying the ISA-95
standard in manufacturing. Isa, 2007.

[4] P. Friess, Digitising the industry-internet of things connecting the
physical, digital and virtual worlds. River Publishers, 2016.

[5] J. Delsing, IoT Automation: Arrowhead Framework. CRC Press, 2017.
[6] Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and

S. Shieh, “Iot security: ongoing challenges and research opportunities,”
in Service-Oriented Computing and Applications (SOCA), 2014 IEEE
7th International Conference on. IEEE, 2014, pp. 230–234.

[7] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, “A survey of commer-
cial frameworks for the internet of things,” in Emerging Technologies &
Factory Automation (ETFA), 2015 IEEE 20th Conference on. IEEE,
2015, pp. 1–8.

[8] Z. Shelby and C. Chauvenet, “The ipso application framework draft-
ipso-app-framework-04,” Avaiable online: http://www. ipso-alliance.
org/wp-content/media/draft-ipso-app-framework-04. pdf, 2012.

[9] A. Subash, “Iotivity–connecting things in iot,” TIZEN Development
Summit, 2015.

[10] S. Rao, D. Chendanda, C. Deshpande, and V. Lakkundi, “Implementing
lwm2m in constrained iot devices,” in Wireless Sensors (ICWiSe), 2015
IEEE Conference on. IEEE, 2015, pp. 52–57.

[11] P. E. I. Solutions, “Platform technology: Thingworx. 2016,” URL:
https://www. thingworx. com/(cited on page 25).

[12] N. Sinha, K. E. Pujitha, and J. S. R. Alex, “Xively based sensing and
monitoring system for iot,” in Computer Communication and Informatics
(ICCCI), 2015 International Conference on. IEEE, 2015, pp. 1–6.

[13] “Izot platform,” https://www.echelon.com/izot-platform, (Accessed on
01/03/2018).

[14] Y. J. Heo, S. M. Oh, W. S. Chin, and J. W. Jang, “A lightweight platform
implementation for internet of things,” in Future Internet of Things and
Cloud (FiCloud), 2015 3rd International Conference on. IEEE, 2015,
pp. 526–531.

[15] B. Negash, A. M. Rahmani, T. Westerlund, P. Liljeberg, and H. Ten-
hunen, “Lisa 2.0: lightweight internet of things service bus architecture
using node centric networking,” Journal of Ambient Intelligence and
Humanized Computing, vol. 7, no. 3, pp. 305–319, 2016.

[16] “Nimbits platform,” https://www.nimbits.com/, (Accessed on
01/03/2018).

[17] “Github-ericssonresearch/iot-framework-engine,”
https://github.com/EricssonResearch/iot-framework-engine, (Accessed
on 01/03/2018).

[18] J. Kim and J.-W. Lee, “Openiot: An open service framework for the
internet of things,” in Internet of Things (WF-IoT), 2014 IEEE World
Forum on. IEEE, 2014, pp. 89–93.

[19] G. Bajko and T. K. Chan, “Method, apparatus and computer program
product providing bootstrapping mechanism selection in generic boot-
strapping architecture (gba),” Dec. 27 2011, uS Patent 8,087,069.

[20] B. Parno, J. M. McCune, and A. Perrig, “Bootstrapping trust in com-
modity computers,” in Security and privacy (SP), 2010 IEEE symposium
on. IEEE, 2010, pp. 414–429.

[21] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “The untapped potential
of trusted execution environments on mobile devices,” IEEE Security &
Privacy, vol. 12, no. 4, pp. 29–37, 2014.

[22] Z. Malik and A. Bouguettaya, “Reputation bootstrapping for trust
establishment among web services,” IEEE Internet Computing, vol. 13,
no. 1, pp. 40–47, 2009.

[23] O. Carlsson, P. P. Pereira, J. Eliasson, J. Delsing, B. Ahmad, R. Harrison,
and O. Jansson, “Configuration service in cloud based automation
systems,” in Industrial Electronics Society, IECON 2016-42nd Annual
Conference of the IEEE. IEEE, 2016, pp. 5238–5245.

[24] T. Morris, “Trusted platform module,” in Encyclopedia of cryptography
and security. Springer, 2011, pp. 1332–1335.

[25] R. Want, “Near field communication,” IEEE Pervasive Computing,
vol. 10, no. 3, pp. 4–7, 2011.

[26] S. Plosz, C. Hegedus, and P. Varga, “Advanced Security Considerations
in the Arrowhead Framework,” in DECSoS, September 2016, pp. 1–13.


