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Abstract 
 

Post-translational modifications (PTMs) by ubiquitin (Ub) are versatile, highly 

dynamic, and involved in nearly all aspects of eukaryote biological function. The reversibility 

and heterogeneity of Ub chains attached to protein substrates have complicated their isolation, 

quantification, and characterization. Strategies have emerged to isolate endogenous 

ubiquitylated targets, including technologies based on the use of Ub-binding peptides, such as 

TUBEs (Tandem-repeated Ubiquitin-Binding Entities). TUBEs allow the identification and 

characterization of ubiquitin chains, novel substrates for deubiquitylases (DUBs) and Ub 

ligases (E3s). Here we review their impact on purification, analysis of pan or chain-selective 

polyubiquitylated proteins and underline the biological relevance of this information. Together 

with peptide aptamers and other Ub affinity-based approaches, TUBEs will contribute to 

unravelling the secrets of the Ub-code.  

 



 
 
The Complexity of the Ubiquitin Code 

 

Ubiquitination of proteins is a significant regulatory process that affects almost all 

cellular functions. Ubiquitin (Ub) is a small, compact, and highly conserved 76 amino acid 

protein. The C-terminus of Ub is attached by an isopeptide bond to the Ɛ-amino group of lysine 

residues on target proteins. After Ub is attached to a protein, this proximal Ub can act as a 

substrate for additional Ubs, which are conjugated to any of its seven lysine residues (K6, K11, 

K27, K29, K33, K48, and K63) or to its N-terminal methionine (M1) [1]. Protein ubiquitylation 

was first described as a signal for proteasomal degradation. The so called Ub-proteasome 

system (UPS) (see Glossary) uses mainly K48 and K11 polyubiquitylation as signals for 

substrate recognition [2, 3]. The 26S proteasome include subunits that contain Ub-binding 

domains (UBDs) (Box 1) that participate in the binding of ubiquitin chains [4, 5]. The binding 

and disassembly of many different types of Ub chains vary in both length and linkage specificity 

[6, 7]. Although the presence of one Ub chain type is not by itself indicative of one function, 

accumulated evidence supports the existence of certain generic roles. For instance, proteasome 

inhibition leads to accumulation of ubiquitylated proteins containing all seven different types 

of Ub linkages except for K63 [8], strongly suggesting that K63 chains do not primarily target 

proteins to proteasomes. K63 Ub chains drive proteolysis primarily by the autophagy-

lysosome system (ALS) [2] and might mediate DNA repair and other signaling pathways. Not 

much is known about the functions and mechanisms of more atypical linkages such Lys6, 

Lys27, Lys29, Lys33, and Met1 [9]. This Ub chain complexity known as the “Ub-code” 

includes mono- and multi-mono-Ub modifications, chains mixing multiple Ub linkages and 

other Ub-Like molecules (UbL). The biological relevance of most of these complex chains 

remains to be elucidated [10, 11].  



The Ub code is dynamically regulated by (i) a specific set of enzymes (E1, E2s, and 

E3s) to generate the chain (writers); (ii) a set of deubiquitylases (DUBs) that cleave Ub 

completely from substrates (erasers) or edit the type and linkage of poly-Ub (editors); and (iii) 

a variety of proteins containing UBDs that recognize the chain type(s) (readers) on the substrate 

and execute the desired effect (Figure 1). The specificity of the ubiquitylation machinery comes 

mainly from the E3 ubiquitin ligases, as they participate in the specific recognition of signals 

present on the target proteins, and the E2 conjugating enzymes which will work only with a 

limited set of E3 enzymes [12, 13]. However, there are no consensual lysines to attach Ub on 

target proteins as occurs with other UbLs [12, 13]. Removal of the Ub chains is mediated by 

~100 DUBs identified in humans [14]. DUBs have UBDs which help regulate their specificity 

and activity in distinct signaling events, cellular functions and compartments [15]. Interaction 

of DUBs with polyUb chains depend on linkage specificity, as shown by structural studies [14, 

15]. 

Protein modification by other UbLs, such as SUMO (Small Ubiquitin-like Modifier), 

NEDD8 (neural precursor cell expressed, developmentally down-regulated 8), or ISG15 

(Interferon-stimulated gene 15), involve specific set of enzymes for conjugation to and 

deconjugation from substrates [16]. Like Ub, SUMO2/3 paralogs form polymeric chains that 

are often terminated by SUMO1, which lacks a consensus SUMOylation site [17]. NEDD8 has 

been shown to form chains in vitro [18]. Heterologous Ub/NEDD8 chains are formed in 

response to stress conditions [10, 19]. SUMO chains are targets of polyubiquitylation [11], and 

proteomic studies suggest extensive cross-modifications of unknown function among Ub, 

NEDD8, SUMO and other UbLs [20-22]. Therefore, Ub and UbL modifications function as a 

signaling system with a complex form of regulation. Like Ub, UbLs are signals interpreted by 

decoder proteins containing motifs/domains that specifically recognize them (Box 1). The best 

studied motifs are those interacting with SUMO, known as SUMO-interacting motifs (SIMs) 



[23] and ATG8 [24]. Motifs interacting with NEDD8 [25] and other UbLs exist, but additional 

efforts are required to fully characterize them and understand their roles in driving specific 

functions. Deciphering the Ub-code has become a priority in research and biomedicine because 

of its potential to identify specific biomarkers for multiple diseases and new targets for drug 

development (Box 2).  

UBDs recognize diverse Ub chains on specific protein substrates [26]. UBDs described 

to date recognize a specific patch of hydrophobic residues on one Ub molecule, called the Ile44 

patch (L8, I44, and V70) [12, 27]. Structural studies have demonstrated that UBDs selectivity 

arises from the recognition of a unique orientation of a Ub chain and distinct surfaces on an Ub 

moiety or through the direct interaction with the linker region connecting two Ub molecules 

(Box 1) [27]. The required length of Ub chains binding to a UBD is short since di or tri Ub 

chains bind very efficiently [26]. Individual UBDs were first used to isolate ubiquitylated 

proteins of interest but their low affinity for Ub chains limited their use as purification tools 

[28]. More recently, other affinity-based technologies, such as TUBEs, aptamers and affimers 

(see Glossary), coupled with proteomic analysis, have emerged as promising methods to 

identify UbL-modified proteins. The crucial roles that Ub/UbL modifications have in diverse 

cellular processes and the burgeoning interest in Ub/UbL pathways as sources of new drug 

targets (Box 2), has motivated the continuing development of a broad toolbox for studying 

UbL-modified proteins.  

In this review we will discuss the latest advances on the use of these technologies aiming 

to illustrate advantages and disadvantages of various applications, so researchers can decide 

which are the most appropriate for their experiments. We will also highlight how these methods 

have contributed to evolving fundamental biological concepts and generating translational 

knowledge.  

 



 

Methods to Study Protein Modifications by Ub and Ub-Like Proteins 

 

Owing to the central role of Ub/UbL-modifications in proteostasis, the isolation and 

identification of modified proteins via mass spectrometry (MS) has become a fundamental 

step toward understanding cellular processes and disease. However, this presents difficulties as 

the proportion of modified versus the total pool of a given protein is usually low, modifications 

being transient and sensitive to the action of DUBs. Nonetheless, a number of techniques have 

been developed to overcome these obstacles (Figure 2A). 

 

Expression of Tagged-Ub and Ub-like proteins  

Among the most common methodologies is the use of tagged forms of Ub and UbLs. 

Poly-histidine tagged (His)-Ub and UbLs have been used frequently for MS in cultured cells 

and model organisms (e.g. [28, 29]). The isolation of His-Ub by nickel affinity chromatography 

can be performed under denaturing conditions, protecting targets from the action of DUBs, but 

background can be expected from proteins containing natural His-stretches. Alternatively, a 

short peptide (AviTag) that can be biotinylated by the enzyme BirA can be used as a tag. Biotin-

streptavidin interaction allows denaturing purification procedures in cultured cells and 

transgenic animals [30-33]. Background from a small number of endogenously biotinylated 

proteins can be expected. Other epitope tags such as Myc, Hemagglutinin (HA), FLAG, 

Glutathione S-transferase (GST) or Green Fluorescent Protein (GFP), require 

immunoprecipitation under mild conditions, leading to the isolation of non-covalent interactors 

as well as modified substrates (Figure 2A). To increase the purity of the samples, two different 

tags following two sequential purification steps can be used [34], although the increased size 

of the tag can potentially interfere with conjugation/deconjugation rates. 



One advantage of tagged-UbLs is that they can be easily modified for specific goals, for 

example, mutations can be introduced to optimize MS identification [35, 36] or to prevent 

formation of certain chain types [37, 38]. In addition, UbL-modified proteins can be captured 

in a tissue- or temporal-specific manner in genetically tractable organisms [31, 33, 39]. One 

disadvantage is the need for exogenous expression by transfection or transgenesis, which might 

alter cellular dynamics. This can be minimized by generating stable transformants with low 

expression levels or fusing the tag endogenously by genetic manipulation [29]. Notably, the 

need for transgenesis and overexpression for tagged-UbLs largely precludes their use with 

human patient-derived tissues, which is especially relevant in the study of pathologies. 

 

Antibody-Based Strategies 

Monoclonal antibodies have been developed that recognize the C-terminal di-Gly motif 

of Ub that remains attached to target lysines after digestion with trypsin, facilitating purification 

of these branched peptides (also known as Ub signatures) and identification by MS (Figure 

2A) [22]. However, other UbLs (NEDD8, ISG15) also leave a di-Gly signature on their target 

peptides, complicating the analysis. To avoid this, UbiSite antibodies have been recently 

developed, which recognize a longer Ub-specific branched peptide generated by digestion with 

LysC [21]. Antibodies have also been developed that recognize specifically the signatures by 

SUMO1 and SUMO2/3 [40, 41], or M1-, K48-, and K63-linkage-specific Ub chains [42-46]. 

Advantages include the use of almost any starting material and, of particular importance, the 

analysis of endogenously modified proteins. However, conditions for capture may not 

solubilize all potential targets and non-modified, co-purifying proteins may lead to background. 

Moreover, larger amounts of starting material may be necessary, and antibodies can be costly. 

These reasons motivated the development of alternative procedures to explore Ub-linkage 

specific functions. 



 

 

Approaches Based on Ub/UbL-Binding Peptides to Study Protein Modifications  

 

Molecular Traps Based on Ub/UbL-Binding Domains  

Another interesting technology recently developed is the use of peptides or small proteins 

that interact with single or various Ub/UbL chain types (See Box 1 for the description of 

different UBDs and SIMs). The relatively weak binding affinities of individual UBDs for Ub, 

with Kd values in the micromolar range [28], suggest that cells employ a multivalent binding 

mechanism that would facilitate dynamic and transient interactions with multiple Ub moieties 

to execute activities linked to poly-Ub signaling. Beyond the Ub-UBD interaction, binding of 

ubiquitylated proteins and their receptors likely involves conformational changes, non-UBD 

sequences, specificity for a particular linkage, and increased avidity due to either protein 

oligomerization or the existence of multiple Ub-binding surfaces in single UBDs (Box 1, Table 

I) [47-49].  

Considering their specificity for poly-Ub, UBDs can be used in affinity purification of 

poly-ubiquitylated proteins. Initial attempts involved full-length Ub-binding proteins. For 

example, a GST-tagged full-length human S5a (containing two tandem Ubiquitin Interacting 

Motifs, UIMs) has been employed to enrich the ubiquitylated proteins from brain and placental 

tissue [50]. Similarly, the Ub-binding properties of Rad23 and Dsk2 have been utilized to screen 

the substrates of the 26S proteasome in budding yeast [51]. UBDs have been also used to 

develop Ub ligase substrate trapping, a technique that fuse UBDs to an E3 ligase to purify and 

identify by MS ubiquitylated substrates of a particular E3 ligase [52]. 

A significant improvement was the multimerization of UBDs coming from various 

proteins, as is the case for TUBEs (Tandem-repeated Ubiquitin-Binding Entities) [53, 54]. 



TUBEs consist of tetramerized Ubiquitin Associated (UBA) domains from the proteins 

UBQLN1 (TUBE1) or HR23A (TUBE2) separated by flexible linkers and fused to multiple 

tags to facilitate purification and detection (Figure 2A) [53]. TUBEs bind preferentially to 

polyubiquitylated proteins, with affinities in the low nanomolar Kd range, which approximates 

that of a very good antibody underlining its potential as a purification tool. It has also been 

demonstrated that TUBEs binding shields the poly-Ub chains from DUB cleavage and from 

proteasome recognition and degradation [53]. 

While TUBEs display a preference for poly-Ub chains, they can also be used to isolate 

highly abundant mono- or multiple mono-ubiquitylated substrates. For example, it was found 

that multiple mono-ubiquitylated p53 is accumulated in response to chemotherapy [53, 55] and 

a mono-ubiquitylated pool of IкBα resistant to TNFα-mediated degradation plays a role in the 

regulation of basal NF-кB signaling [56].  

 Since some UBDs show preference for certain linkages, TUBES can be designed to 

capture substrates enriched in particular linkage types. In an illustrative example, a K63-

selective TUBE was used to enrich K63-linked polyubiquitylated proteins and analyze their 

role in oxidative stress response by MS-based proteomics [57].  

 As for Ub, similar tandem affinity binding entities have been designed for other UbLs, 

including SUMO. The four SUMO-Interacting Motifs (SIMs) from the SUMO-dependent E3 

ligase RNF4 were used to isolate and identify 300 polySUMO conjugates from cultured 

eukaryotic cells [58]. Similar to TUBEs, SUMO binding entities, or SUBEs, have been 

developed [59-61]. SUBEs include four each of SIM2 and SIM3 motifs from RNF4 disposed 

in tandem (8 SIMs in total) fused to a GST or Biotin tag. They specifically interact with 

polySUMO chains and do not bind to poly-Ub chains or free SUMO moieties [59]. Creating 

new tools to isolate substrates modified by heterologous or hybrid Ub-UbL chains would 

perhaps reveal processes regulated in this manner [62]. 



 

Other Binding Strategies 

In addition to the strategies based on existing Ub/UbL-binding domains, other 

approaches based on novel binding proteins are capable of isolating endogenous conjugates 

(Figure 2A and Box 3). Peptide aptamers, such as affimers, adnectins (also known as 

monobodies), and darpins are characterized by small size, a stable folding core domain, and 

variable domains or peptide loops that can be randomized. Likewise, camelid-derived 

nanobodies can be derived from in vivo sources by immunization or synthetic design. Large 

libraries can be generated and screened using display and panning methods (using ribosomes, 

phage or yeast) [63]. Affimers have been described that discriminate K6 or K33/K11 di-Ub 

linkages [64]. These tools can be used in a variety of applications including MS studies to 

identify specific targets of these modifications [64, 65]. Aptamer technology can also identify 

binders that inhibit Ub/UbL pathways [66-68]. Nanobodies can be used for targeted degradation 

via E3 ligase fusion or recruitment [69, 70] (Figure 2A and Box 3).  

To date, most published studies use the UBD-based molecular traps, so we now provide 

more detailed examples of their use in research and in the clinic.  

 

Applications for TUBEs  

 

TUBEs and other molecular traps such as SUBEs, alone or in combination with other 

techniques (Figure 2B), have been used for a wide variety of applications (Figure 3, Key 

Figure). We highlight here some of their published uses. 

 

Study of the Ubiquitylation of Specific Proteins 



TUBEs are most commonly used as affinity purification reagents for polyubiquitylated 

proteins. GST or biotinylated TUBEs can be conjugated either to solid supports such as agarose 

or magnetic beads for affinity purification or be included during the lysis and used as capture 

reagents. K63-selective TUBEs have been used to show that Parkin-derived K63-Ub chains are 

dispensable for mitophagy, that ubiquitylation of CENP-ACNP1 prevents the formation of 

ectopic centromeres, and that the androgen receptor is a target of the E3 ligase CHIP [71-73]. 

TUBE2 which is based in the UBA domain of the UV excision repair protein HR23A has been 

used to demonstrate the role of Ub in multiple types of stress, including chemotherapy [74, 55]. 

Pan-specific TUBEs have been used to show that Rac1 is ubiquitylated by the HECT E3 Hace1 

[74, 75], and to discriminate the ubiquitylation pattern of cells that are sensitive or resistant to 

doxorubicin chemotherapy, underlining the potential use of TUBEs in the search for biomarkers 

[55, 74, 75].  

Ub-mediated degradation of essential enzymes may have particular importance in the 

central nervous system. Using TUBEs, it was shown that Ub carboxy-terminal hydrolase 1 

(UCHL1) antagonizes ubiquitylation of choline transporter (CHT) in a cholinergic neuron 

model [76]. While K48-linked polyubiquitylation is typically considered to target proteins for 

degradation, TUBEs identified noncanonical Ub-dependent degradation mechanisms, as K63-

linked HIF1A ubiquitylation signaling degradation by the ALS, expanding the known roles of 

Ub in intracellular proteolysis [77]. TUBEs were also associated with immunoprecipitation 

protocols (TUBE-IP) to identify ubiquitylated forms of IkBa or p53 [74, 78]. In this way K63-

TUBEs were also used to show the timing of RIPK2 ubiquitylation in NOD2 signaling [79]. 

Thus, TUBE-IP can be used to investigate kinetics of Ub chain formation or remodeling in 

response to multiple stimuli.  

 

Mass Spectrometry Identification 



As mentioned, TUBEs protect Ub-chains from degradation. By performing TUBEs-

based isolation under native conditions, it is also possible to preserve interactors and complexes 

built around ubiquitylated proteins, such as the proteasome in an example from adriamycin-

treated MCF7 cells [74, 80]. MS analysis of TUBEs-enriched extracts identified a unique 

interplay between the human host and the UPS of Plasmodium falciparum over the course of 

malaria infection [81]. In addition, whole-proteome methods utilizing TUBEs revealed novel 

roles of K63 polyubiquitylation in oxidative stress response in Saccharomyces cerevisiae 

(Figure 3) [57, 82]. 

 Comparative proteomics studies show the utility of TUBEs for complementary MS 

studies. For instance, when using stable isotope labeling with amino acids in cell culture 

(SILAC) to study the effects of Ndfip1/Ndfip2 knockout in mouse CD4+ T cells, biotin-TUBE 

enrichment yielded higher numbers of identified proteins compared with the di-Gly antibody 

[83]. The combined use of both technologies significantly increased the identified number of 

di-Gly peptides when a specific F-box protein (FBXO21) was overexpressed (Figure 2B) [84]. 

 

Detection Methods 

Given their specificity, TUBEs have been used in place of antibodies to detect 

ubiquitylated proteins. Distinct applications have been implemented with distinct tagged 

versions of non-selective TUBEs. For instance, TUBEs labelled with fluorescent tags can be 

used in co-localization experiments in combination with antibodies recognizing specific Ub-

target proteins (Figure 3) [85]. One innovative example is a method for studying 

inflammasome formation in relation to Ub modification of NLRP3 (nucleotide-binding 

oligomerization domain-like receptor P3) [86]. Chain-selective TUBEs can similarly be used 

in far-Western immunoblots. For instance, use of the biotin-labeled K63-TUBE revealed 

K63-polyubiquitylation of PINK1 kinase by the E3 ligase TRAF6 [87].  



 

High-Throughput Screens, Arrays and Drug Discovery 

TUBEs have been incorporated into high-throughput screens (HTS) for monitoring E3 

ligase and DUB activities. Time Resolved Florescence Resonance Energy Transfer (TR-

FRET)-based assays monitor autoubiquitylation of E3s, in which biotinylated TUBE is labeled 

with acceptor fluorophore while E3 antibody is labeled with donor fluorophore [88]. Examples 

include the characterization of Ndfip-dependent activation of Nedd4-family HECT E3 ligases 

and the ubiquitylation of GFP-fused IκBα [89, 90]. In similar assays, TUBE and an antibody 

against an E3 ligase have been linked to donor and acceptor beads, respectively, showing their 

co-localization upon E3 ligase autoubiquitylation (Figure 2B) [91].  

TUBEs have been applied to monitor total cellular Ub in an enzyme-linked 

immunosorbent assay (ELISA) format, for instance in AlphaLISA or dissociation-enhanced 

lanthanide fluorescent immunoassay (DELFIA) variations [81, 92]. Multiple detection systems 

and formats can be configured using multi-well plates to search for biomarkers. For those cases 

wherein the amount of starting material is an issue, TUBEs-based protein arrays have been 

designed, for example, to detect changes in total protein ubiquitylation after treatment with 

doxorubicin (Figure 2B) [74, 93].  

 TUBEs can also be used to assist in qualitative assessment of ubiquitylation. To develop 

USP7 inhibitors, an assay comprised of TUBE enrichment of ubiquitylated proteins, followed 

by their elution and treatment with or without a broad-spectrum DUB was used [94]. In this 

way the effects of USP7 inhibitor treatment on Tip60 and FoxP3 ubiquitylation in mouse T-

regulatory cells were demonstrated [94]. This approach was further adapted using chain-linkage 

specific DUBs OTUB1 (K48-specific) and AMSH (K63-specific) to demonstrate that USP7 is 

modified predominantly by K48-linked poly-Ub chains [95]. These applications of TUBEs 



validated USP7 inhibitor P217564 in cells and enabled advancement of this compound towards 

in vivo animal model studies. 

 

 

Limitations and Challenges for Ub/UbL-Binding Based Approaches  

 

While TUBEs have a number of advantages over other technologies, there are 

limitations. Development of new TUBES can be challenging and, although screening for 

Ub/UbL-binding elements can be performed in an unbiased, high-throughput manner, the 

validation steps require considerable planning and effort.  

Most TUBEs recognize poly-Ub chains and isolation of low abundant mono-

ubiquitylated proteins is still challenging. Since 50% of conjugated Ub exists in the mono-

ubiquitylated state [96, 97], a priority is to develop a molecular trap or affinity binders that can 

selectively identify a single conjugated Ub/UbL or even specific mono-ubiquitylated substrates. 

This has been achieved by traditional antibody methods (e.g., mono-ubiquitylated histones 

[98]).  

Ub chains exist in branched and heterotypic forms comprised of Ub and UbLs. TUBEs 

have not been extensively evaluated for specific binding in these scenarios, while at least one 

antibody shows specificity for branched chains [99]. The chimeric K11/K48 antibody employs 

variable regions from K11- and K48-specific antibodies.  

Most TUBEs variants were first tested in vitro to analyze their specificity and affinity 

for distinct chain types. Chain composition in vivo, however, is more complex than initially 

suspected [62], questioning whether chains containing only a single type of linkage would be a 

general feature or an exception. It is therefore likely that even linkage-specific TUBEs will 

capture a small percentage of other linkage types. Moreover, correct titration is important, since 



it has been observed that an excess of K63-specific TUBEs can allow weak binding to K48-

linked poly-Ub [100]. Likewise, saturating a solid support such as a plate surface or an agarose 

bead with chain-selective TUBE may lead to poor selectivity, perhaps due to high density or 

avidity effects. Optimization is often required and recommended. Furthermore, some data 

support the notion that TUBEs may have affinity for heterotypic chains containing other UbL 

proteins [78, 101], but better characterization is needed since these are stimulus-dependent 

events. 

For imaging and cellular applications, TUBEs must be introduced into cells by protein 

transduction or transfection of expression constructs [84, 85]. Cellular overexpression of 

TUBEs could result in aberrant effects, due to the inherent ability of TUBEs to interfere with 

the action of DUBs and proteasomal degradation, so inducibility or titration is recommended.  

Regarding the combined used of TUBEs with diGly-specific antibodies, some studies 

suggest that incompatibilities may exist [80, 81], but in some cases the combination of both 

technologies has provided better results for the detection of Ub signatures [83, 84]. 

 

 

Concluding Remarks and Future Perspectives  

 

Ub/UbL-binding based strategies can greatly contribute to improving our knowledge of 

the role of these modifications in molecular and cellular processes. A wider panel of tools to 

enrich Ub/UbL chain types would help in studying their respective biological roles. For 

example, K6-specific TUBEs will be helpful to identify the individual proteins modified during 

various selective autophagy events. Little is known about the biological roles of K27-, K29-, 

and K33-linked poly-Ub chains, so isolating substrates and interactors of these rare Ub linkages 

may provide insight into their functions (see Outstanding Questions). The unique properties of 



TUBEs to protect ubiquitylated proteins from degradation will certainly help to increase the 

purification yield and detection of scarce ubiquitylated proteins by MS. Custom aptamers, alone 

or in combination with UBDs, may generate new molecular traps with increased affinity or new 

specificities. The reduced protein size of aptamers might be advantageous for some 

applications. 

Novel TUBEs and TUBEs-based assays are currently under development. The full 

potential of TUBEs has yet to be applied to fluorescence-based techniques such as flow 

cytometry/fluorescence activated cell sorting (FACS) and various types of microscopy to study 

the direct localization of Ub chains or their interactions by FRET inside live, fixed or 

permeabilized cell and tissue samples.  

The progression of UPS-targeted drugs to the clinic will require a battery of assays to 

validate these compounds and TUBEs are well-suited owing to their adaptability to HTS 

formats. Moreover, TUBEs can be adapted for the discovery of diagnostic markers and drug 

targets by targeted or global MS studies of differential protein ubiquitylation in disease. Their 

use to monitor ubiquitylation of downstream substrates of DUBs and E3 ligases will be 

particularly important for determining the efficacy of potential drugs for these emerging target 

classes. In summary, TUBEs and other Ub binders will certainly continue to play a role in Ub 

drug discovery. 
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Glossary  

 

Affimers: Small engineered non-antibody binding proteins designed to mimic the molecular 

recognition of monoclonal antibodies in various applications. 

Aptamers: Peptides or oligonucleotides with binding specificity for a target protein. 

Autophagy-lysosomal system (ALS): includes all cellular factors implicated in the regulation 

of the formation of autophagosomes, fusion with the lysosomes and proteolytic enzymes.  

Far-Western immunoblot: This technique uses a non-antibody protein that binds the protein 

of interest. Thus, it is suitable to detect protein/protein interactions. 

Mass spectrometry (MS): analysis is used to quantify Ub and UbL peptide signatures  

Post-translational modifications (PTMs): can be chemical changes like phosphorylation or 

acetylation, but also small peptide modifier such as UbLs. 

SUMO Binding Entities (SUBEs): are based on the multiplication of SUMO-Interactive 

motifs (SIMs) or the SUMO-dependent ubiquitin ligase RNF4. 

Tandem Ubiquitin Binding Entities (TUBEs): have multiple binding domains to increase the 

affinity for ubiquitylated proteins 

Ubiquitin-like proteins (UbLs): members of the Ub family presenting the b-grasp fold and the 

C-terminal double glycine that allows its conjugation to target amino-acid residues. 



Ubiquitin Proteasome System (UPS): includes all enzymes and cofactors implicated in 

protein ubiquitylation and the proteasome. 

 

 

BOX 1: Ubiquitin Family Proteins-Binding Domains 

Ubiquitylated substrates are recognized by effector proteins that usually contain at least 

one ubiquitin (Ub)-binding domain (UBD) (Figure IA-C). Recent reviews on UBDs discuss 

their structural characteristics and how they interact with Ub [26, 102, 103]. About 20 different 

families of UBDs have been described so far and are summarized in Table I. Although these 

UBDs are structurally quite different, they bind distinct hydrophobic patches contributing to 

the specificity of the UBDs [26, 102]. These UBDs have been grouped according to their 

diverse underlying structural features. UBDs have been characterized that are composed of 

single or multiple alpha-helices, zinc finger motifs, or pleckstrin-homology domains, each class 

with multiple members. Another UBD type shares structural similarity to E2 conjugating 

enzymes, but lacks catalytic activity. A final diverse group of UBDs contains other structural 

elements (coiled-coil motifs, helix-turn-helix, beta sheets, SH3). The existence of multiple 

UBDs is justified by the chain structure diversity and complexity. For instance, K48-, K11-, 

K33 and K6-linkages adopt a compact “closed” conformation where the hydrophobic patches 

are buried [104, 105], while M1, K29 and K63-poly-Ub chains adopt an extended “open” 

conformation where hydrophobic patches are accessible and contribute to binding [106]. 

Further, some binding domains recognize surfaces on two adjacent Ub molecules, conferring 

chain specificity and producing a cooperative increase in affinity (Figure IA-C) [107-109].  

 

Substrates modified by SUMO molecules are also recognized by effector proteins 

containing motifs that specifically recognize substrates modified by SUMO1, SUMO2 and 



SUMO3. Recent reviews on SUMO-interacting motifs (SIMs), and how these interact with 

SUMO molecules, have addressed structural and biological relevant aspects (Figure ID) [11, 

110, 111]. At least 3 types of hydrophobic SIMs contribute to the coordination of SUMO-

dependent functions (Figure IE). Typically, SIMs are constituted by a hydrophobic core 

flanked by one or two clusters of negatively charged amino acid residues [112]. Several SIMs 

can integrate SUMO binding domains (SBDs), optimizing binding, and improving control over 

processes regulated by protein SUMOylation. Multiple methodologies exploring biochemical, 

cellular and molecular aspects of protein SUMOylation have been developed to better 

understand the role of SIMs in SUMO-regulated processes [61, 113-115].  

 

Table I. Ubiquitin-binding domains (UBDs)  

 

UBD 

structural 

class 

UBD examples 

(abbreviations) 
Representative proteins Refs 

Alpha-

helical 

UBA 

CUE 

UIM 

MIU/IUIM 

DUIM 

VHS 

GAT 

RAD23, DSK2 

Vps9 

S5a, RAP80, EPS15 

Rabex5 

Hrs 

STAM 

GGA3, TOM1 

[116, 117] 

[118, 119] 

[120-123] 

[124] 

[125] 

[126] 

[127-129] 

Zinc-finger 
NZF 

ZnF-A20 

Npl4 

A20, Rabex-5 

[130], HOIP 

A20, [124] 



 

Figure I: Binding domains interacting with poly-Ub chains and SUMO. Ubiquitin (Ub) 

Binding Domains, UBDs, are very diverse domains that are able to distinguish different Ub 

chain-linkages. The binding mechanism depends on the structure of each domain and amino 

acid composition of each UBDs. (A) The MIU motif of MINDY1 (blue) has three distinct Ub 

interaction sites that enable it to bind to K48-linked polyubiquitin (sand/yellow) (PDB: 5MN9). 

(B) The NZF domain of TAB2 (blue) binds to K63-linked polyubiquitin (cyan/teal) (PDB: 

2WWZ). (C) The NZF domain of TRABID (blue) binds to K29-linked polyubiquitin 

(pink/violet) (4S1Z). (D) Solution structure of SUMO interacting motif bound to SUMO. 

Cartoon representation of the complex between SUMO1 (pink) and SUMO interacting motif 

(SIM) peptide (blue) from the M-IR2 region of RanBP2 (PDB 2LAS). (E) SIMs domains in 

PROSITE format [112]. 

ZnF-UBP 

UBZ 

USP5, HDAC6 

Polymerase eta/Rad18 

[131, 132] 

[133, 134] 

Pleckstrin-

homology 

PRU 

GLUE 

Rpn13 

EAP45 

[135] 

[136, 137] 

Ub-

conjugation-

related 

UEV VPS23, TSG101 [138, 139] 

Diverse fold 

class 

Jab1/MPN 

PFU 

SH3(variant) 

UBAN 

Prp8p 

Doa1/PLAA 

CIN85, amphiphysin 

NEMO, optineurin 

[140] 

[141] 

[142, 143] 

[144] 



 
 
BOX 2: Druggability of the Ubiquitin System  

Given the parallel between the ubiquitin (Ub) and Ub-Like (Ub/UbL) regulation and 

other post-translational modificaitons (PTMs), such as phosphorylation, the Ub Proteasome 

System (UPS) became an obvious target for developing drugs having an impact on its 

regulatory enzymes. For this reason, it was somehow surprising that the first drug developed 

targeted a catalytic subunit of the proteasome, previously thought to be a conserved part of the 

UPS and thus not a selective target for drug development. Currently, the proteasomal inhibitors 

Bortezomib and Carlfizomib are prescribed as first line therapies for drug refractory multiple 

myeloma [145], garnering ~$17 billion per year. These impressive numbers heightened 

pharmaceutical interest in Ub/UbL pathways. Deubiquitylases (DUBs) and E3 ligases have 

always been recognized as prime targets from which to develop selective therapies. The only 

E3 ligase drugs presently marketed, however, are thalidomide and its derivatives (called 

immunomodulatory imides or IMiDS), being prescribed for multiple myeloma and mantle cell 

lymphomas [146]. The IMiDS bind cereblon, the substrate binding subunit of cullin ligase, and 

modulate E3 ligase function [147]. This results in ubiquitylation of Ikaros and other C2H2 zinc 

finger transcription factors (as well as other beta loop containing degrons) and activation of 

antitumor responses by the immune system [148, 149]. Thalidomide was previously used for 

treating morning sickness in pregnant mothers, but tragically resulted in eye, heart, and 

especially limb defects among many children. Only recently the transcription factor SALL4 

was identified as a likely target for thalidomide in causing these birth defects [150, 151].  

This example highlights a critical bottleneck in developing drugs that focus on DUBs 

and Ub ligases – the ability to comprehensively identify targets of their activity to avoid 

deleterious off-target effects. If this knowledge is available, more thorough screenings can lead 



to improved drug candidates. A better characterization of molecular mechanisms underlying 

Ub-mediated regulation will be essential to progress in this area.  

 

 

BOX 3: Tools Recognizing Ub Chain Diversity  

Multiple tools have been developed to isolate and/or identify individual ubiquitin (Ub) 

chain types. The specificity and applications of these tools could be very distinct; however, 

redundancy might exist and parallel comparisons under the same conditions are lacking in most 

of the cases. In many scenarios, these tools are complementary and can be used to avoid cross-

reactions (e.g., between antibodies) or to unravel a higher level of molecular complexity as soon 

as it is verified that the binding sites are not competing with each other. In many cases, and 

depending of the nature of the interaction, tools containing multiple binding domains (such as 

TUBEs) have higher affinity for Ub chains than those having single binding sites. In Table I 

chains recognized by each tool are indicated, including the names of the tools and the name of 

distributors or references associated to them.  

 

Table I. Specific binding tools for ubiquitin chain diversity  

Tool 
Linkage 

recognition 
Name (s) Distributor 

 

Refs 

Antibodies 

M1 

K11 

K27 

K48 

K63 

LUB9/1E3 

2A3/2E6 

EPR17034 

EP8589, 4289, Apu2 

Sigma, Millipore 

Sigma, Millipore 

Abcam 

Abcam, Cell Signaling, 

Millipore 

[152] 



 

Mono- & 

Poly-Ub 

PolyUb 

EPR8590-448, D7A11, 

Apu3, HWA4C4.  

FK2 

 

FK1 

Abcam, Cell Signaling, 

Millipore, Thermo Fisher 

Millipore 

 

Millipore 

TUBEs 

All chains 

K63 

K48 

TUBE1, TUBE2 

TUBEK63 

TUBEK48 

Lifesensors; Boston 

Biochem 

Lifesensors 

Lifesensors 

[53] 

 

[153] 

SUBEs PolySUMO2/3 

RNF4 based SUMO-

affinity matrices 

 

SUMO-traps 

Boston Biochem, 

Lifesensors 

 
 

[58]  

 

 

[59] 

Aptamers  
K48 

K48 

Minibodies and 

Nanobodies 
Hybrigenics  
 

[154] 

Affimers 

K6 

K33 

SUMO1 

SUMO2 

Linkage-specific 

affimers  
Avacta  
 

[64] 

 
 
 
  



 

Figure 1. The complexity of the Ub-code. The elaborated architecture of the ubiquitin (Ub) 

chains adopting distinct conformations is due to the integration of multiple Ub linkages, such 

as the Ub-like molecules Small Ubiquitin-like Modifier, SUMO (SU), or neural precursor cell 

expressed, developmentally down-regulated 8, NEDD8 (N8), but also other PTMs including 

phosphorylation (P) and acetylation (A). Those modifications might respond to specific stimuli 

or stress. The formation of highly dynamic Ub and Ub-like chains is regulated by modifying 

(Writers: E1 activating, E2 conjugating and E3 ligase enzymes for Ub family members) and 

de-modifying (Editors/Erasers: Deubiquitylases or DUBs, SUMO-specific proteases and 

isopeptidases or SENPs, NEDD8 Proteases or NEDPs) enzymes that are specific for each 

modification. The resultant chains are recognized by receptor proteins connecting with effector 

functions (Readers: Ubiquitin Binding Domains or UBDs, Ubiquitin Interacting Motifs or 

UIMs, SUMO interacting motifs or SIMs). Chain remodeling occurs after cell activation in 

response to distinct physiologic or pathologic events.  

Figure 2. Methods to purify ubiquitylated proteins for study by mass spectrometry. (A). 

Multiple strategies have been developed to identify ubiquitylated proteins by mass 

spectrometry. Tagged versions of ubiquitin (Ub) or Ub-Like proteins (UbLs) have been 

extensively used in proteomic studies. Some of the most popular tags include poly-histidine 

(His), AviTag, Myc, Hemagglutinin (HA), FLAG, Glutathione S-transferase (GST), Green 

Fluorescent Protein (GFP), or Tandem Affinity Purification with more than one tag (TAP) (left 

panel). Antibodies against the di-Gly signature recognizing various Ub family members or 

specific antibodies for UbLs are among the most used (middle panel). Binding tools of different 

nature based in small proteins/peptides with affinity for Ub or UbLs have been used in distinct 

proteomic studies (right panel). (B) Tandem Ubiquitin Binding Entities (TUBEs) can be 

potentially combined with other technologies to optimize detection of chain-linkages [84]. 



TUBEs have been successfully used in combination with anti-di-Gly antibodies with very 

positive results. TUBEs could be combined with peptide affimers (middle panel) or aptamers 

(lower panel) to improve detection of chain-linkages, although no reports have been published. 

All these combinations might have advantages and disadvantages that are listed in a non-

exhaustive way in this figure.  

Figure 3, Key Figure. Applications for TUBEs-based technology. Tandem Ubiquitin 

Binding Entities (TUBEs) are versatile tools that have been used in multiple applications. These 

applications include: (A) Detection methods as reagents for Western-blot or florescence, but 

also to measure binding affinity or specificity (surface plasmon resonance or SPR, calorimetry 

or thermophoresis). (B) Identification methods when TUBEs are used to affinity purify (pull 

down) ubiquitylated proteins that can be detected with target-specific antibodies by Western-

blot or by mass spectrometry, MS. (C) Quantification of total or individual ubiquitylated 

proteins and characterization of the functions associated to them using various formats such as 

protein arrays or High Throughput Screening (HTS) techniques like TUBE-AlphaLISA and 

TUBE-DELFIA (dissociation-enhanced lanthanide fluorescent immunoassay) or to identify 

specific DUBs for a given substrate (UbiTest assay).  
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