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ABSTRACT
We present an efficient and highly optimized implementation of

destructuring-case in Common Lisp. This macro allows the se-

lection of the most appropriate destructuring lambda list of several

given based on structure and types of data at run-time and there-

after dispatches to the corresponding code branch. We examine an

optimization technique, based on finite automata theory applied

to conditional variable binding and execution, and type-based pat-

tern matching on Common Lisp sequences. A risk of inefficiency

associated with a naive implementation of destructuring-case
is that the candidate expression being examined may be traversed

multiple times, once for each clause whose format fails to match,

and finally once for the successful match. We have implemented

destructuring-case in such a way to avoid multiple traversals of

the candidate expression. This article explains how this optimiza-

tion has been implemented.

CCS CONCEPTS
• Theory of computation→Data structures design and anal-
ysis; Type theory;
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1 INTRODUCTION
The Common Lisp macro destructuring-bind [? ] binds the vari-
ables specified in a given lambda list to the corresponding values in

the tree structure resulting from the evaluation of a given expres-

sion. However, in the case that the tree structure of the expression

does not coincide with the given lambda list, a run-time error is

signaled. This error may pose a challenge to the programmer. The

problem, simply stated, is that the destructuring lambda list [? ,
Section 3.4.5] is specified at compile time, and the expression is

evaluated at run-time. Thus, it may not be possible to know until

run-time that the input data is problematic. In certain cases the
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(destructuring-case expression

((X Y)

(declare (type fixnum X Y))

:clause-1)

((X Y)

(declare (type fixnum X)

(type integer Y))

:clause-2)

((X Y)

(declare (type (or string fixnum) X)

(type number Y))

:clause-3 ))

Figure 1: Example of destructuring-case usage.

programmer would like to specify the run-time behavior to take if

the match fails, rather than having an error signaled. This behavior

cannot be specified portably using the condition system [? , Chap-
ter 9], because the condition signaled is simply of type error with

no additional information about exactly what failed. Furthermore,

the programmer may not wish to signal an error at all, but rather

detect the actual run-time pattern of the input data and proceed

differently depending on which format of data is discovered.

We presented destructuring-case in [? ] as a mechanism to

test run-time adherence of the destructuring lambda list to the value

of a candidate expression. An example usage of this macro can be

seen in Figure 1. This example shows three clauses, each with the

same lambda list, (X Y), but with different type declarations. In gen-
eral, a usage of destructuring-case may use radically different

lambda lists, which differ in number of variables, having different

&optional and &key sections, and also using different hierarchical

structure of the variables.

The semantics of destructuring-case are that the value of

the given expression is tested in turn against each of the given

destructuring lambda lists, until a match is found, i.e. a match in

both hierarchical structure and type of values. Only at such time

are the indicated consequent expressions or any default values

evaluated. This restriction is especially important if there are side-

effects in the default values of optional arguments in the lambda

lists such as (... &optional (x (incf *global-var*))).

https://doi.org/10.5281/zenodo.2635402
https://doi.org/10.5281/zenodo.2635402
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(rte-case expression

((: cat fixnum fixnum)

(destructuring-bind (X Y) expression

:clause-1 ))

((: cat fixnum integer)

(destructuring-bind (X Y) expression

:clause-2 ))

((: cat (or string fixnum) number)

(destructuring-bind (X Y) expression

:clause-3 )))

Figure 2: Expansion of destructuring-case from Figure 1
into rte-case.

(rte-case expression

((: cat fixnum fixnum)

:clause-1)

((: cat fixnum integer)

:clause-2)

((: cat (or string fixnum) number)

:clause-3 ))

Figure 3: Simple example of rte-case from Figure 2.

The implementations of the macros discussed in this arti-

cle, including destructuring-case, rte-case, rte-ecase, and
bdd-typecase, are available in Quicklisp

1
via the package :rte.

2 FROM DESTRUCTURING-CASE TO RTE-CASE
Our implementation of destructuring-case converts its input

of destructuring lambda lists to rte (regular type expression) and

then outputs an invocation of rte-case. The essential part of such
an expansion is shown in Figure 2. An rte, introduced in [? ], is
Common Lisp syntax to specify a set of sequences, i.e. a subtype of
the sequence type. We explain in Section 2.2 how a destructuring

lambda list is converted to an rte.

As can be seen in Figure 2, each destructuring lambda list has

been converted to an rte such as (:cat fixnum fixnum) in the first
clause, followed by a call to destructuring-bind. As is implied by

the syntax, the destructuring-bind will only be executed at run-

time if the value of the candidate expression matches the pattern

designated by the rte.

We further notice in the simplistic example shown in Figure 2,

that no destructuring-bind in the rte-case expansion plays

any role. The variables bound by the destructuring-bind are

not used in the expressions which follow. Therefore, in our further

discussion we will refer to the even simpler, semantically equivalent

code in Figure 3.

A straightforward expansion of rte-case might include succes-

sive type checks of expression such as suggested in Figure 4. Such

an expansion would be semantically correct, but inefficient because

the sequence expression would be traversed three times in the

1
Quicklisp, https://www.quicklisp.org/, is a public repository, maintained by Zach

Beane, consisting of user contributed Common Lisp libraries.

(typecase expression

((rte (:cat fixnum fixnum ))

:clause-1)

((rte (:cat fixnum integer ))

:clause-2)

((rte (:cat (or string fixnum) number ))

:clause-3 ))

Figure 4: Naive expansion of rte-case from Figure 2

worst case, to determine which consequent clause to evaluate. As

will be seen, our technique eliminates these redundant traversals,

allowing one single traversal of the sequence to be executed and

thereby determining which consequent expressions to evaluate.
2

2.1 Examples of rte Syntax
The grammar an rte is explicitly detailed in [? ]. Nevertheless, the
basic grammar can be understood intuitively, assuming the reader

has a basic understanding of string-based regular expression syntax.

The concatenation operator, :cat specifies a sequences successive

elements: e.g., (:cat fixnum string) denotes a sequence of ex-
actly two elements, the first of type fixnum and the second of type

string. To make the string optional use the syntax (:cat fixnum
(:? string)). To specify the occurrence, zero or more times, of

fixnum followed by an optional string, use (:cat (:* fixnum)
(:? string)). Substitute :+ for :* to express an occurrence of

one or more times. Finally, expressions may be combined logically

using :and, :or, and :not, e.g., (:or (:cat fixnum string) (:+
(:not number))).

2.2 From Destructuring Lambda List to rte
In this section we summarize how a destructuring lambda list and

associated type declarations may be converted into an rte. The

conversion procedure is explained in more detail in [? ].
The set of lists which are valid argument lists for a given invoca-

tion of destructuring-bind with an optional set of type declara-

tions can be characterized by an rte. A destructuring lambda list,

such as used in destructuring-bind, specifies a required portion,

denoted by a leading sequence of variables; an optional portion,

delimited by &optional; and a repeating portion of keyword value

pairs, delimited by &key. To construct the rte corresponding to a

given destructuring lambda list, we construct the required-rte, the
optional-rte, and the repeating-rte, and concatenate them using the

:cat operator.

(:cat required-rte optional-rte repeating-rte )
As an example, consider the lambda list shown in Figure 5. The

required portion and optional portions are easy.

required-rte = (:cat string string)

optional-rte = (:? list)

2
The reader may well notice that a fourth traversal is also necessary to evaluate the

destructuring-bindwhich is present in each of the consequent clauses. In this paper

we do not address the elimination of this fourth traversal.
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(destructuring-bind (A B &optional Q &key X Y)

expression

(declare (type string A B)

(type list Q)

(type real X)

(type integer Y))

...)

Figure 5: Example destructuring-bind with declarations

The repeating portion deserves careful attention; we consider

two restrictions.

(1) If &allow-other-keys is not given, such as is the case in

Figure 5, then the only allowed keywords are those explicitly

specified. In our case the only allowed keywords are :X
and :Y, meaning the repeating portion is also of the form

(:* (:cat (member :X :Y) t)) .

(2) Type declarations such as (declare real X) only restrict

the value associated with the first occurrence of each key-

word in an argument list, because only the first such occur-

rence is bound the the associated variable [? , Section 3.3.4].

A keyword portion of the argument list such as (:X 1.2
:X ’not-real) is perfectly valid, whereas (:X ’not-real
:X 1.2) is not. Thus, we iterate over all specified keywords,

generating one pattern for each. The pattern handling &key
X requires that either there is either no :X given, or that the

first :X is followed by a real. See the note restriction 2
in Figure 6.

Putting all these restrictions together, we have the rte in Figure 6

representing the destructuring-bind with type declarations in

Figure 5.

There are several other features of destructuring-bind which
are supported by destructuring-case, but whose details we omit

in this discussion, including tree structure variables/data, default

values, supplied-p-parameter, &allow-other-keys, and others.

3 FROM RTE-CASE TO INDIVIDUAL DFAS
Each rte shown in Figure 3 can be converted to efficient type check-

ing Common Lisp code, as explained in [? ]. Such conversion in-

volves first converting each rte to a deterministic finite automaton

(DFA), where the transition labels represent type checks for succes-

sive elements of the candidate expression. Figure 7 shows the three

DFAs corresponding to the rte-case in Figure 3.

We now summarize how a deterministic finite automata (DFA) is

constructed, given an rte. Some approaches to such generation, such

as [? ? ], involve constructing a non-deterministic finite automaton

and thereafter determinizing it. We use the technique presented

by Brzozowski [? ] and clarified by Owens [? ]. The Brzozowski
algorithm uses a technique called the rational derivative, to con-

struct a DFA, and thereby obviating the necessity to determinize

the result. In [? ? ], we explain how the rational derivative can

be extended to accommodate Common Lisp types, in particular

rather than calculating the rational derivative (as Owens suggests)

with respect to each letter of the alphabet, instead we calculate the

(:cat

;; required-rte

(:cat string string)

;; optional-rte

(:? list)

;; repeating-rte

(:and

;; restriction 1

(:* (:cat (member :X :Y) t))

;; restriction 2 for :X real

(:or (:* (:cat (:not (eql :X)) t))

(:cat (:* (:cat (:not (eql :X)) t))

(eql :X) real

(:* t)))

;; restriction 2 for :Y integer

(:or (:* (:cat (:not (eql :Y)) t))

(:cat (:* (:cat (:not (eql :Y)) t))

(eql :Y) integer

(:* t)))))

Figure 6: The rte representing the destructuring-bind and
type declarations from Figure 5.

(:cat fixnum fixnum)

1.0 1.1
T1

1.2
T1

clause-1

(:cat fixnum integer)

2.0 2.1
T1

2.2
T2

clause-2

(:cat (or string fixnum) number)

3.0 3.1
T5

3.2
T3

clause-3

Label Type specifier
T1 fixnum
T2 integer
T3 number
T5 (or string fixnum)

Figure 7: Automata for clauses of rte-case in Figure 2

derivative with respect each type calculated in the maximal disjoint

type decomposition as explained in [? ].

3.1 Constructing States and Transitions
The algorithm can be summarized as follows. Each state in the DFA

represents all the possible futures which are accepting. Moreover,
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there is a (not necessarily unique) rte which expresses that set of

futures. For example, let:

P1 = (:or (:cat number string) (:cat fixnum float))

be the rte representing all the sequences of either a number followed
by a string or a fixnum followed by a float. Suppose there is a
state in the DFA associated with this rte. Now we consider all the

possible types of the first element of such a sequence. And for each

such first element type, we calculate what the remaining future

would be given that the first element of that type. If the first element

is a fixnum, then the future is a sequence containing either a string
or a float. Such a sequence is denoted by the rte (:or string
float). In terms of the rational derivative we say:

P2 = ∂fixnumP1 = (:or string float) .

If, on the other hand, the first element is not a fixnum but is a

number, then the remaining sequence whose only element is a

string. That is to say:

P3 = ∂(and number (not fixnum))P1 = string .

Since there is no other possible first element of P1, we con-

struct two additional states, P2 and P3 and construct two transitions
P1 → P2 labeled fixnum, and P1 → P3 labeled (and number (not
fixnum)).

We continue this process until all the futures of each state have

been calculated, generating all the possible states, and all the possi-

ble transitions between the states.

3.2 Associating Code with Accepting States
DFAs used for matching pattern languages such as regular expres-

sions, normally represent Boolean functions; returning TRUE if the

sequence matches the expression, and FALSE otherwise. In our case

each accepting state of the DFAs in Figure 7 indicate which code

paths to take in the originating rte-case, Figure 3. This problem is

easily addressed. We have simply extended our state object (Clos

class [? ? ]) to contain a slot indicating a piece of continuation code

to be serialized in the final macro expansion.

3.3 Overlapping Clauses
The synchronized cross-product (SXP) of two or more given DFAs is

a single DFA whose behavior simultaneously emulates the behavior

of the given DFAs. Typically such a cross-product implements the

intersection or union languages of the input DFAs; however the

semantics of such a cross-product can be taken to be any Boolean

combination of the input.

For example, to implement the symmetric difference language

we apply the Boolean XOR function; a state, X, in the SXP, cor-

responding to states A and B from two given DFAs, is marked as

an accepting state if A XOR B are accepting (if either but not both

are accepting). In our case we would like to select the code for

evaluation corresponding to the code appearing first in the original

destructuring-case; so we need priority based selection, rather

than simply a Boolean function.

An important property of the behavior of rte-case is that if

more than one pattern matches the expression in question, then

the clause appearing first has priority over the others. For example,

in the code in Figure 3, if the value of expression is the list (1

(rte-case expression

((:cat fixnum fixnum)

:clause-1)

((:and (:cat fixnum integer)

(:not (:cat fixnum fixnum )))

:clause-2)

((:and (:cat (or string fixnum) number)

(:not (:cat fixnum fixnum ))

(:not (:cat fixnum fixnum )))

:clause-3 ))

Figure 8: Example of rte-case with pairwise disjoint pat-
terns

(:cat fixnum fixnum)

1.0 1.1
T1

1.2
T1

clause-1

(:and (:cat fixnum integer)

(:not (:cat fixnum fixnum )))

2.0 2.1
T1

2.2T1

2.3

T6

clause-2

(:and (:cat (or string fixnum) number)

(:not (:cat fixnum integer ))

(:not (:cat fixnum fixnum )))

3.0

3.1T4

3.3

T1

3.2
T3

clause-3

3.4
T2

3.5

T7

clause-3

Label Type specifier
T1 fixnum
T2 integer
T3 number
T4 string
T6 (and (not fixnum) integer)
T7 (and (not integer) number)

Figure 9: DFAs for disjoined clause-1, clause-2, and clause-3

2), then all three rtes match; nevertheless :clause-1 must be the

return value.

An approach of addressing this ambiguity is to extend or aug-

ment the patterns so that they are mutually exclusive; i.e. assure
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that no two patterns simultaneously match any candidate expres-

sion. The code shown in Figure 8 is equivalent to that in Figure 3

but any input expression, (1 2), for example, matches at most

one pattern. This pattern augmentation can be accomplished as a

code transformation. The pattern corresponding to :clause-1 is
unchanged, but the subsequent clauses have been augmented to

emphasize that those clauses are never reached if any prior pattern

matches.

These rtes correspond to the DFAs shown in Figure 9. The first

DFA is exactly the same as before, but we notice in the second DFA

that the state labeled 2.2 is non-coäccessible; i.e., there is no path
from state 2.2 to any accepting state. This non-useful state corre-

sponds to (:not (:cat fixnum fixnum)) in the input pattern,

and it enforces that a sequence consisting of two objects of type

fixnum, is a rejected sequence rather than a matching sequence.

The third DFA in the figure contains a similar state, 3.4, but in

addition, contains two states 3.2 and 3.5 which are equivalent to

each other.

The disjoining process described here produces DFAs which

have redundant or non-coäccessible states. Despite this fact, these

slightly more complex DFAs play an important role in the SXP con-

struction, because the process guarantees that the SXP construction

will never encounter a situation where it must choose between two

different pieces of code to execute on reaching an acceptance condi-

tion. If attempting to calculate the union of the three DFAs shown

in Figure 7, the algorithm would have to deal with the fact that a

sequence of (1 2) at run time should return :clause-1 rather than
:clause-2. However, if calculating the union of the DFAs from

Figure 9, such ambiguity is averted. The union can be performed

purely algebraically, with no consideration or order of priority.

4 MERGING DFAS INTO SYNCHRONIZED
CROSS-PRODUCT DFA

We explain in detail in [? ] how the type check associated with an

rte is compiled to efficient Common Lisp code by first converting it

to a deterministic finite automaton. It is further pointed out in the

perspectives of [? ] that it is desirable to merge these automata into

a single automaton in order to share states between the various

automata which serve the same function, and also to eliminate

redundant traversals of the candidate expression. Having a single

automaton which implements the union of the mutually exclusive

patterns enables the candidate list to be traversed once and thereby

matching any one of the expressions specified in the various clauses

of the rte-case.
One advantage of the conversion from destructuring lambda list

to rte is that rtes support an algebra sufficient for expressing sets

of non-overlapping types, resulting in mutually exclusive patterns

in the expansion to rte-case. As an additional feature of the im-

plementation of rte-case, we have arranged so that it treats the

code in Figure 3 and Figure 8 exactly the same, internally disjoining

patterns which are not already disjoint.

The following is an explanation of how several automata are

merged into such a single automaton.

We would like to merge the three DFAs shown in Figure 9 into a

single DFA. There are well known techniques for merging multiple

dfa2 dfa3 intersection Target State
T1 T1 T1 (2.1, 3.3)

T1 T4 ∅

T1 ⊤ \ (T1 ∪T4) ∅

⊤ \T1 T1 ∅

⊤ \T1 T4 T4 (⊥, 3.1)

⊤ \T1 ⊤ \ (T1 ∪T4) ⊤ \ (T1 ∪T4) (⊥, ⊥)

Figure 10: Transition Computation for dfa2 × dfa3

DFAs [? ? ] into the SXP DFA. These techniques are not general

enough for several reasons which we address in our approach.

It is not necessary to explicitly consider the SXP of more than

two DFAs, because the operation is associative. Therefore, given the

Common Lisp function synchronized-product, we may compute

the SXP of one or more DFAs as a call to cl:reduce.

(reduce #'synchronized-product dfas)

4.1 Calculating States and Transitions
We consider constructing the SXP of twoDFAs, dfa-1 (withn states)
and dfa-2 (with m states). We construct a DFA, dfa-3, having
m ×n states, worst case; one state for each pair (x,y) with x ∈ dfa1

and y ∈ dfa2. Fortunately, this worst case does not often occur in

practice as many of the states are not accessible. For example, if

computing the SXP of the first two DFAs of Figure 9, there is no

possible input sequence which would put dfa1 into state 1.1 while

putting dfa2 into state 2.2. Thus there will be no state in the product

DFA corresponding to (1.1, 2.2).

An efficient algorithm is described in [? ]. We seed a work list

with the one initial state. Next, we traverse the work list, growing

it by adding new states as we construct them. All possible input

types are considered for each state, and all possible transitions are

generated.

An example will make this clearer. First start with dfa2 and dfa3,

the second and third DFAs illustrated in Figure 9. The states list is

initialized to S = {(2.0, 3.0)}.

We examine the behavior of states 2.0 and 3.0. We must char-

acterize the behavior for every possible input. This infinite set of

potential input values is partitioned into several disjoint types:

those annotated on transitions exiting state 2.0 and 3.0, and the

complement of their union. This complement type represents the

set of all values for which an implicit transition leads to the virtual

so-called sync state, denoted ⊥. The sync state is a state which has

exactly one exiting, all encompassing, transition: ⊥
⊤
−→ ⊥.

State 2.0 has one explicit transition, namely 2.0
T1
−−→ 2.1. Thus,

there is an implicit complement transition 2.0
⊤\T1
−−−−→ ⊥, where ⊤

represents the universal type. State 3.0 has two explicit transitions:

namely 3.0
T1
−−→ 3.3 and 3.0

T4
−−→ 3.1. Thus, there is an implicit

complement transition 3.0
⊤\(T1∪T4)
−−−−−−−−→ ⊥.

To compute the transitions from (2.0, 3.0), we must consider

all six pairwise intersections between the transition types of the

two states (2.0 and 3.0). These intersections are shown in Figure 10,

which also indicates the target states in the three non-empty cases.
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0

2
T4

1

T1

7
T3

6
T7

5
T1

4

T6

3

T9

clause-3

clause-1

clause-2

clause-3

Label Type specifier
T1 fixnum
T3 number
T4 string
T6 (and (not fixnum) integer)
T7 (and (not integer) number)
T9 (and integer

(or (not integer) fixnum)
(not fixnum))

Figure 11: DFA for rte-case not yet reduced

Given an input of type fixnum, dfa2 transitions from state 2.0 to

state 2.1; and given the same input dfa3 transitions from state 3.0 to

state 3.3. So we add (2.1, 3.3) to S ; S = S = {(2.0, 3.0), (2.1, 3.3)},

and add transition (2.0, 3.0)
T1
−−→ (2.1, 3.3). Likewise, given an input

of type string, dfa2 transitions from state 2.0 to state ⊥; and given

the same input dfa3 transitions from state 3.0 to state 3.1. So we

add (⊥, 3.1) to S ; S = S = {(2.0, 3.0), (2.1, 3.3), (⊥, 3.1)}, and add

transition (2.0, 3.0)
T4
−−→ (⊥, 3.1). Finally, given an input of type

(and (not fixnum) (not string)), dfa2 transitions from state

2.0 to state ⊥, and dfa3 transitions from state 3.0 to state ⊥. The

state (⊥,⊥) is the sync state of the cross product DFA so we need

generate no additional transition from (2.0, 3.0).

Next, we to apply the same procedure to calculate any new states

and transitions of any newly added elements of S . We continue the

procedure until all elements of S have been visited, and no new

states were generated.

After dfa2 × dfa3 has been computed, we can repeat the process

via the reduce operation mentioned above to compute dfa1×dfa2×

dfa3. This procedure constructs a DFA isomorphic to that shown in

Figure 11. We say isomorphic because the choice of state names is

arbitrary. Figure 11 has states named 0 through 7 rather name names

such as (1.0, 2.0, 3.0), (1.1, 2.1, 3.3) as suggested in the procedure

description in Section 4.1.

The DFA shown in Figure 11 is not in minimal form. It has a non-

coäccessible state, 3, from which there is no path to an accepting

state. It also has indistinguishable states; e.g., states 6 and 7 have the
exact same future, albeit a trivial one of just returning the symbol

clause-3. Since each of the states in the computed DFA and each

s ∈ S υ ∈ ϒ δ (s,υ)

0 T1 1

0 T4 2

1 T1 5

1 T6 4

1 T7 6

2 T3 7

s ∈ S υ ∈ ϒ ψ1(s,υ) ∈ Π0

0 T1 {0, 1, 2}

0 T4 {0, 1, 2}

1 T1 {5}

1 T6 {4}

1 T7 {6, 7}

2 T3 {6, 7}

s ∈ S Φ1(s)

0

{
(T1, {0, 1, 2}), (T4, {0, 1, 2})

}
1

{
(T1, {5}), (T6, {4}), (T7, {6, 7})

}
2

{
(T3, {6, 7})

}
4 ∅

6 ∅

7 ∅

Figure 12: All values of the δ ,ψ1, and Φ1 functions.

of the transitions contribute to the number of lines of Common Lisp

codewhichwill be generatedwhen theDFA is serialized in Section 5,

we should simplify this DFA to reduce the lines of redundant code

in the final macro expansion.

We eliminate non-coäccessible states by a simply trimming pro-

cedure based on graph traversal, finding states which lack a path

to an accessible state. However, the procedure to coalesce indistin-

guishable states is more subtle, and we discuss it in Section 4.2.

4.2 DFA Simplification
The goal of simplification is to coalesce indistinguishable states

such as states 6 and 7 in Figure 11, to result in the DFA in Figure 13.

In order to give a good explanation of the simplification algo-

rithm we need some notation. Let S denote the set of states of the
DFA, S = {0, 1, 2, 4, 5, 6, 7}. Let ϒ denote the set of all Common

Lisp types annotated in the DFA: ϒ = {T1,T3,T4,T6,T7}. Denote the
state transfer function, δ , which given a state, si ∈ S, and a type

υ ∈ ϒ, returns the target state, sj ∈ S of the transition si
υ
−→ sj . The

values of δ are given in Figure 12 (top left).

We will construct a sequence {Π1,Π2, ...Πn, ...} of partitions

of S. A partition of S is a set of mutually disjoint subsets of S for
which the union of the subsets is S itself. Each element κ ∈ Πk is

called a k-equivalence class. If si , sj ∈ κ, then si and sj are said to

be k-equivalent to each other.

To construct the initial partition, Π0, we group the set of all non-

accepting states into one 0-equivalence class: {0, 1, 2}; thereafter,

there is one 0-equivalence class per unique return value: :clause-1,
:clause-2, and :clause-3: {5}, {4}, and {6, 7} respectively.

Π0 = {{0, 1, 2}, {4}, {5}, {6, 7}}

Next, we wish to construct Π1, Π2, ... Πn , Πn+1 in turn, continu-

ing the iteration until Πn = Πn+1. Each Πk is derived from Πk−1
as we will explain.

For each integer k > 0, to determine the k-equivalence classes

we define two functionsψk and Φk .
3
In each case, we will construct

3ψ is referred to as the partition transformation function. Φ is referred to as the

partition image function.
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clause-3

clause-1

clause-2

Label Type specifier
T1 fixnum
T3 number
T4 string
T6 (and (not fixnum) integer)
T7 (and (not integer) number)

Figure 13: DFA for rte-case simplified

ψk+1 and Φk+1 by examining Πk . These two functions may be dif-

ficult to understand intuitively from their mathematical definitions.

Nevertheless, the mathematical definitions help when coding the

simplification function in Common Lisp.

ψk+1 is a function which takes two arguments, s ∈ S and υ ∈ ϒ,
and returns a k-equivalence class κ ∈ Πk . (I.e.,ψk+1 : S × ϒ → Πk )

To compute the value ofψk+1(s,υ), we select and return the unique

κ ∈ Πk for which δ (s,υ) ∈ κ. Figure 12 (top right) shows all the

values ofψ1.
Φk+1 takes an element s ∈ S and returns a set of order pairs,

each of the form (υ,κ) where υ ∈ ϒ and κ ∈ Πk . Φk+1(s) is defined
as the set of all pairs (υ,ψk+1(s,υ)), such that υ ∈ ϒ, and such that

ψk+1(s,υ) exists. Figure 12 (bottom) shows all the values of Φ1.

Now we construct the (k+1)-equivalence classes by splitting the

k-equivalence classes; i.e. we refine Πk to construct Πk+1, so that

every κ ∈ Πk+1 contains those elements which have the same

value of Φk+1. This rule implies that if κ has is a singleton set

(e.g. {4} ∈ Π0, and {5} ∈ Π0), then κ ∈ Πk+1 (i.e. {4} ∈ Π1, and

{5} ∈ Π1).

Consider the 0-equivalence class {0, 1, 2} ∈ Π0. Since Φ1(0),

Φ1(1), and Φ1(2) have three different values, then we must further

partition {0, 1, 2} into three distinct 1-equivalence classes {0}, {1},

and {2}.

Consider the 0-equivalence {6, 7}. Since Φ1(6) = Φ1(7), then

{6, 7} is a 1-equivalence class, and {6, 7} ∈ Π1.

Π1 = {{0}, {1}, {2}, {4}, {5}, {6, 7}}

If we repeat this process, generating the functions ψ2 and Φ2,

and use Φ2 to construct Π2, we would find that Π2 = Π1, which

means Π1 is a fixed point of the procedure.

Π2 = {{0}, {1}, {2}, {4}, {5}, {6, 7}}

We can use Π1, directly, to construct the minimum DFA shown

in Figure 13. We simply merge the states which are 1-equivalent.

We have determined that states 6 and 7 are 1-equivalent, and no

others. We can thus construct the DFA in Figure 13 by merging

states 6 and 7 from Figure 11.

(let* ((g1 expression)

(g2 g1))

(block check

(tagbody

s.0

(unless g1 (return-from check nil))

(typecase (pop g1)

(fixnum (go s.2))

(string (go s.1))

(t (return-from check nil)))

s.1

(unless g1 (return-from check nil))

(typecase (pop g1)

(number (go s.3))

(t (return-from check nil)))

s.2

(unless g1 (return-from check nil))

(typecase (pop g1)

(fixnum

(go s.4))

((and (not integer) number)

(go s.3))

((and (not fixnum) integer)

(go s.5))

(t (return-from check nil)))

s.3

(unless g1 (return-from check

(destructuring-bind (X Y) g2

(declare (type (or string fixnum) X)

(type number Y))

:clause-3 )))

(case (pop g1)

(t (return-from check nil)))

s.4

(unless g1 (return-from check

(destructuring-bind (X Y) g2

(declare (type fixnum X Y))

:clause-1 )))

(case (pop g1)

(t (return-from check nil)))

s.5

(unless g1 (return-from check

(destructuring-bind (X Y) g2

(declare (type fixnum X)

(type integer Y))

:clause-2 )))

(case (pop g1)

(t (return-from check nil ))))))

Figure 14: Macro expansion of rte-case from Figure 2 and
consequently of destructuring-case from Figure 1.

5 OPTIMIZED CODE GENERATION
Figure 14 shows the essential part of the final macro expansion of

the rte-case shown in Figure 2. Each state in the DFA corresponds
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to a label within a tagbody, a conditional unless checking for end

of sequence, and a typecase with one branch per transition in the

DFA, including the implicit transition to⊥. We have used typecase
in this example output, but the reader may well notice that there

are several occurrences of redundant type checks in the output. For

example, the typecase at label s.2 in Figure 14 contains multiple

checks for fixnum and integer. We showed in [? ] how these

redundant type checks might be eliminated simply by replacing

typecase with bdd-typecase.

6 PREVIOUS WORK
Attempts to implement destructuring-case are numerous. We

mention three here. R7RS Scheme provides case-lambda [? , Sec-
tion 4.2.9], allowing fixed length argument lists, but lacking any

sort of destructuring; the implementation of destructuring-case
provided in [? ] is missing tree-structure-based clause selection;

the implementation provided in [? ], provides tree-structure-based
clause selection, but not within the &optional nor &key portion.

In none of these cases does the clause selection consider the types

of the objects within the list being destructured.

Manuel and Ramanujam [? ] introduce automata over infinite

alphabets, which seems to be an interesting theoretical approach

of viewing DFA whose transitions are Common Lisp types. Manuel

and Ramanujam do not investigate questions of construction and

simplification as we have investigated in our approach.

6.1 Conclusion and Perspectives
The simplification algorithm described in Section 4.2 may not guar-

antee a minimum result. For example, reconsider Φ1 in Figure 12

(bottom). Suppose T3 = T ′ ∪ T ′′
, and suppose there exists s ∈ S

such that Φ(s) =
{
(T ′, {6, 7}), T ′′, {6, 7}

}
. In such a case, states 2

and s would be indistinguishable, but not mergable with the sim-

plfication algorithm we have described. More research is needed

to determine whether such a case can occur, and what the most

general form is. Such analysis is necessary to accomplish our goal

of generalizing finite automata theory on finite alphabets to handle

infinite alphabets representable as disjoinable types.

In the procedure described in Section 4, we constructed the SXP

starting with DFAs which were sub-optimal. The DFAs shown in

Figure 9 have states which are not coäccessible: states 2.2 and 3.4.

Furthermore, one of the DFAs has states 3.2 and 3.5 which are

indistinguishable. If we choose to trim and simplify the input DFAs

before constructing the SXP there seem to be cases where we reduce

the number of state pairs which need to be visited.

A natural question is whether it is better to simplify the input

DFAs before computing the SXP, simplify after, or both. One might

be tempted to claim that we should always simplify DFAs before

computing the SXP. However, we do not currently have enough

data to confidently support this claim.

We also discussed in Section 3.3 a technique for making the

DFAs match non-overlapping languages before attempting to cal-

culate the SXP. This technique avoids having to make priority

based decisions when the languages overlap. We thereafter saw

that this technique produces DFAs with non-coäccessible states. It

may well be worth investigation whether robustly implementing

the priority based SXP procedure is more efficient, as the input

DFAs would themselves be smaller in many cases, and be absent

the non-coäccessible states.

The rte-casemacro we discuss in this paper does not attempt to

answer questions about exhaustiveness. It is possible however, to en-

hance the rte-casemacro with rte-ecase (exhaustive rte-case)
which would append a final otherwise clause, (:* t). This clause
would serve at compile time to detect whether the leading clauses

are exhaustive; for if no state in the DFA corresponds to this

:otherwise-clause, then the given rte patterns are exhaustive.

However, if there is a path in the DFA from an initial state to the

:otherwise-clause, then the type labels on such a path form a

type signature for such a counter example. The types of the elements

of such a counter-example sequence could easily be generated by

finding any transit through the DFA, and clipping away any loops

it contains. The macro might also produce a compiler warning, as

well as insert a call to error in the code in case the code path is

taken at run-time.
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