Sahu et al. EURASIP Journal on Advances in Signal
Processing (2018) 2018:66
https://doi.org/10.1186/s13634-018-0586-0

EURASIP Journal on Advances
in Signal Processing

RESEARCH Open Access

Communication efficient distributed

@ CrossMark

weighted non-linear least squares estimation

Anit Kumar Sahu', Dusan Jakovetic?", Dragana Bajovic® and Soummya Kar'

Abstract

The paper addresses design and analysis of communication-efficient distributed algorithms for solving weighted
non-linear least squares problems in multi-agent networks. Communication efficiency is highly relevant in modern
applications like cyber-physical systems and the Internet of things, where a significant portion of the involved devices
have energy constraints in terms of limited battery power. Furthermore, non-linear models arise frequently in such
systems, e.g., with power grid state estimation. In this paper, we develop and analyze a non-linear
communication-efficient distributed algorithm dubbed CREDO — N L (non-linear CREDO).CREDO — N L
generalizes the recently proposed linear method CREDO (Communication efficient REcursive Distributed
estimatOr) to non-linear models. We establish for a broad class of non-linear least squares problems and generic
underlying multi-agent network topologies CREDO — N L's strong consistency. Furthermore, we demonstrate
communication efficiency of the method, both theoretically and by simulation examples. For the former, we
rigorously prove that CREDO — N L achieves significantly faster mean squared error rates in terms of the elapsed
communication cost over existing alternatives. For the latter, the considered simulation experiments show
communication savings by at least an order of magnitude.
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1 Introduction

We consider distributed non-linear least squares estima-
tion in networked systems. The networked system con-
sidered consists of heterogeneous networked entities or
agents where the inter-agent collaboration conforms to a
pre-assigned possibly sparse communication graph. The
agents acquire their local, noisy, non-linear observations
about the unknown phenomenon (unknown static vec-
tor parameter #) in a streaming fashion over discrete
time instances t. The goal for each agent is to contin-
uously generate an estimate of 6 over time instances ¢
in a recursive fashion, where the estimate update of an
agent involves simultaneous assimilation of the newly
acquired local observations, and the received information
through messages with agents in its immediate neighbor-
hood. The assumed setup is highly relevant in several
emerging applications in the context of cyber-physical
systems (CPS) and the Internet of things (IoT), like state
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estimation in smart grid, predictive maintenance, and pro-
duction monitoring in industrial manufacturing systems.
For example, with continuous state estimation of a smart
grid, the acquired measurements (voltages, angles) are in
general non-linear functions of the unknown state; fur-
ther, the measurements are inherently distributed across
different physical locations (elements of the system), and
they arrive continuously over time with a prescribed sam-
pling rate. Furthermore, the scale (network size) of the
distributed system (e.g., a large scale micro-grid) and
near real-time requirements on the estimation results
make distributed, fusion center-free processing a desirable
choice.

An important aspect of distributed estimation algo-
rithms in the context of the applications described above
is communication efficiency, ie., achieving good esti-
mation performance with minimal communication cost.
Real-world applications such as large-scale deployment of
CPS or IoT typically involve entities or agents with lim-
ited on board energy resources. In addition to the limited
on board power, the energy requirement per unit com-
munication is usually significantly higher than the energy
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requirement per unit computation [48]. Hence, communi-
cation efficiency is a highly desirable trait in such systems.
Moreover, for large-scale systems which require continu-
ous system monitoring, it is crucial to reduce the commu-
nication cost as much as possible without compromising
on the performance of the inference task at hand, which
then ensure longer lifetime of such systems.

In this paper, we propose and analyze a communication
efficient distributed estimator for non-linear observation
models that we refer to as CREDO — N L. The estimator
CREDO — N L generalizes the recently proposed linear
distributed estimator CREDQO, see [37, 38], that is designed
and works for linear measurement (observation) models
only. Specific contributions of the paper are as follows.

We propose the non-linear distributed estimator
CREDO — N L that works for a broad class of non-linear
observation models and where the model information in
terms of the node /s sensing function and noise statistic
is only available at the individual agent i itself. With the
proposed algorithm, each agent communicates probabilis-
tically sparsely over time. More precisely, the probability
which determines whether a node communicates at time ¢
decays sub-linearly to zero with ¢, which then makes the
communication cost scale sub-linear with time .

Despite dropping communications and the presence of
non-linearities in the sensing model, we show that the
proposed algorithm achieves the optimal O(1/t) rate of
the mean square error (MSE) decay'. The achievability of
the optimal MSE decay in terms of time ¢ translates into
significant improvements in the rate at which MSE scales
with respect to the per-agent average communication
cost Cy up to time ¢, namely from O(1/C;) with existing
methods, e.g., [15, 16, 31, 34-36, 40], to O (1/CtH ) with
the proposed method, where { > 0 is arbitrarily small. We
also establish strong consistency of the estimate sequence
at each agent, showing that each agent’s local estimator
converges almost surely to the true parameter 6. Simula-
tion examples confirm significant communication savings
of CREDO — N L over existing alternatives, by at least an
order of magnitude.

We now briefly review the literature on distributed
inference and motivate our algorithm CREDO — N L.
Distributed inference algorithms can be broadly divided
into two classes based on the presence of a fusion
center. The first class assumes presence of a fusion cen-
ter, e.g., [11, 23, 26, 27, 47]. The fusion center assigns

sub-tasks to the individual agents and subsequently fuses
the information from different agents. However, when
the data samples are geographically distributed across
the individual agents and are streamed in time, fusion
center-based solutions are impractical.

The second class of distributed inference methods is
fusion center-free. These works typically assume that the
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agents are interconnected over a generic network, and
each agent acquires its local measurements in a streaming
fashion. These estimators are iterative (recursive), where
at each iteration (time instance), each agent assimilates
its new measurement and exchanges messages with
its immediate neighbors, see, e.g., [2, 4-6, 14, 20, 22,
24, 25, 28-31, 34-36, 39, 43, 46]. Most related to our
work are references that consider distributed estimation
under non-linear observation models, as we do here, or
distributed convex stochastic optimization, e.g., [15, 16,
31, 34-36, 40]. However, among these works, the best
achieved MSE communication rate is O(1/Cy). In contrast,
we establish here a strictly faster MSE communication
rate equal to O(l/CtZ_g (¢ > 0 is arbitrarily small).
Finally, it is worth noting that there exist a few distributed
algorithms (without fusion node) that are also designed
to achieve communication efficiency, e.g., [13, 21, 44—46].
In [46], a data censoring method is employed to save in
terms of computation and communication costs. How-
ever, the communication savings in [46] is a constant
proportion with respect to a vanilla method which uses all
allowable communications at all times. In [21], the com-
munication savings come at a cost of extra computations.
References [13, 44, 45] also consider a different setup
than we do here, namely they study distributed optimiza-
tion (with no fusion center) where the data is available
a priori (i.e., it is not streamed). In terms of the strat-
egy to save communications, references [13, 21, 44, 45]
consider, respectively, deterministically increasingly
sparse communication, adaptive communication scheme,
and selective activation of agents. These strategies are
different from ours that utilizes a randomized, increasing,
“sparsification” of communications.
Consensus+innovations methods, see, e.g., [16, 17, 19, 20]),
are a sub-class of distributed recursive algorithms (the
second class of algorithms mentioned above) that process
data in a streaming fashion. With consensus+innovation
methods, each node updates its estimate at each itera-
tion two-fold: by weight-averaging its solution estimate
(consensus) with the neighbors’ solution estimates and
by assimilating its newly acquired data sample (inno-
vation). Therein, the consensus and innovation weights
are usually time-varying and are carefully designed
towards achieving optimal asymptotic performance, mea-
sured, e.g., through asymptotic covariance of the estimate
sequence. Within the class of consensus+innovations dis-
tributed estimation algorithms (see, e.g., [18, 20]), the
design of communication efficient methods has been
addressed in [37], see also [38], for linear observation
models, wherein a mixed time-scale stochastic approx-
imation method dubbed CREDO has been proposed.
We extend here CREDO to non-linear observation
models. Technically speaking, establishing convergence
and asymptotic rates of convergence for CREDO — N'L
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involves establishing guarantees for existence of stochastic
Lyapunov functions for the estimate sequence. The update
of the estimate sequence in CREDO — N L involves a
gain matrix which is in turn a function of the estimate
itself. Moreover, in addition to the gain matrix being a
function of the estimate, the sensing functions exhibit
localized behavior in terms of smoothness and global
observability in the proposed algorithm. Hence, the setup
considered in this paper requires technical tools different
from CREDQO, which we develop in this paper.

The rest of the paper is organized as follows. Section 2
describes the problem that we consider and gives the
needed preliminaries on conventional (centralized) and
distributed recursive estimation. Section 3 presents the
novel CREDO — N'L algorithm that we propose, while
Section 4 states our main results on the algorithm’s perfor-
mance. Section 5 presents the simulations experiments,
and finally, we conclude in Section 7. Proofs of the main
results are relegated to Appendix A.

2 Model and preliminaries

2.1 Sensing and network models

Let § € ©, where ® C RM (the properties of it to be
specified shortly) be an M-dimensional parameter that is
to be estimated by a network of N agents. Every agent n
at time index ¢ makes a noisy observation y,(¢), a noisy
function of . Formally, the observation model for the n-th
agent is given by,

Yn(®) = £, (0) + yu(®), (1)

where f, : RM — RMn js a non-linear sensing func-
tion, where M,, < M, {y,(t)} € RM» is the observation
sequence for the n-th agent and {y,(¢)} is a zero mean
temporally independent and identically distributed (i.i.d.)
noise sequence at the n-th agent with nonsingular covari-
ance R, where R, € RM~Mx The noise processes are
independent across different agents. We state an assump-
tion on the noise processes before proceeding further.
Throughout, we denote by ||| the £3-norm of its vector
or matrix argument and by E[ .] the expectation operator.

Assumption 1 There exists €; > 0, such that, for all n,
E{llya®1**1] < oo.

We remark that the main results of the paper (Theorems
4.1 and 4.2) continue to hold even if ¢, = 02. The
above assumption encompasses a general class of noise
distributions in the setup.

The heterogeneity of the setup is exhibited in terms
of the agent dependent sensing functions and the noise
covariances at the agents. Each agent is interested in
reconstructing the true underlying parameter 6. We
assume an agent is aware only of its local observation
model, i.e, the non-linear sensing function f,(-) and the
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associated noise covariance R,;, and hence, it has no infor-
mation about the observation matrix and noise processes
of other agents.

The agents are interconnected through a communica-
tion network that we shall assume throughout the paper
is modeled as an undirected simple connected graph
G = (V,E), with V = [1---N] and E denoting the set
of agents (nodes) and communication links, see [3]. (With
the proposed CREDO — N L method, the available links
in E will be activated selectively across algorithm itera-
tions in a probabilistic fashion, as it will be detailed in
Section 3). The neighborhood of node # in graph G is

Q,={leV]|nl eE}. 2)

The node #n has degree d, = |2,|. The structure of
the graph is described by the N x N adjacency matrix,
A=AT =[Ay, Ay = 1,if n,]) € E, A,; = 0, other-
wise. Let D = diag (d; - - - dn). The graph Laplacian L =
D — A is positive semidefinite, with eigenvalues ordered
as 0 = Aj(L) < Ag(L) < --- < An(L). The eigenvec-
tor of L corresponding to A; (L) is (I/W) 1y. (Here, 1x
is the N-dimensional vector with all entries equal to one.)
The multiplicity of its zero eigenvalue equals the number
of connected components of the network; for a connected
graph, A3(L) > 0. This second eigenvalue is the algebraic
connectivity or the Fiedler value of the network (see [7] for
instance).

Example: distributed static phase estimation in smart
grids

Many applications within cyber physical systems and
the Internet of things can be modeled as non-linear dis-
tributed estimation problems of type (1). Such class of
models arises, e.g., with state estimation in power sys-
tems; therein, a phasorial representation of voltages and
currents is usually utilized, wherein non-linearity in gen-
eral emerges from power-flow equations [1, 33]. Here, we
focus on the specific problem within the class, namely
distributed static phase estimation in smart grids. We
describe the model briefly and refer to, e.g., [12, 19] for
more details. Here, graph G corresponds to a power grid
network of n = 1,..., N generators and loads (here, a sin-
gle generator or a single load is a node in the graph), while
the edge set E corresponds to the set of transmission lines
or interconnections. (For simplicity, even though not nec-
essary, we assume that the physical interconnection net-
work matches the inter-node communication network.)
Assume that G is connected. The state of a node n is
described by (Vy, ¢,), where V), is the voltage magnitude
and ¢, is the phase angle. As commonly assumed, e.g.,
[12], we let the voltages V), be known constants; on the
other hand, angles ¢, are unknown ant are to be esti-
mated. Following a standard approximation path, the real
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power flow across the transmission line between nodes #
and / can be expressed as, e.g., [12]:

Pui(@) = Vi Vy by sin(¢y,y), (3)

where ¢ is the vector that collects the unknown phase
angles ¢, across all nodes, b, is line (#,[)’s admittance,
and ¢,; = ¢, — ¢;. Denote by E,;, C E the set of lines
equipped with power flow measuring devices. The power
flow measurement at line (#, /) is then given by:

Vi (t) = Pui(@) + v () = Vyu Vi by sin(@pn) + v (1), (4)

where {y,;(¢)} is the zero mean i.i.d. measurement noise
with finite moment E[|y,;(®)|*1€!], for some ¢; > 0.
Assume that each measurement y,;(t) is assigned to one
of its incident nodes # or I. Further, let €2, denote the set
of all indexes / such that measurements y,,(t) are available
at node n. Then, it becomes clear that the angle estimation
problem is a special case of model (1), with the measure-
ment vectors y, (£) =[yu(t), [ € Q’n]T ,n=1,..,N, noise
vectors v, (£) =[yu(t), [ € Q/H]T, n = 1,..,N, and sens-
ing functions £,(¢) =[V, V, by sin(¢,), | € Q1" .n =
1,..,N. It can be shown that under reasonable assump-
tions on phase angle ranges (that correspond to the admis-
sible parameter set ®) and the smart grid network and
admittances structure, the assumptions we make on the
sensing model are satisfied,> and hence, CREDO — N'L
can be effectively applied; we refer to [12, 19] for details.

2.2 Preliminaries: centralized batch and recursive
weighted non-linear least squares estimation

In this subsection, we go over the preliminaries of cen-

tralized and distributed weighted non-linear least squares

estimation.

Consider a networked setup with a hypothetical fusion
center which has access to the samples collected at all
nodes at all times. In such a setting, in lieu of the sensing
model as described in (1), one of the classical algorithms
that finds extensive use is the weighted non-linear least
squares (WNLS) (see, for example, [15]). The applicability
of WNLS to fairly generic setups which are character-
ized by the absence of noise statistics makes it particularly
appealing in practice. We discuss properties of the WNLS
estimator before proceeding further. Define the cost func-
tion Oy as follows:

t N

Q@) =) Y (yal) — £:@) R, (yuls) — £,(2)).

s=0 n=1

(5)

The hypothetical fusion center in such a setting gen-
erates the estimate sequence {Bt} in the following way:

9, e argmin, g Q¢ (z). (6)
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The consistency and the asymptotic behavior of the esti-
mate sequence {f;} have been analyzed in the literature
under the following weak assumptions:

Assumption 2 The set ® is compact convex subset of
RM with non-empty interior int(®) and the true (but
unknown) parameter 0 € int(©).

Assumption 3 The sensing model is globally observable,
i.e., any pair 0,0 of possible parameter instances in ©
satisfies

N

2

n=1

ifand only if 0 = 9.

£,00) —f, (é) H2 —0 (7)

Assumption 4 The sensing function £,(.) for each n is
continuously differentiable in the interior int(®) of the set
®. For each 0 in the set ©, the (normalized) gain matrix T'g
defined by

N
1 1yl
Lo = ;:1: vE, (0) R, VL] (9), (8)

is invertible, where V£,(-) € RM>*Mx

of £,().

denotes the gradient

Smoothness conditions on the sensing functions, such
as the one imposed by Assumption 3, are common in
statistical estimation with non-linear observations mod-
els. Note that the matrix 'y is well defined at the true
value of the parameter 6 as § € int(®) and the continu-
ous differentiability of the sensing functions holds for all
0 c int(©).

The asymptotic properties of the WNLS estimator in
terms of consistency and asymptotic normality are char-
acterized by the following classical result:

Proposition 1 ([15]) Let the parameter set © be compact
and the sensing function f,(-) be continuous on ® for each
n. Let G; be an increasing sequence of o -algebras such that

N
G =0 ({ {y,, (s) }£=(1)}n:1>' Further, denote by 0 the true

parameter to be estimated. Then, a WNLS estimator of 0
exists, i.e., there exists an {G;}-adapted process {0,} such
that

ﬁt € argmin, g Q:(z), Vt. 9)
Moreover, if the model is globally observable, i.e.,
Assumption 3 holds, the WNLS estimate sequence {0r} is
consistent, i.e.,

Py (lim 0, = 0) =1, (10)
t— 00
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where Py (-) denotes the probability operator. Additionally,
if Assumption 4 holds, the parameter estimate sequence is
asymptotically normal, i.e.,

VEF1(0: —0) =5 N (0, %0), (11)
where
Y. = (NTp)™', (12)

. . D ;
Ty is as given by (8) and = refers to convergence in
distribution (weak convergence).

The centralized WNLS estimator above suffers from
significant communication overhead due to the inher-
ent access to data samples across all agents at all times.
Moreover, the minimization in (6) requires batch process-
ing due to the non-sequential nature of the minimiza-
tion. Recursive centralized estimators utilizing stochastic
approximation type approaches have been proposed in
[9, 10, 32, 41, 42], which mitigate the batch processing
through the development of sequential albeit centralized
estimators. However, such recursive estimators still suf-
fer from the enormous communication overhead as the
fusion center requires access to the data samples across
all agents at all times and the global model information
in terms of the sensing functions and the noise statistics
across agents.

2.3 Preliminaries: distributed WNLS

Sequential distributed recursive schemes conforming to
the consensus + innovations (see for example, [19] and
Eq. (16) ahead) type update, where the agents’ knowledge
of the model is limited to themselves have been proposed
in [16, 40]. In [16], so as to achieve the optimal asymptotic
covariance, the global model information is made avail-
able through a carefully constructed gain matrix update,
which adds additional computation complexity and com-
munication cost. In contrast with [16, 40] introduces the
trade off in terms of sub-optimality of the asymptotic
covariance while using local model information at individ-
ual agents for evaluating the gain matrix and thus saving
communication cost. However, both the aforementioned
algorithms in [16, 40] have the number of communica-
tion scales linearly with the number of per-node sampled
observations {y,(#)}. This paper builds upon the ideas
of sequential distributed recursive schemes catering to
non-linear observation models as proposed in [16, 40]
to construct a communication efficient scheme without
compromising on the performance in terms of the mean
square error. That is, we aim to achieve the order opti-
mal MSE decay rate of ®(1/¢) (see, e.g., [9]) in terms of
the number of per-node processed samples, while reduc-
ing the ®(¢) communication cost which is a characteristic
of previous approaches.
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Before proceeding further, we briefly summarize the
estimator in [40] which is referred to as the benchmark
estimator henceforth. The overall update rule at an agent
n corresponds to

Rt +1) =%, = By Y, (Xn() = x,(8))

ey,

neighborhood consensus

— @ (VE(x, () R, (£, (2)) — yn(2)) (13)
local innovation
and
Xu(t +1) = Pol[X(t + 1], (14)

where €, is the communication neighborhood of agent
n (determined by the Laplacian L); Vf,(-) is the gradi-
ent of f,; Pel[-] the projection operator corresponding
to projecting on ©; and {8;} and {«;} are consensus and
innovation weight sequences given by

~ Bo . @
= —, = —, 15
=i T (15)

-~

where &g, Bp > 0,0 < 8; < 1/2 —1/(2 + €1) and €; was
defined in Assumption 1. From the asymptotic normal-
ity in Theorem 2 in [40], it can be inferred that the MSE
decays as O(1/¢).

Communication efficiency

The communication cost C; is defined as the expected
number of per-node communications up to iteration ¢.
Formally, the communication cost C; is given by

t—1
Ct =E |:Z H{agent n transmits at s}:| ’

(16)
s=0

where agent # is arbitrary (the expectation in (16) does
not depend on x) and I4 represents the indicator of event
A. The communication cost C; for both the centralized
WNLS estimator (where all agents transmit their samples
v (%) to the fusion center at all times ¢) and the distributed
estimators in [16, 40] is C; = ©O(t), where we note that
the iteration count ¢ is equivalent to the number of per
node samples collected till time ¢. Technically speaking,

the MSE decays as O (é)

3 CREDO — N L:acommunication efficient
distributed WNLS estimator

In this section, we present the CREDO — N L estimator.
CREDO — N L is based on a carefully chosen protocol
which aids in making the communications increasingly
probabilistically sparse. Intuitively speaking, the commu-
nication protocol exploits the idea that with a gradual
information accumulation at the agents through commu-
nications, an agent is able to accumulate sufficient infor-
mation about the parameter of interest which then allows
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it to drop communications increasingly often. Technically
speaking, for each node #, at every time ¢, we introduce a
binary random variable v, ;, where

pr with probability ¢;

0 else, (17)

1pn,t = {
where v,,;s are independent both across time and the
nodes, i.e., across t and #, respectively as well are indepen-
dent from nodes’ observations in (1). The random variable
Y, abstracts out the decision of the node #n at time ¢
whether to participate in the neighborhood information
exchange or not. We specifically take p; and ¢; of the form

00 o

P e+ 76 = (t + 1)1/2-€/2)’ (18)
where 0 < € < 1. Furthermore, define f3; to be
B = (pig))* = , Bo > (19)

(t+1)

With the above development in place, we define the ran-
dom time-varying Laplacian L(¢), where L(t) € RN*N
which abstracts the inter-node information exchange as
follows:

— VitV (L)} eEi#]
Lij®) =10 i#jlijl ¢ E
Zl;ﬁi 1/fi,tl/fl,t i =j~

The communication protocol (17)—(20) assumes that
the neighboring nodes communicate only when the cor-
responding communication link is bi-directional. How
bi-directional communication links can be enforced in
practice is discussed next. Let us first assume that there
exists a dedicated reliable bi-directional communication
link between any two neighboring nodes. Consider a link
between nodes n and [ at time ¢ If ¢,; = 1, node
n participates in communication, and it turns on both
its transmitting and receiving antennas. If v,,; = O, it
switches off both its transmitting and receiving antennas.
Suppose that ¥,; = 1, and consider two scenarios: (1)
Y1 = 0and (2) ¥, = 1. Consider first the former case.
Since node # listens the dedicated channel to node / and
node / does not transmit, node # verifies that it does not
receive the respective message from node / (e.g., within a
prescribed time window), and hence, it does not incorpo-
rate node [’s estimate in its update. Also, as ¥;; = 0, node
[ does not include the estimate by node », by algorithm
construction. Next, consider the case W;; = 1. In this
case, node # listens the channel and receives the message
by node /, and thus, it incorporates node /’s estimate in its
update. Completely symmetrically, node / listens the chan-
nel from node 7 to node /, receives the respective message,
and includes node n’s estimate in its update. Overall, the
preceding discussion explains how the symmetric com-
munication protocol can be established. A very similar
consideration can be derived if the links are unreliable

(20)
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but still symmetric, in the sense that if the link from »
to [ is strong enough to support communication, then so
is the link from / to n. Finally, if the physical links can
fail in an asymmetric fashion, then the proposed algo-
rithm (see ahead (26)—(28) cannot be implemented in its
direct form. More precisely, asymmetric failing links yield
the Laplacian matrices L(¢) become non-symmetric. The
algorithm (26)—(28) and the corresponding analysis need
to change in such scenario. This lies outside the scope
of this paper, but it corresponds to an interesting future
research direction.

With the protocol described in (17)—(20), both the
weight assigned to the links and the probability of the
existence of a link decay over time. We next consider the
first moment, the second moment, and the variance of the
Laplacian entries for {i,j} € E:

E[Lij@®)] =— (pet)? = =B = — (tiol)
2
E[L0)] = (o)’ = % (21)
P4 B}
Var( ll(t)) (t +01)01+€ - (t +01)2' (22)

For future reference, we also introduce the mean Lapla-
cian matrix {L(¢)} as L(¢) = E [L(#)], and L(t) = L@ —
L(¢). Thus, it holds thatE[L(t)] =0, and

N3 8002

~ 2 3 ) ,BOP()
E[|To]*] <2NE [T} (t)] <o @
where ||-|| denotes the Ly norm. Inequality (23) can be

obtained as follows. First, we have that ||f(t) || < ||E(t) ||F ,
where ||.||F denotes the Frobenius norm. Also, note that

ILo]; = Z L) Z S Lo + Lo
ij=1 i=1 \ j#i
N 2
=3 | X0l + Y Lo
=1 \ j#i i
N B ) ~ ,
S YLl +N YL
i=1 \ j#i ji
o =~ 2
<2NDY > Lo
i=1 j£i

Taking expectation and using (17), inequality (23)
follows. _ B
Next, we also have that, L(¢) = 8L, where

_ZlaeiLi,l i=].
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We next give an assumption on the connectivity of the
inter-agent communication graph.

Assumption 5 The inter-agent communication graph
is connected on average, i.e., A (L) > 0, which implies
A2 (L(t)) > 0O, where L(t) denotes the mean of the Lapla-
cian matrix L(t) and Ay(.) denotes the second smallest
eigenvalue.

Assumption 5 ensures consistent information flow
among the agent nodes. Technically speaking, the com-
munication graph modeled here as a random undirected
graph need not be connected at all times. It is to be noted
that Assumption 3 ensures that L(¢) is connected at all
times as L(f) = B;L. We now state additional assump-
tion on the smoothness of the sensing functions for the
distributed setup.

Assumption 6 For each n, the sensing function £,(-) is
Lipschitz continuous on ©, i.e., for each agent n, there exists
a constant k, > 0 such that

£, (0) — £, (O)I| < ki 10 — 01,
forall9,0 € G.

(25)

With the communication protocol established, we pro-
pose an update, where every node # generates an estimate
sequence {x,(¢)}, where x,(¢) € RM in the following way:

Rt +1) =%4(6) = B Y VWi (Xu(t) — x,(8))

e,

neighborhood consensus

— oy (VE (X2 () R, (£, (x4 () — ¥ (9)) (26)
local innovation
and
X,(t+1) = PelX,(t + D], (27)

where 2, denotes the neighborhood of node »n with
respect to the network represented by L, o, is the inno-
vation gain sequence which is given by o; = ao/(¢t + 1),
ap > 0, and Pg[ -] the projection operator corresponding
to projecting on ®. The random variable v, ; determines
the activation state of a node n. By activation, we mean, if
Y 7 0, then node # can send and receive information
in its neighborhood at time ¢. However, when ¥,; = 0,
node # neither transmits nor receives information. The
link between node # and node [ gets assigned a weight of
o2 if and only if ,,; # 0 and v, # 0.

The update in (26) can be written in a compact manner
as follows:

X(t+ 1) = x(t) — (L(®) ® Ly) x(®)

+ a:Gx()R™ (y(t) — £ (x(2))) . (28)
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Here, ® denotes the Kronecker product, Iy; denotes the
M x M identity matrix, and:

x0T = @ xw® [yo T =[neow @]
RONE OIS NOM

.
fx(®) = (60 (®) -y oen ()|
R = disg [R7", -, RY]
G (x(t)) = diag[VEi (x1(0)), -+ , VEy (xu(8)].

Remark 1 The Laplacian sequence that plays a role in
the analysis in this paper, takes the form L(t) = ;L + L),
where L(t) the residual Laplacian sequence does not scale
with B owing to the fact that the communication rate is
chosen adaptively and thus makes the Laplacian matrix
sequence not identically distributed.

We refer to the parameter estimate update in (26) and
the projection in (27) in conjunction with the random-
ized communication protocol as the CREDO — N L algo-
rithm. We propose a condition on the sensing functions
(standard in the literature of general recursive procedures)
that guarantees the existence of stochastic Lyapunov func-
tions and, hence, the convergence of the distributed esti-
mation procedure.

Assumption 7 The following aggregate strict mono-
tonicity condition holds: there exists a constant c; > 0 such
that for each pair 0,0 in ® we have that

N T )
> (0-6) (VEO)R (6O /)= e Ha-é” .
n=1

(29)

The instrumental step in analyzing the convergence
of the proposed algorithm is ensuring the existence
of appropriate stochastic Lyapunov functions (see, for
example [16-20]) which is in turn guaranteed by
Assumption 7.

Remark 2 It is to be noted that the Assumptions 6-7
are only sufficient conditions. Moreover, the assumptions
which play a key role in establishing the main results, i.e.,
Assumptions 2, 1, 6, and 7 are required to hold only in
the parameter set © instead of the entire space RM, which
makes our algorithm to apply to very general non-linear
sensing functions.

We consider a specific example to give more intu-
ition about the assumptions in this paper. If the f,(-)’s
are linear, i.e., f, (@) = F,0, where F, is the sensing
matrix with dimensions M,, x M, Assumption 3 becomes
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equivalent to "2 FIR;'F,, being full rank.* Under this
context, the monotonicity condition in Assumption 7
is trivially satisfied by the positive definiteness of the
matrix Zﬁlzl F/ R 'F,. We formalize an assumption on
the innovation gain sequence {«;} before proceeding further.

Assumption 8 We require that oy satisfies

opcC1 > 1, (30)

where c; is defined in Assumption 7 and o is the innova-
tiongainatt = 0.

The communication cost per node for the proposed
algorithm is given by C; = ZE;}) s =0 (t(”e)/z), which
in turn is strictly sub-linear as € < 1.

4 Main results

In this section, we present the main results of the pro-
posed algorithm CREDO — N L, while the proofs of the
main results are relegated to Section 7. The first result
concerns with the consistency of the estimate sequence

xu(®)}.

Theorem 4.1 Let Assumptions 1-3 and 5-8 hold. Con-
sider the sequence {x,(t)} generated by algorithm (26)-
(27) at each agent n, with the parameters set to py =
(t+1)(€32*€/2)’ and oy = ao/(t + 1), where

Lo ;- —
+e?? 58 =
P0, C0, Xo are arbitrary positive numbers. Then, for each n,
we have

Py <lim X, () = 0> =1. (31)
t—00

Theorem 4.1 verifies that the estimate sequence gener-
ated by CREDO — N L at any agent 7 is strongly consis-
tent, i.e., x,(t) — 0 almost surely (a.s.) as t — oco. While
Assumption 4 is needed for asymptotic normality results
as in Proposition 1, it is not necessary for Theorem 4.1
(nor Theorem 4.2 ahead) to hold.

We now state a main result of this paper which estab-
lishes the MSE communication rate for the proposed
algorithm CREDO — N'L.

Theorem 4.2 Let the hypothesis of Theorem 4.1 hold.
Then, we have, for each n,

1
E [lIx.(2) — 6’||2] =0 (t) . (32)
Furthermore, for each n, we have:
_2
E [lIx:(6) — 01*] = O (Ct ‘“>, (33)

where 0 < € < 1 and is as defined in (18).

We make several remarks on Theorems 4.1 and 4.2.
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Remark 3 Note that € in Theorem 4.2 can be taken to
be arbitrarily small. Hence, CREDO — N L achieves MSE
communication rate arbitrarily close to 1/C?. This is a sig-
nificant improvement over existing non-linear distributed
consensus + innovations estimation methods, e.g., [18, 20].
They have O(t) communication cost up to time t and a
MSE iteration-wise rate of O(1/t), hence achieving O(1/Cy)
MSE communication rates. CREDO — N'L achieves the
order-optimal O(1/t) MSE iteration-wise rate with a
reduced communication cost, thus significantly improving
the MSE communication rate.

Remark 4 Observe that CREDO — N L algorithm, with
B: = Bot + 1)~ has communication cost of C; =
(€] (t0'5(1+€)). From this, we can see that MSE as a function
of Cy is given by MSE = O (Ct—z/m—e))'

Of course, with By that decays faster than 1/t, commu-
nication cost reduces further. However, it can be shown
that in this case the algorithm no longer produces good
estimates. Namely, from standard arguments in stochas-
tic approximation, it can be shown that for By = Bo (t +
D770, with § > 0, CREDO — N L’s estimate sequence
may not converge to 0.

Remark 5 The CREDO — N L algorithm builds on our
prior work in [37, 38, 40), but establishing Theorems 4.1—
4.2 incurs several technical challenges with respect to
our past work. Namely, from a technical standpoint, the
CIWN LS algorithm in [40] incurs the challenge of non-
linear observation models. On the other hand, CREDQO
in [37, 38] incurs the challenge of increasingly sparse com-
munications. Differently from CREDO and CIWN LS,
this paper simultaneously accounts for both of these chal-
lenges. This makes mean square and asymptotic normality
analysis more challenging. As a consequence of this dif-
ference, while for CIWN LS and CREDO we establish
both MSE iteration-wise convergence rate analysis and
asymptotic normality, here we establish only the MSE
(iteration-wise and communication-wise) convergence rate
results. Next, CREDO — N L is a single time scale stochas-
tic approximation-type algorithm, while both CLZWN LS
and CREDO are two time scale algorithms. Further, the
consensus potentials in CIWN LS and in CREDO — N'L
are the same only on average, i.e., up to the first moment.
The difference in higher order moments corresponds to dif-
ferent analyses, namely, the randomized communication
protocol that incurs with CREDO — N'L, an increased
upper bound of the iteration-wise estimate of MSE. A care-
ful analysis in this paper shows that the additional terms
in the MSE bounds with CREDO — N L decay faster with
time t than 1/t, and hence, the MSE iteration-wise rate
remains order-optimal and equal to 1/t (see the proof of
Theorems 4.1 and 4.2 in Appendix A.) Finally, we point out
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that the differences of Theorem 4.1 with respect to works
[37, 38] mainly arise from the fact that we consider here
nonlinear observation models. Due to this difference, sev-
eral terms that appear in MSE upper bounds are bounded
in a technically different way—see the proof of Lemma Al
in Appendix A. Therein, we need to use the arguments like
the non-expansiveness property of projections and Lips-
chitz continuity of functions £, none of which is explicitly
used in [37, 38].

5 Simulation experiments

This section corroborates our theoretical findings through
simulation examples and demonstrates the communica-
tion efficiency of CREDO — N L.

Specifically, we compare the proposed communication
efficient distributed estimator, CREDQO, with the bench-
mark distributed recursive estimator in (13) and the
diffusion algorithm as in [43]°, which both utilize all inter-
neighbor communications at all times, i.e., they have a
linear communication cost. The example demonstrates
that the proposed communication efficient estimator has
a similar MSE iteration-wise rate as the two benchmark
estimators. The simulation also shows that the proposed
estimator improves the MSE communication rate with
respect to the two benchmarks.

We generate a random geometric network of 10 agents,
shown in Fig. 1.

The relative degree® of the graph is equal to 0.4. The
graph was generated as a connected instance of the geo-
metric graph model with radius r = +/In(N)/N. To be
specific, the first step involves generating 10 points in
a unit square grid and the nodes are connected with a
link if the distance between them is less than +/In(N)/N.
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We repeat the procedure until we get a connected
graph instance. We choose the parameter set ® to be
0 = [—%,%]7 e R7. This choice of ® conforms
with Assumption 2. The sensing functions are cho-
sen to be certain trigonometric functions as described
below. The underlying parameter is set as 8 =
[61, 62, 03, B4, O3, O, 6] and thus 8 € R’. The sens-
ing functions at the agents are taken to be, fi(0) =
sin(f; + 6y + 63),f2(0) = sin(@3 + 6y + 64),f3(0) =
sin(@3 + 64 + 05),£4(0) sin(64 + 05 + 6g),f5(0)
sin(@s + 05 + 67),f(0) = sin(bs + 6, + 61),£7(0) =
sin(@; + 62 + 67),£3(0) = sin(f; + 6y + 04),f9(0) =
sin(fy + 03 + 6g) and f19(0) = sin(03 + 04 + 6¢). Thus, it
is to be noted that each node makes a scalar observation
at time ¢. The noises y,(¢) are Gaussian and are i.i.d. both
in time and across nodes and have the covariance matrix
equal to 0.25 x Ijp. The local sensing functions render

the parameter 0 locally unobservable, but the parameter
0 is globally observable as, under the parameter set ©
considered in this setup, sin(-) is one-to-one and the set of
linear combinations of the # components corresponding
to the arguments of the sin(:)’s constitute a full-rank
system for @. Hence, the global observability requirement
specified by Assumption 3 is satisfied. The unknown
but deterministic value of the parameter is taken to
be 0 = [n/6, —x/7, n/12, — /5, w/16,77/36,7/10].
Under the model considered here in terms of the sensing
functions as specified above and the parameter set ® =
[-%, %]7, it can be easily verified that the model conforms
to the conditions specified in Assumptions 3—-7. The pro-
jection operator Pg onto the set ® defined in (14) is

given by,

0.9
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04+

0.3

02
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0 I I I I

0 0.1 0.2 0.3 0.4

Fig. 1 Network deployment of 10 agents
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FNE
2
~~
A
=
[\
FNE

XDl = | K@) 7 <[Xu@®li< 7 (34)

% [Xu(D)]i < =

foralli=1,--- ,M.

The parameters of the two benchmarks and of the pro-
posed estimator are as follows. The benchmark estimator
in (13) has the consensus weight set to 0.48(t + 1)~ 1. For
the proposed estimator, we set p; = 0.45(t + 1)~%9! and
&t = (t4+1)7%% . The step size sequence for the benchmark
estimator proposed in [43] is set to u; = (0.3(¢ 4 20)) L.

It is to be noted that the Laplacian matrix considered
for the benchmark estimator and the expected Laplacian
matrix for the proposed estimator, CREDO — N'L are
equal, i.e., L = L. The innovation weight is set to oy =
(0.3(¢ 4+ 20)) L. It is to be noted that with the time shifted
innovation potential, the theoretical results in this paper
continue to hold. As a performance metric, we use the
relative MSE estimate averaged across nodes:

1 i %, (£) — 0]
1%, (0) — 012’

n=1

further averaged across 100 independent runs of the esti-
mators. In the above equation, x,(0) refers to the initial
estimates at each node, which is set as x,,(0) = 0. Figure 2
plots the relative MSE decay in terms of the number of
iterations or the number of samples. It can be seen that
the MSE decay of the two benchmark estimators and the
MSE decay of the proposed estimator CREDO — N L are
very similar with respect to the iteration count. Figure 3
plots the MSE decay of the three estimators in terms
of the communication cost per node. It can be seen for

=== Benchmark CIWNLS
=== Proposed CREDO-NL
=== Benchmark Sayed, et.al.

Relative MSE

107}

0 1 2 3 4 5
Iterations in Iog10
Fig. 2 Comparison of the proposed and benchmark estimators in
terms of relative MSE: Number of Iterations. The light blue line
represents the CZWN LS algorithm, the dark blue line represents
the diffusion based algorithm proposed in [43], and the red line
represents the proposed estimator
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example that, at a relative MSE level of 107!, the pro-
posed estimator requires 20 and 18 times less commu-
nications as compared to the estimator in (13) and the
algorithm in [43]. One can also notice a faster MSE decay
in terms of the communication cost for CREDO — N L
as compared to the benchmark (13), thus confirming our
theory.

6 Discussion

In the context of existing work on non-linear dis-
tributed methods, e.g., [15 16, 31, 34-36, 40],
the current paper contributes by developing a
method with a strictly faster communication rate
of O(l/Ct2 _{)(g“ > 0 arbitrarily small) with respect
to existing O(1/C;) rates. Further, with respect to
existing works that develop methods designed to
achieve communication efficiency, e.g., [13, 21, 44—46],
we develop here a different scheme with randomized
increasingly sparse communications. Finally, this paper
is a continuation of works [37, 38] but, in contrast with
[37, 38], it considers non-linear observation models.
This requires novel analysis techniques as detailed in
Section 1. It would be interesting to apply the proposed
method on real data sets, e.g., in the context of IoT or
power systems applications, in addition to synthetic data
tests considered here.

7 Conclusions

In this paper, we have proposed CREDO — N L—a
communication-efficient distributed estimation scheme
for non-linear observation models. We established strong
consistency of the estimate sequence at each agent and
characterized the MSE decay in terms of the per-agent
communication cost C;. CREDO — N L achieves the

MSE decay rate O (Ct_2+§>, where ¢ > 0 and ¢ is arbi-

trarily small. Future research directions include extending
the proposed algorithm to a mixed-time scale stochastic
approximation type algorithm, so as to achieve an asymp-
totic covariance independent of the network, as well as
to extend the presented ideas to distributed stochastic
optimization.

Endnotes

!From now on, in order to better distinguish the MSE
rate of decay with respect to the number of iterations £ and
with respect to the number of per-node communications,
we will refer to the former as the MSE iteration-wise rate
and to the latter as the MSE communication rate.

2The stronger requirement imposed here, with €1 being
strictly positive, is only required for the benchmark esti-
3)-(14) ahead to be defined properly; the
reason for this requirement is the two time scale nature

mator in Egs. (1
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T T

=== Benchmark CIWNLS
=== Proposed CREDO-NL
=== Benchmark Sayed.et.al

0 1 2

proposed estimator

3 4 5

Communication cost in log,,

Fig. 3 Comparison of the proposed and benchmark estimators in terms of relative MSE: Communication Cost Per Node. The light blue line
represents the CZWN LS algorithm, the dark blue line represents the diffusion-based algorithm proposed in [43], and the red line represents the

of the benchmark estimator (13)-(14). As the proposed
CREDO — N L estimator is single time scale, €] can be
taken to be zero, and the main results (Theorems 1 and 2
ahead) continue to hold.

3To see this, note that the dependence of the measure-
ments on the state is through sinusoidal functions (see
Eq. (4)), which are everywhere differentiable and thus
the gradient of f,(-) within the domain ® exists every-
where. Moreover, as the derivatives of sin(-) and cos(-) are
bounded, the norm of gradient of f,,(-) is bounded. Finally,
regarding Assumption 3, it can be shown that the assump-
tion is satisfied if (1) graph G is connected; (2) the set
of admissible phase angle values, i.e., the parameter con-
straint set ©, is chosen appropriately; (3) the real power
flow between nodes # and / is non-zero if and only if there
exists a physical transmission line connecting the nodes;
and (4) voltage magnitude V, # 0, for all nodes #. Please
see Proposition 27 in [19].

“To see why this is true, consider for simplicity the
case R, = I, for all n. Then, there holds: 2[:1 I1£,(0) —
£:6)12 = @ — 0)7 (LN ETE,) 8 — 6). Now, the
statement of Assumption 3 becomes the following: the
matrices F,, n = 1,..., N, are such that there holds: (0 —
6)T (XML EVE,) 6 —6) = Oif and only if § — 6. But
this is equivalent to requiring that ZL\[ZI F,| F,, is full rank.

> Applied to our setting and in our notation, the diffu-
sion method as in [43] takes the following form:

X5, (& + 1) =% () — 1 (VE, (% (D)) R, (£, (% (£)) — Y (0))

X (t+1)= Z ap Xt +1).
1e2,,U{n}

Here, x,(¢) is the solution estimate at agent #, X),(¢) is an
auxiliary sequence at agent #, (4, is the step-size, and the
ay,’s are combination weights that constitute together a
N x N column-stochastic matrix.

®Relative degree is the ratio of the number of links in
the graph to the number of possible links in the graph.

Appendix A: Proof of Main Results
We present the proofs of main results in this section.

Proof of Theorem 4.1 We start the proof with the follow-
ing useful Lemma. O

Lemma 1 For each n, the process {x,(t)} satisfies

Py (sup Ix(®] < oo) =1 (35)

t>0

Proof Consider (14). Since the projection is onto a com-
pact convex set, it is non-expansive. It follows that the
inequality

[x:(t4+1) = 0] < X, (t+1) -0 (36)
holds for all # and . We first note that,
L(t) = AL+ L), (37)
~ ~, 2 2
where E [L(t)] =0and E [ng(t)] = (ti"lff+€ — (tf(i)Z’ for

{i,j} €E i #].

Define, z(t) = x(¥) — 1y ® 6 and V() = ||z®) |
(Here, 1y is the all-ones N by 1 vector.) Note that z(¢)
corresponds to the estimation error vector at time ¢; its
squared norm V/(¢) will first serve us as a Lyapunov func-
tion to establish the almost sure boundedness of x(¢) as in
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Lemma Al. Let {¥;} be the natural filtration generated by
the random observations and the random Laplacians i.e.,

-1
Fi=o0 <{{Yn(s)}]:=1 ' {L(S)}];o) '

Now, consider the update rules (26)—(28). By alge-
braic manipulations, conditional independence, and uti-
lizing (36), we have that,

(38)

E[V(t+DIF] < V(©) + 22" (6) (T 1) 20)
+o2E [||G x(®) R (y(t) — £ (1y ® 0)) H2]

—2p2" (1) (L® Ly) z(8)
— 22" ()G (x() R (F(x(2)) — £ (1n ® 6))
+ 2Bz (1) (L® In) G (x() R (F (x(1) —f 1y ® 0))

+a? [ E ) — £y @) 6T xR H2

+2" OE[([L© © )’ | 20). (39)
Consider the orthogonal decomposition
Zz=1z2c+Zcl, (40)

where z¢ denotes the projection of z to the consensus sub-
space C = {z e RMN|z = 1y ® a, for some a € RM}. The
following inequalities hold for all ¢ > ¢;, where ¢; is a
sufficiently large positive integer:

- 2 (40) c5 ||Zci(t) ”2
2z OF [(L(t) ® Iy) ]z(t) = TR

_ (q1) _
2T L) 2t) = 2% D)zcL )]

T -1 @2 2
z (HG @) R (Ex@)—f(Ay ®0)) = c1l|z()]]”=0;

_ @3  _
2T L) z(t) = a(@) lzcL O

2" () (L®In) G x(®)) R (F(x(1) — f(Iy ®9))

(q4)
< o lz@))?. (41)

Here, we recall that Ay (L) is the largest eigenvalue of
matrix L. Further, ¢; is defined in Assumption 7, and
2,5 are appropriately chosen positive constants. Here,
zcy1 (t) = z(t) — zc(t), where zc(¢) is the projection of
z(t) on the consensus subspace C. Inequality (g0) holds
because, as noted above, there holds that E [i?’/(t)] <

pgﬁo
(t+1ite’
be taken to equal 2 N3 pg,Bo. Next, inequalities (g1) and
(g3) follow from the properties of the Laplacian. Inequal-
ity (¢q2) follows from Assumption 7, and (g4) follows from
Assumption 6 since we have that || Vf, (x,(¢))| is uni-
formly bounded from above by k;, for all #, and hence,
we have that |G (x(?))|| < max,—1,.. n ks (Recall quantity
G (x(¢)) defined before Remark 3.1.) That is, ¢; can be

for {i,j} € E,i # j. Specifically, constant ¢5 can
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taken as (maxy,=1,.. N ky)? (maxy=1,.. N ||R;1||) IL]l. We
also have

E[|6 x®) R () — £y @ 0)[*] < ca,

for some constant ¢4 > 0. In (42), we use the fact that
the noise process under consideration has finite covari-
ance. We also use the fact that, almost surely, |G (x(®))| <
maxy—1,... N ky, which in turn follows from Assumption 6.
In particular, ¢4 may be taken as (max,—i,.n ky)?
(maxy,=1,.. N ||R;1||)2 (max,—1,... N |IR4|)2. We further
have that,

|G x@) R Ex(0) — £ An @ 0)|* < e3 1z |1>, (43)

where ¢3 > 0 is a constant. It is to be noted that (43) fol-
lows from the Lipschitz continuity in Assumption 6 and
the result that |G (x(¢))|| < maxy,=1,.. N k. That is, c3
may be taken as (max,—i,... x k)% (max,—1,.. x ||R,_11||)2.
Applying the bounds (41)—(43) in (39), we obtain, after
some algebraic manipulations,

E[V(E+ 1)|F] < (1+ cga?) V()

(42)

c
— (f* B (,:+15)+) 2 | + oo,
(49)

where cg,cs,c9 are appropriately chosen positive con-
stants, and cs is as in (41). In particular, ¢ may be taken as
Ce = ca; cg may be taken as ﬁg (AN(f))z/a(z) +2B0./c3+c3,
and co may be taken as 2 A5(L).

As (Hiﬁ goes to zero faster than B, 3ty such that
vt > t, ,Bt =
obtain Vi > ¢,

E[V(t+ 1)|F] < (14 cga?) V() + @2, (45)

where &(t) = ,/ceat;. The product ]_[;'it(l + asz) exists for
all . Now, let {W(¢)} be such that

W () = (]‘[(1 + cga3)> V(6 + ) @z, V= b,

(Hiﬁ. By the above construction we

s=t s=t
(46)
By (46), it can be shown that {W(¢)} satisfies,
E[ W(t+ 1)|F:] < W(@). (47)

Hence, {W(£)} is a non-negative supermartingale and
converges a.s. to a bounded random variable W* as t —
o0. It then follows from (46) that V(¢) — W* ast — oc.
Thus, we conclude that the desired claim holds. O

The following Lemma will play a key role in establishing
the convergence of the estimate sequence.

Lemma 2 (Lemma 4.1 in [18]) Counsider the scalar time-
varying linear system

u(t+1) = A = ri@®)ut) + ra(1), (48)
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where {r1(t)} is a sequence, such that

=n@® =1 (49)

al
(t+ 1™
with a; > 0,0 < §1 < 1, whereas the sequence {ry(t)} is
given by
a

) < m (50)

withay > 0,82 > 0. Then, ifu(0) > 0 and 8, < 82, we have

Jim (¢ + D%u(t) =0, (51)

forall0 < &g < 8y — 81. Also, if §1 = 82, then the sequence
{u(t)} stays bounded, i.e. sup, |lu(?)|| < oo.

We now prove the almost sure convergence of the esti-
mate sequence to the true parameter. Following similar
steps as in the proof of Lemma 1, for ¢ large enough

E[V(t+ DIF] < (1 - 2c10; + craf) V(£) + coorf

< V(®) + cea?, (52)

as for ¢ large enough, —2cjo; + C7Olt2 < 0. Here, constant
¢6 is as in (44), and ¢7 is appropriately chosen positive con-
stant that may be taken as ,33 (AN (f))z/ozg +2B04/c3 +c3.
Now, consider the {F;}-adapted process { V1 (¢)} defined as
follows

Vi) = V() +c6 ) o}
s=t

=V®) +eag Y+

s=t

(53)

Since {(t—i—l)’z} is summable, the process {V;(£)}
is bounded from above. Moreover, it also follows that
{V1(®)}t=, is a supermartingale and hence converges a.s.
to a finite random variable. By definition from (53), we
also have that {V(¢)} converges to a non-negative finite
random variable V*. Finally, from (52), we have that,

E[V(E+1D]< 1 —cra) B[ V()] +esf (£ +1)72,
(54)

for ¢ large enough. The sequence {V(¢)} then falls under
the purview of Lemma 3 ahead, and we have E[V (¢)] — 0
as t — oo. Finally, by Fatou’s Lemma, where we use the
non-negativity of the sequence {V (¢)}, we conclude that

0<E[V¥]< litrging[ Vi)]=0, (55)

which thus implies that V* = 0 a.s. Hence, ||z(¢)|| — 0
a.s. as ¢ — 00, and the desired assertion follows.

We will use the following approximation result (Lemma 3)
and the generalized convergence criterion (Lemma 4) for
the proof of Theorem 2. Lemma 3 is an extension of
Lemma 5 in [18]. Lemma 4 is Lemma 10 in [8].
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Lemma 3 Let {b;} be a scalar sequence satisfying

c
b < (1— —— )b, +dt+1)72 56
t+1_( t+1)t+(+) (56)
where d > 0 and ¢ > 1. Then, we have,
limsup (t+ 1) by < oo. (57)

t—00

Lemma 4 Let {J(¢)} be an R-valued {F;i1}-adapted
process such that E [J(t)|F;] = 0 a.s. for each t > 1. Then
the sum tho J(t) exists and is finite a.s. on the set where

Ym0 EJ 02 Fe] is finite.

Proof of Theorem 4.2 Consider inequality (54), and
recall that, by Assumption 8, we have that agc; > 1. We
can now see that the sequence {V ()} then falls under the
purview of Lemma 3, and we have

limsup(t + DE[ V(¢4 1)] < o0
t— 00

= E[V@®]=0 (1) . (58)

Inequality (58) now clearly implies that, for each agent
n, there holds:

E[ lxs(t) — 0] ] = O (1) (59)

t

The communication cost C; for the proposed
CREDO — N L algorithm is given by C; = © (t%), and

thus the assertion follows in conjunction with (59). O
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