

European Research Counci Established by the European Commissio

erc

NEW LIGHT ON THE GAIA DR2 PARALLAX ZERO-POINT Influence of the asteroseismic approach, in and beyond the Kepler field

S. KHAN

in collaboration with

A. Miglio, B. Mosser, F. Arenou, K. Belkacem, A. G. A. Brown, D. Katz, L. Casagrande, W. J. Chaplin, G. R. Davies, B. M. Rendle, T. S. Rodrigues, D. Bossini, T. Cantat-Gaudin, Y. P. Elsworth, L. Girardi, T. S. H. North, A. Vallenari

ESLAB #53 "THE *GAIA* UNIVERSE" - 09 / 04 / 2019

Red-giant stars

S. Khan

2

MOTIVATION

OVERVIEW

- 1. Introduction
- 2. Observational framework
- 3. Analysis of the Kepler field
 - a. Raw scaling relations
 - b. Corrected $\langle \Delta v \rangle$ scaling relation
 - c. $\langle \Delta v \rangle$ from individual frequencies: grid-based modelling
- 4. Positional dependence of the parallax zero-point
 - a. K2 fields (C3/C6)
 - b. Quasars and CMD
- **5.** Conclusions

INTRODUCTION: ASTEROSEISMIC METHODS

comparisons of asteroseismic radii or distances with independent measurements (interferometry, clusters, eclipsing binaries, astrometry)

INTRODUCTION: GAIA DR2 PARALLAX OFFSET

OBSERVATIONAL FRAMEWORK

consistency in the definition of $\left< \Delta v \right>$

KEPLER FIELD: RAW SCALING RELATIONS

RGB: slope significantly ≠ 1

RUWE: goodness-of-fit indicator for *Gaia* DR2 astrometry

KEPLER FIELD: RAW SCALING RELATIONS

RGB: slope significantly $\neq 1$

RUWE: goodness-of-fit indicator for *Gaia* DR2 astrometry

symptom of biases in the seismic scaling relations

Kepler field: corrected $\langle \Delta v \rangle$ scaling

deviations from $\langle \Delta v \rangle$ scaling relation = f (*M*, [Fe/H], evolutionary state)

NGC 6791 (Miglio+ 2012, Sharma+ 2016) RGB: $\langle \Delta v \rangle' \sim 0.973 \langle \Delta v \rangle$ RC: $\langle \Delta v \rangle' \sim 1.000 \langle \Delta v \rangle$

Rodrigues+ 2017 (see also Sharma+ 2016)

Kepler field: corrected $\langle \Delta v \rangle$ scaling

 $\Delta \varpi_{\rm RC} \sim -36 \ \mu as$

deviations from $\langle \Delta v \rangle$ scaling relation = f (*M*, [Fe/H], evolutionary state)

NGC 6791 (Miglio+ 2012, Sharma+ 2016) RGB: $\langle \Delta v \rangle' \sim 0.973 \langle \Delta v \rangle$ RC: $\langle \Delta v \rangle' \sim 1.000 \langle \Delta v \rangle$

RGB: improvement in the slope but wide range of *M* and [Fe/H]

Kepler field: $\langle \Delta v \rangle$ from frequencies

PARAM (Rodrigues+ 2017) Bayesian grid-based method

RGB: slope ≈ 1

relevant to use PARAM with appropriate constraints

Positional dependence: K2 fields (C3/C6)

Positional dependence: quasars & CMD

Positional dependence: quasars & CMD

CONCLUSIONS

influence of the seismic method

CONCLUSIONS

influence of the seismic method

Conclusions

influence of the seismic method necessity to go beyond the $\langle \Delta v \rangle$ scaling... uncertainties related to stellar models, spatial correlations of parallax errors (~10 µas uncertainty)

positional dependence of $\Delta \omega$ trend reproduced by quasars, red clump luminosity

