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ABSTRACT 
 
Nowadays, the use of feature modeling technique, in software requirements specification, increased the 

variation support in Data Intensive Software Product Lines (DISPLs) requirements modeling. It is 

considered the easiest and the most efficient way to express commonalities and variability among different 

products requirements. Several recent works, in DISPLs requirements, handled data variability by different 

models which are far from real world concepts. This,leaded to difficulties in analyzing, designing, 

implementing, and maintaining this variability. However, this work proposes a software requirements 

specification methodology based on concepts more close to the nature and which are inspired from 

genetics. This bio-inspiration has carried out important results in DISPLs requirements variability 

specification with feature modeling, which were not approached by the conventional approaches.The 

feature model was enriched with features and relations, facilitating the requirements variation 
management, not yet considered in the current relevant works.The use of genetics-based methodology 

seems to be promising in data intensive software requirements variability specification.  
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1.INTRODUCTION 

 
Software Product Lines (which might be data intensive) requirements modeling is an approach to 

create more products that belong to a specific family for a specific domain from existing assets, 

which have the common characteristics either functional (services) or non-functional (data 
models) [1-6]. The most important aspect to take into consideration, when specifying 

requirements [23] of DISPL is determining the appropriate mechanism to model the variability in 

an efficient way [7, 28]. One of these mechanisms is feature model [8, 9, 10]. Its tree 
representation consists of a set of named features and relationships between them.  

 

DISPLs are Software Product Lines requiring data as a major factor in their work, so they can 

handle large volume of data. This kind of SPL requires a data model to represent variability after 
fixing features [27, 29, 30].Software versioning [11, 12]is a management of software 
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modifications in a way that keeps general commonalities (functions) of software, satisfying new 

enhancements based on desired requirements, and facilitating the traceability process among 

different configurations of same software.  Data versions [13, 14, 15, 16] are one of the data 

characteristics, which means from time to time, the need for a data change to cover new 
requirements. 

 

A bio-inspired approach [17, 18]is a combination between the biological and the artificial life, in 
a way to enhance the artificial life through inspired from biological life characteristics. Because 

they success in solving many artificial problems, there is an increasing demand for these 

approaches  such as neural networks and genetic algorithms, and the improvements it made in 
hardware sections [19, 20, 21]. 

 

The data model is the kernel part of a DISPL. Some authors [4, 6] handled variability in data 

models(relational, Entity relationship, ..) and customize products which are Data Base 
Management Systems (DBMS) for each model according to specific requirements. However, 

others authors [3, 5] handled, in different ways, the variability in Data itself.  

 
But, despite the important scale of the research in the DISPL data variability modeling, the 

relevant current approaches are still far from real world concepts. Consequently, this  hasgiven 

rise to weaknesses in data variability modelling that can be summarized through several aspects: 
These approaches have never handled variation in business domain (conceptual model) and in 

specific application (physical level). They just dealt with some variability in application families 

(logical model). The versions and revisions of data are not supported by current requirements 

specification feature modeling techniques, which leads to difficulties in data evolution and 
maintenance. 

 

The previous limitations motivated this work for developing a methodology, close to real world, 
that supports data variability in DISPLs requirements specification. Its bio-inspired approach, 

based on genetics [32] engendered the data variability scope generalization on three meta levels: 

business domain, applications family, and specific application. This generalization has enriched 

the feature modelingformalism with new  features (like version, revision, integrity constraints, 
…) and relations (like import, relation,selected explicitly, selected by axioms, ...). The use of 

genetics-based approach  seems to be promising in software assets variability modeling including 

programs, data, etc. The  data feature model is more natural and richer than the current ones.  
 

2. RELATED WORKS 
 

There are different approaches used to model variability, such as Feature Models, Orthogonal 

Variability Models and Decisions Models, but the most common and widely used one in SPLs, is 
Feature Models [24].  In the following, some relevant related works will be presented in order to 

identify significant open problems. 

 
There is a diversity of researches that handled data variability based on feature models. In [25], 

the authors proposed a methodology for addressing data variability and data integration in SPL at 

the domain level, based on Unified Modeling Language (UML) standards. Their approach is 
divided into domain and application engineering levels. The initial step in the domain level is to 

analyze the presented requirements (to know which of them can be placed in the feature model as 

mandatory feature or optional feature, etc). The feature model is built to cover already presented 
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requirements with respecting their constraints and dependencies.The application level is based on 

selecting the desired features form the general feature model to customize products based on 

customer needs. After that the data model instance is generated for presenting the data of specific 

configuration in a coherent way.  
 

In [26], the authors proposed a variability modeling method for modeling variability of persistent 

data based on establishing variable data model that presents the variability in database objects 
(entities and attributes). This is achieved through the mapping process between persistency 

features and their data concepts. As result the real data model will created based on the desired 

features that customer had select.  
 

Data aspect in software product lines was the focus in[3]. The authors proposed a technique based 

on two modules:  one for presenting the features of product (core module) and the second one for 

presenting the features that customers want to have in their products (delta module). Different 
data configurations are generated through applying delta module on the core module as a 

modification process.  

 
Khedri and Khosravi[5] have handled data variability in Multi Product Lines (MPL). They 

proposed a method for creating a universal feature model for MPL based on extracting features 

details from different SPL data models leading to variability. 
 

Despite the important scale of the research in data variability modelling [3, 4, 5, 6, 27, 29, 30], 

the concepts of data version and revision have not been captured infeature models, which lead to 

complexity and problems in data maintenance. According to the current researches, the weakness 
of modeling data variability is obvious through several aspects.They have never modelled domain 

data requirement variability using feature model at the conceptual layer as well as logical layer. 

There is no flexible mechanism for handling data models modification that may occur during data 
life.The large gap between used concepts and real world leads to complexity of proposed methods 

and data variability maintenance. Consequently, the previous limitations motivated this research 

work. 
 

3. A GENETICS-BASED REQUIREMENTS VARIABILITY SPECIFICATION IN 

DISPLS 
 

3.1 Supporting Example 
 
A data example that is used frequently in universities to describe Student and Course data will 

support the proposed requirements specification methodology. Using feature model, the Figure 1 

shows three variations of the data Conceptual Models: Relational, Object-Oriented, and Entity 

Relationships. Only the Relational Conceptual Model is expended here. It presents the domain of 
the Student and Course data, consisting of St-Name, St-Avg, Course-Name, etc.  
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Figure 1: A Feature Model of Student and Course data. 

 

3.2 A Methodology For Requirements Variability Specification In Displs 
 

The proposed methodology uses feature modeling notations for requirements variability 

specification. It is shown in the Figure 2. It presents data feature met model with three sub meta 

models: Application Domain (Conceptual level, corresponding to genetics genome concept), 
Application Family (logical level, corresponding to genetics genotype concept), and Specific 

Application (physical level, corresponding to genetics phenotype concept).The starting is from 

the application domain variable requirements meta-model, then each application family variable 
and coherent meta-model will be derived, from the application domain meta-model, according to 

the application family variable requirements. At the end, specific application data model will be 

instantiated, from its family, according to its individual requirements. As a result any data-

intensive application will be like a natural phenomenon. 
 

 
 

Figure 2: A Bio-inspired methodology for data requirements variability specification  with feature model 

formalism. 
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The methodology is defined using UML notations Below, the methodology composing processes 

will be defined using EBNF notation [22] for presenting their structural aspects. 

 

a. Variable Data Feature meta Model (VDFM) 

 

The VDFM is composed of three sub models: Variable Conceptual Feature metaModel (VCFM), 

Variable Logical Feature meta Model (VLFM) and Variable Physical Feature Model (VPFM): 

 

<VDFM> = “VDFM”: <Variable Data Feature Model name >“;” 

<VCFM>,<VLFM>,<VPFM> 
“end” “VDFM” < Variable Data Feature Model name>“;” 

 

b. Variable Conceptual Feature meta Model (VCFM) 

 
The VCFM deals with business domain (like students management in any university) variable 

requirements. It includes variable features that may be used to generate different logical met 

models according to the requirements of the application families. This meta model is composed 
of two sub meta models: Variable Schema Definition Feature meta Model (VSDFM) and 

Variable Schema Relation Feature meta Model (VSRFM): 

 
<VCFM> = “VCFM”: <Variable Conceptual Feature Model name >“;”                                                          

<VSDFM >, <VSRFM> 

   

“end” “VCFM” < Variable Conceptual Feature Model name >“;” 
b1. The Variable Schema Definition Feature meta Model (VSDFM)is created according to 

business domain variable requirements for describing the definition of schema as features (Figure 

3): 
 

<VSDFM>= “VSDFM” : < variable schema definitions feature model name >“;”   

(<Relation features >, <relations>) +; 

                                           “end” “VSDFM” < schema definitions feature model name >“;” 
 

Relation features are used to present the relations between data.They are composed of version 

features and their relations to denote the variation between them: 
 

< Relation features > = “Relation” : <Relation features name>;  

                                                                         (<Version features>, <relations>)+; 
 

Version features (of a relation) are used to present the versions (alternatives variations) that may 

be created during data life and can have different names indicating their semantics. They are 

composed of revision features and their relations to denote the variation between them: 
 

< Version features > = “Version” : <Version features name>;  

  (<Revision features>, <relations>)+; 

 

Revision features (of a version) are used to present the revisions for handling the modifications 

that may occur in one version through the evolution operations.They are composed of Field 
Definition and Integrity Constraint (IC) Definition features and their relations: 
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< Revision features > = “Revision” : <Revision features name>; 

                                                       ((<Field Definition features>, 

                                                       [< IC Definition features>]) +, 

<relations>)+; 
 

 Field Definition features are used to present the fields of schema of a data and through 

what evolution operation they are produced (Add field, Delete field, or Modify field)and their 

relations to denote the variation between them: 
 

< Field Definition features>=“Field Definition” : < Field Definition features name>; 

((“Add field” (<attributes>, <relations>) +, 
[“Delete field” (<attributes>, <relations>) +], 

[“Modify field” (<attributes>, <relations>) +; 

 

Add field feature, Delete field feature, and Modify field featureare used to denote add, delete, 
and modify specified fields operations on data schema. Attributes formal definition will be 

presented once at the end of this section. 

 

 IC Definition featuresare used to present the integrity constraints of schema and through 
what evolution operation they are produced (Add IC, Delete IC, or Modify IC)and their 

relations to denote the variation between them: 

 
< IC Definition features >=“IC Definition” : < IC Definition features name>; 

((“Add IC” (<attributes>, <relations>) +,  

[“Delete IC” (<attributes>, <relations>) +], 

[“Modify IC” (<attributes>, <relations>) +)+,  
<relations>) +; 

 

Add IC features, Delete IC feature, and Modify IC featureare used to denote add, delete, and 
modify specified integrity constraints operations on data schema. Attributes are used to 

denote the name of fields and integrity constraints:<attributes> = 

(<Attr_name>:<Attr_value>)+. The relations formal definition (used in the above 

definitions) is specified by: and | xor | or| mandatory| empty 
 

b2. The Variable Schema Relation Feature meta Model (VSRFM)is created according to domain 

variable requirements beside VSDFM. This feature met model deals with the relations that may 
occur between revisions in different versions (in one or more data relations). It’s separated from 

VSDFM for understand ability purposes (Figure 4): 

 
<VSRFM>= “VSRFM”: < Variable Schema Relation feature model name >“;” 

(<Relation features>, <Relations>) + 

“end” “VSRFM” <Schema Relation feature model name >“;” 

 
Relation features and Relations are defined previously. Revision features (composing the relation 

features) handle the relations that may occur between revisions in one or more data relations 

(Imply, Exclude, and Import): 
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< Revision features >=“Revision” :   < Revision features name >; 

(([“Imply” (<attributes>, <relations>)+], 

                                             [“Exclude” (<attributes>, <relations>) +], 

[“Import” (<attributes>, <relations>) +])+, <Relations >)+; 
 

A feature F1 implies a feature F2 if a revision holding F1 must hold F2 too. A feature F1 excludes 

a feature F2 if a revision holding F1 must not hold F2.A feature F1 imports a feature F2 if a 
revision1 needs feature from revision2.  

 

 
 

Figure 3: Variable Schema Definition Feature meta Model of Student data. 

 

c. Variable Logical Feature meta Model (VLFM) 

 

Each applications family (like students registration in any university) requires a coherent and 
meaningful subset of features selected from the previous VCFM (i.e. Students management in any 

university). This subset is called a conceptual model configuration or simply a logical model. It is 

composed by selecting needed features and/or rejecting unwanted ones: 
 

<VLFM>= “VLFM”: < Variable Logical feature model name >“;” 

(<Application Family needs features>)+; //In data versions conforming to feature 
relationships 

 [(“VersionLM” : <VersionLM features name>, <relations>)*]; //New versions may be 

created 

[(“Revision LM” : <Revision LM features name>, <relations>)*]; //New revisions may be 
created 

“end” “VLFM” <Variable Logical feature model name >“;” 

 
Version features are used to define the versions of logical models that might be created during 

database life and according to the applications family needs. Revision features are used to 
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represent the revisions of logical models for handling the modifications that may occur in one 

logical model version. Application family needed features are used to fix applications family 

requirements according to the VCFM. These features are composed in a coherent way:< 

Application family needs features > = <VCFM name>:(<feature>,<feature>)+.The application 
family needs lead to select features through select explicitly relation. The implicitly selected 

features (selected by VSRFM relations), required by an applications family, are gathered from the 

VSDFM features according to VSRFM features in a coherent way.Relations are used to deal with 
variation of features:<relations> = and | xor | or| mandatory.The figure 5 shows a VLFM 

generated by the following family selection program: 

 
VLFMStV1-CsV2 

{  //Application family needs. Input VCFM. Output VLFM 

S-C-SD:  Student>V1-primary, Course>V2         //selected features 

   // The obtained VLFM will be coherent with feature relationships: imply, exclude, etc.  
} 

 

 
 

                          Figure 4: Variable Schema Relation Feature metaModel of Student and Course data. 

 

d. Instance Feature Model (IFM) 

 

Each specific application (like students registration at Philadelphia University) requires a 
coherent and meaningful subset of features selected from the previous VLFM (i.e. Students 

registration in any university). This subset is called an application instance model or a physical 

model. It is composed by selecting needed features and/or rejecting unwanted ones:  

 
<IVFM>= “IVFM”:<Instance variable feature model name >“;” 

.(<Application  needs features>)+; //In data revisions conforming to feature relationships 

[(“Revision IVM” : <Revision IVM features name>, <relations>)*]; //New revisions may be 
created 

“end” “IVFM” <Variable Logical feature model name >“;” 
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Revision features are used to represent the revisions of instance models for handling the 

modifications that may occur in one instance model. Application needs features are used to fixer 

specific application needs according to the VLFM. These features are composed in a coherent 

way:  Application needs features > = (<feature>,<feature>)+. The figure 6 shows a VIFM 
generated by the following application instance selection program: 

 

VIFM StV1R2-CsV2R2 
{  //An Application needs. Input VLFM. Output VIFM 

StV1-CsV2:  Student>V1-primary>R2; // the feature Course>V2>R2 will be selected 

                                                             //automatically (implied by Student>V1-
primary>R2. 

} 

 

e. Instance Data schema (IDS) 

 

Each VIFM (like students registration at Philadelphia University) might be used to generate 

specific application data schema (i.e. Students registration at Philadelphia University data 
schema). This schema defines the real data requirements specification model  for that application. 

 

 
 

Figure 5: VLFM StV1-CsV2 

 
The figure 7 shows a IDS generated by the following application instance selection program: 

 

IDS StV1R2-CsV2R2 
{  // Input VIFM. Output IDBS 

StV1R2-CsV2R2:  Student>V1-primary>R2, Course>V2>R2. //selected features. 

   // When an IDS evolves with revisions, new schemas may be generated accordingly. 
} 

               Relation     Selected explicitly 
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Figure 6: VIFM  StV1R2-CsV2R2 

 

 

 
 

 
 

Figure 7: The IDS  StV1R2-CsV2R2. 

 

4. CONCLUSION 
 
This approach is recommended to be used in any variable data requirements specification area for 

data intensive software, like software product lines, multiple software product lines, and data 

intensive product lines.A comparison between the proposed requirements specification 

methodology (for data variable requirements),with its new concepts, and the others similar works 
with their traditional concepts was achieved according the following common criteria: (1) real 

world concepts based, (2) Broad Variability meta modeling, (3) version and revision based, (4) 

Feature model enhancement, (5) Application data schema based on specific needs, and (6) data 
maintenance decreased efforts.All the above studied similar works support the criteria 5 and 6, 

but, they are not dealing with the first four ones. However, the proposed approach covers all of 

them. 

 
Based on the study, previously presented in this work,of data variability in DISPLs requirements 

specification, several insufficiencies were identified in current approaches. They are mainly due 

the large gap separating them from the real world. This leaded to weaknesses in their 
methodologies as well as in their supporting methods:  poor variability meta modeling 

specification and relatively poor supporting methods. 

 
In this work, a close to real world methodology(based on genetics) has leaded to enhancing the 

above insufficiencies:(1) Data requirements variability specification with meaningful and 

complete meta modeling levels and (2) supporting methods enrichment like feature modeling 

extension, variability enrichment with version and revision techniques, and automatic specific 
application data requirements generation. These enhancements facilitate the data requirements 

evolution and allow tracking and reversing the requirements evolution of data. The variability of 

the data requirements definition was completely presented through variability of fields and 

Student (St-Name string, St-Avg float, St-mail string , St-Pone number, St-Nat-Id-Pk constrain, Co-Id-Fk 
constraint) 

Course (Co-Name string, Co-Hour string, Co-Nb-Pk constraint) 
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integrity constraints in a uniform way. When an application family selects the desired 

requirements features, it will keep them in a coherent way, due to the relations that reflect 

consistency between versions and revisions. The automatic business domain requirements 

translation into a VCFM, the integration of  the data modeling variability (like relational, object-
oriented, Object-relational, …), the variability of specific application data requirements, the 

continuous data variability requirements engineering, the variable data requirements reverse 

engineering, and the evolution of applications programs accompanying the evolution of their data 
requirements are real challenges. 
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