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Open Source Sound Field Synthesis Toolbox
Introduction
Sound Field Synthesis (SFS) aims at production of wave fronts within a large target region enveloped by a
massive number of loudspeakers. Nowadays, these techniques are known as Wave Field Synthesis (WFS)
as an implicit solution of the SFS problem and as explicit solutions, like Ambisonics in the spherical domain
and Spectral Division Method in the cartesian domain. Research and development on Ambisonics and WFS
proceeded since the 1970s and the late 1980s, being most lively in the last decade due to DSP power
available. This resulted in many SFS systems at research institutes with different rendering methods, thus
complicating comparability and reproducibility. In order to pool the outcomes of different SFS approaches
the Matlab/Octave based Sound Field Synthesis Toolbox was initiated 2010 as an open source project by
the authors. This toolbox was later accompanied by online theoretical documentation giving an overview on
the SFS approaches and citing the reference literature. In 2013 porting of the SFS Toolbox to Python was
initiated, serving as convenient framework together with Jupyter notebooks. In this contribution we discuss
and demonstrate the concepts, workflows and capabilities of the SFS Toolbox and their documentation as
fundamental component for open research on SFS.

Fundamental Concept
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• Goal: Accurate synthesis of desired sound field s(x, t) inside the target regionΩ using a
loudspeaker distribution along the boundary ∂Ω (loudspeaker symbols)

• Solution: Determine driving signals d(x0, t) for each loudspeaker such that
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• Equivalent formulation for the temporal frequency domain reads

S(x, ω)
!
= P (x, ω) =

∑
x0

D(x0, ω) · G(x− x0, ω) ∀x ∈ Ω .

• Structure of the SFS Toolbox directly maps to the mathematical formulation
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• Individual processing chains for time and temporal frequency domain are implemented
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• Fundamental sound fields are parametrised by e.g. position (point/line/dipole source), orientation
(dipole source), or propagation direction (plane wave).

• Analytic expression for the spatio-spectral representation of fundamental sound fields exist.
• Conversion between different representations is possible.
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Open and Free
Both Implementations of the toolbox are free
software in terms of the MIT license. Docu-
mentation and additional information can be
found at

https://sfs.readthedocs.io
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• Implicit solutions are derived as high-frequency approximations of the Helmholtz-Integral Equation.
They are not restricted to a particular array geometry.

• Explicit solution of the synthesis problem by deconvolution in the modal domain. Analytic descriptions
exist for simple loudspeaker geometries, e.g. lines, circles or spheres.

• Panning techniques typically drive loudspeakers only by level to create a phantom source along the
loudspeaker contour rather than a wavefront. So called All-Round Ambisonic Panning and Decoding
are prominent techniques that combine VBAP and HOA.
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• Sound propagation models in echoic environments are used to study the effect of the playback room
which is generally not considered by the synthesis methods.

• For binaural synthesis, methods for the selection and interpolation of the impulse responses are
provided. The toolbox supports the Spatially Oriented Format for Acoustics (SOFA).
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• For the sound pressure in frequency and time domain, harmonic and broadband excitations are
considered, respectively.

• Sound particle plots can be used to illustrate the particle displacement caused by the deterministic
pressure variations of the sound source.
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