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Abstract: Nowadays, the majority of web platforms in the Internet originate 

either from CMS to easily deploy websites or by web applications frameworks 

that allow developers to design and implement web applications. Considering 

the fact that CMS are intended to be plug and play solutions and their main 

aim is to allow even non-developers to deploy websites, we argue that the 

default hashing schemes are not modified when deployed in the Internet. Also, 

recent studies suggest that even developers do not use appropriate hash 

functions to protect passwords, since they may not have adequate security 

expertise. Therefore, the default settings of CMS and web applications 

frameworks play an important role in the security of password storage. This 

paper evaluates the default hashing schemes of popular CMS and web 

application frameworks. First, we formulate the cost time of password 

guessing attacks and next we investigate the default hashing schemes of 

popular CMS and web applications frameworks. We also apply our framework 

to perform a comparative analysis of the cost time between the various CMS 

and web application frameworks. Finally, considering that intensive hash 

functions consume computational resources, we analyze hashing schemes 

from a different perspective. That is, we investigate if it is feasible and under 

what conditions to perform slow rate denial of service attacks from concurrent 

login attempts. Through our study we have derived a set of critical 

observations. The conjecture is that that the security status of the hashing 

schemes calls for changes with new security recommendations and updates to 

the default security settings. 
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1 Introduction 

Several corporates [1] have become victims of security breaches, resulting in the disclosure of 

billions of passwords. One of the most significant data breaches during 2016 disclosed a 

database containing 1 billion users’ authentication details [2], and was put on sale for 300.000 

dollars [3], while one of the biggest data breaches during 2017 included 145.5 million users’ 

details. Hackers take advantage of the computing power of graphics processing units (GPU) 

and specialized hardware to crack the users’ passwords. Although the price of top tier graphics 

cards is relatively high (e.g., 2999$ for an NVIDIA TITAN V [4]), hackers can also rent cloud 

infrastructure including dedicated GPUs for a monthly or pay-as-you-go price (e.g. Google 

rents a GPU for maximum 2.55$ per hour [5]), making password guessing attacks easier and 

faster to perform. 

To counteract the increasing efficiency of such attacks, key derivation functions such as 

PBKDF2 and BCRYPT use repeated iterations of the employed hash function to slow down the 

execution time of password hashing, and subsequently increase the effort required by an 

attacker to perform password guessing attacks. Moreover, memory hard functions (MHF), such 

as SCRYPT, use the physical memory as much as possible to significantly increase the costs 

required to crack a password. While there is a significant body of research that analyze the 

security of hash functions or propose new password cracking techniques, we have pinpointed 
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that the security of the default hashing schemes in Content Management Systems (CMS) and 

web application frameworks has been neglected. Nowadays, the majority of web platforms 

originate either from CMS to easily deploy websites or by web applications frameworks that 

allow developers to design and implement web applications. WordPress alone stands for 31.3% 

of all websites in the internet. Considering the fact that CMS are intended to be plug and play 

solutions and their main aim is to allow even non-developers to deploy websites, we argue that 

the default settings including the hash functions are not modified. Also, recent studies [6] 

suggest that even developers do not use appropriate hash functions to protect passwords, since 

they may not have adequate security expertise. Therefore, the default settings of CMS and web 

applications frameworks play an important role in the security of password storage.  

This paper evaluates the security of the default hashing schemes of popular CMS and web 

application frameworks. To this end, we propose a simple framework that allows us to quantify 

the cost time for password cracking. The proposed framework takes into account all parameters 

that influence password guessing attacks and considers both brute force and dictionary attacks. 

To put our framework into a practical context and derive numerical results, we use as input the 

default hashing schemes of popular CMS and web applications frameworks. For this reason, 

first we identify and analyze the default hashing schemes of CMS and web applications 

frameworks. We have discovered that many CMS use outdated hash functions, arbitrary 

number of hash iterations, lack of password policies and salt. For example, the popular 

WordPress still uses MD5 with low number of hash iterations. Subsequently, we apply our cost 

analysis framework to perform a comparative analysis between the CMS and application 

frameworks which allows us to deduce a set of critical observations. Next, considering that 

intensive hash functions consume computational resources, we analyze hashing schemes from 

a different perspective. That is, we investigate if it is feasible and under what conditions to 

perform slow rate denial of service attacks from concurrent login attempts. Lastly, we propose 

security practices and alternative solutions to enhance the overall security of passwords. 

Overall, the contributions of this paper are the following: 

• We propose a framework to estimate the cost time of brute force and dictionary 

password guessing attacks. 

• We pinpoint the default hashing schemes of the most commonly used CMS and web 

application frameworks and we derive a set of critical observations. 

• We apply our framework to the CMS and web application frameworks that allows us 

to perform a comparative analysis by quantifying the cost time of cracking a password. 

• We investigate the feasibility of slow rate denial of service attacks based on intensive 

hash functions. 

• Finally, we discuss and propose best practices and alternative solutions to improve the 

security of password storage. 

The rest of this paper is organized as follows. Section 2 presents the required background 

knowledge and the related work while section 3 analyzes the various hashing schemes. Section 

4 proposes a cost time analysis framework for brute force and dictionary attacks, while section 

5 evaluates the default hashing schemes of CMS and web application frameworks. Section 0 

performs a comparative analysis of the cost time of CMS and web applications frameworks, 

while section 7 examines the feasibility of denial of service attacks based on intensive hashing 

schemes. Section 8 discuss recommendations and possible solutions, and, lastly, section 9 

contains the conclusions. 
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2 Background and Related Work 

2.1 Password guessing attacks 

Password guessing (also known as password cracking) is an attack in which an adversary 

attempts to guess the users’ password. We distinguish two password guessing attacks 

categories: i) Online and ii) Offline. In online attacks, an attacker can try to login to a website 

by selecting frequently used passwords. After a number of unsuccessful attempts, the IP address 

or the username that the attacker is trying to login can be locked. On the other hand, in an offline 

attack, the scenario is that an attacker has in her possession a database of users’ password hash 

values and she can attempt to crack each user’s password offline by comparing the hashes of 

likely password guesses with the stolen hash value. Because the attacker can check each guess 

offline it is no longer possible to lockout the adversary after several incorrect guesses. In this 

paper we consider offline attacks.  

Moreover, we can classify password guessing attacks to three categories: i) brute force ii) 

dictionary and iii) rainbow tables. In a brute force attack, the adversary tries every possible 

password combination considering two parameters; a) the password length; and b) the character 

set. On the other hand, in a dictionary attack, the adversary uses passwords from a list, which 

are likely to be used as passwords by users. There are four types of dictionary attacks: i) pure 

ii) Probabilistic Context Free Grammar (PCFG) based [7], iii) Markov model based [8] and iv) 

mangling rules [9]. In the pure dictionary, the attacker simply uses a set of predefined words as 

candidate passwords. In the second type, PCFG theories are used to construct a dictionary 

containing modified passwords with assigned probabilities. In the third type, Markov-based 

models are applied to create candidate passwords based on the probability distribution over 

sequences of characters. In the fourth type (i.e., mangling rules), the attacker creates password 

variations from a dictionary by applying various modifications rules, such as “add the symbol 

! at the end of the password”. Finally, the third category of guessing attacks is rainbow tables, 

in which the attacker uses a precomputed list to reverse the hash value. In this paper, the term 

password guessing (or cracking), unless stated otherwise, refers specifically to brute force and 

dictionary attacks but not rainbow tables. Moreover, from the four types of dictionary attacks 

we exclude mangling rules as these are specific to each cracking tool. 

2.2 Hardware platforms for password guessing 

An attack scales linearly with invested resources, mainly cost of the equipment and energy 

consumption, and thus we have to take their influence into account. General purpose computing 

on GPUs can boost the computation performance, since the multiple GPU processing cores can 

be used in parallel for high-power calculations. Typically, a GPU consists of hundreds of 

computing cores grouped into computing clusters sharing the same memory bus. Due to this 

architecture, GPUs are specialized in Single Instruction, Multiple Data (SIMD) computations 

[10], which refer to the simultaneous execution of the same instruction on multiple processors 

with different input data for each processor (i.e., parallel computing). Consequently, GPUs can 

accelerate password guessing, since the same hashing scheme (i.e., the same instruction) can 

be executed simultaneously by hundreds of computing cores with different passwords as input. 

In [11], the authors measured the performance of the password guessing functions, where it was 

observed that the time required for password guessing decreased by 97% with GPU 

acceleration, compared with the time required using only CPU. 

Apart from GPUs, special purpose hardware such as field-programmable gate arrays (FPGAs) 

and more recently application-specific integrated circuits (ASICs) have been utilized to yield 

even higher hashrate values. Generally speaking, equipment cost is in favor of the graphic cards, 

as GPUs are a consumer product that is sold in large quantities. Also, older versions usually 
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receive a discount, making them more cost-effective. Interestingly, FPGA vendors use a 

different strategy: with the release of a new product line, the price of the old family stays 

roughly unchanged, while the new version is offered with a small discount to make the 

consumers switch away from the abandoned hardware platform. In this paper, we will consider 

GPUs as the hardware platform of password guessing attacks. 

2.3 CMS and web application frameworks 

Nowadays, the majority of websites originate either from CMS or by web applications 

frameworks. CMS are intended to be plug and play solutions and their main aim is to allow 

non-developers to deploy websites. CMS play an important role in the Internet. According to 

[12], 52.3% of websites in the Internet are based on CMS. Table 1 shows statistics of CMS 

usage among all websites in the Internet and among all CMS [12]. In particular, first comes the 

popular WordPress with a whopping 31.3% usage among all websites in the Internet, while 

59.8% usage among CMS. Second is Joomla with a 3.1 percentage usage among all websites 

in the internet, while Drupal is third with 2%. 

CMS Market share among all 

websites in the Internet 

Market share 

among CMS 

WordPress 31.3% 59.8% 

Joomla 3.1% 6. 0% 

Drupal 2.0% 3.9% 

Magento 1.1% 2.1% 

PrestaShop 0.7% 1.4% 

TYPO3 0.7% 1.4% 

OpenCart 0.4% 0.8% 

Table 1: Popular CMS usage statistics 

On the other hand, web application frameworks are utilized by developers and aim at supporting 

the development of rich web applications by providing a standard way to build and deploy web 

applications. For web application frameworks, we could not find a reliable source of statistics 

regarding their market share in the Internet. Considering that many frameworks share the same 

programming language, it is difficult to determine which specific framework a website uses. 

Therefore, we used statistics from GitHub to discover the most popular open source frameworks 

[13]. Table 2 shows the number of stars that each web application framework has which can be 

considered as a popularity metric among web developers. Laravel which uses PHP has the 

largest number of stars, which is 44.465. The second most popular framework, Ruby on Rails, 

is based on Ruby with 40.263 stars, while MeteorJS, based on Javascipt, has 40.068 stars. Note 

that from Table 2 ASP.NET is excluded, since GitHub is used only open-source projects. 

Web application 

framework 

Programming Language # of stars on GitHub 

Laravel PHP 44.465 

Ruby on Rails Ruby 40.263 

MeteorJS Javascript 40.068 

ExpressJS Javascript 39.333 

Flask Python 37.515 

Django Python 35.230 

SailsJS Javascript 19.350 

Table 2: Popular web application frameworks based on GitHub 
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2.4 Related work 

The related work has studied extensively the area of password security from various scopes, 

including: i) password guessing attacks in leaked databases, and, ii) analysis of password 

complexity. Here we present only the most recent and relevant works. Regarding the first 

category, which is password guessing, the main metric which is used by the related work to 

estimate the attack efficiency is called effectiveness. In essence, effectiveness is the fraction of 

passwords that will be correctly cracked after an attack. The authors in [7] have used the PCFG 

technique, which uses grammar theories to construct a dictionary containing passwords in a 

decreasing probability order and succeeded in cracking 28% - 129% more passwords in 

comparison to John the Ripper (JtR) [14]. In [15], the authors analyzed the Rock you [16] 

database to identify regular expressions that were used to create candidate passwords. The 

numerical results showed that the proposed method cracks 14% - 239% more passwords in 

comparison with JtR. 

Towards this direction, the work in [17] performs an analysis of Chinese web passwords by 

using the PCFG and Markov-based model, which create candidate passwords phonetically 

relevant to the words included in a dictionary. The authors succeeded in increasing password 

cracking efficiency by 48% and 4.7%, respectively, for each technique. In [18], the authors 

proposed a tool named OMEN, which was compared in password guessing with the PCFG and 

the Markov-based techniques. The recorded effectiveness was higher by 20% and 40% in 

comparison to PCFG and Markov-based techniques respectively. Moreover, [19] performed an 

empirical analysis on passwords and compared the effectiveness of dictionary password 

guessing attacks to this of the PCFG and Markov-based techniques. The PCFG method 

managed to crack 40-50% of the passwords, while 61.90% of passwords were cracked using 

the Markov-based methodology with 850 million guesses. 

The second category of the related work is password complexity analysis. More specifically, 

the work in [20] performs a password analysis of the RockYou leaked database consisting of 

cleartext passwords. The results pinpointed that most of the passwords are not secure enough 

to withstand password guessing attacks. In fact, 30% of the users chose passwords whose length 

is equal or below six characters, and 60% of the users use the limited alpha-numeric set to form 

their passwords, while the most commonly used password was “123456”. Reports from the 

Keeper password manager [21] show that, even in 2016, the users’ passwords are still 

predictable, since the most common recorded passwords include “123456”, “qwerty” and 

“111111”. Ιn [22], the authors performed interviews with several different groups (i.e., students, 

ICT specialists, etc.) regarding their password habits. They discovered that 50% of the 

respondents use less than 4 different passwords for all their services. Moreover, in all groups 

more than 50% of the respondents use passwords shorter than nine characters and most of the 

passwords still consisted of letters and characters.  

3 Password hashing schemes 

A hashing scheme takes as an input a plaintext password and transforms it into a hash value 

considering three parameters: i) hash function; ii) iterations; iii) salt. More specifically, the core 

parameter of a hashing scheme is the employed hash function, such as MD5. The iterations 

parameter is optional and specifies the number of consecutive executions of the employed hash 

function to compute the hash value. For example, if a hashing scheme uses the MD5 hash 

function and the number of iterations is 100, then it will conduct 100 consecutive executions of 

MD5 to compute the password hash. The number of iterations can be adjusted so that the 

computation of the hash value takes an arbitrarily large amount of computing time (also known 

as key stretching). In this way, iterations are used to slow down password guessing attacks. 

Regarding the last parameter, the salt is also optional and it is a random string which together 

with the password are the inputs to the hash function to produce the hash value. Using random 
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salts, rainbow tables become ineffective. That is, an attacker won’t know in advance what the 

salt value is and therefore he/she cannot pre-compute a rainbow table. 

There are numerous functions used for password hashing including: MD5 [23], SHA1 [24], 

SHA256 - SHA512 [25], PBKDF2 [26], BCRYPT [27], SCRYPT [28] and Argon2 [29]. A 

detailed analysis of these hash functions is omitted; instead we briefly mention the most 

important features relevant to the scope of this paper. The first four hash functions (i.e., MD5, 

SHA1, SHA256, SHA512) do not require the use of a salt by default. Thus, a separate function 

should be used to generate a salt for the hashing scheme. On the other hand, the rest of the hash 

functions internally generate and use a random salt during hash calculation.  

As we mentioned previously, the iterations parameter specifies the number of consecutive 

executions of the employed hash function, increasing the computation time to compute the hash 

value. For this reason, PBKDF2, BCRYPT, SCRYPT and Argon2 hash functions use iterations 

by default. More specifically, PBKDF2 is the simplest function, since it iterates the employed 

hash function, usually SHA256 or SHA512. On the other hand, BCRYPT, which is based on 

the blowfish encryption algorithm, uses iterations only in the Blowfish key setup function using 

the salt and password parameters as inputs. For PBKDF2 and BCRYPT, memory usage is not 

tunable separately (i.e., it is fixed for a given amount of CPU time). On the other hand, SCRYPT 

and Argon2 belong to a special category of hash functions named as memory hard functions 

(MHF), which are designed to use an arbitrary large and tunable amount of memory compared 

to PBKDF2 and BCRYPT making the size and the cost of a hardware implementation of these 

hash functions much more expensive, and therefore, limiting the amount of parallelism an 

attacker can use. Similar to BCRYPT, both SCRYPT and Argon2 use iterations in specific parts 

of the algorithm. SCRYPT was one of the first proposed MHF [28] and recently in 2016, the 

SCRYPT algorithm was published by IETF as a standard (RFC 7914) [30]. It is important to 

mention that for BCRYPT and SCRYPT, the literature uses the term cost factor [27], [28] 

instead of iterations (specifically for SCRYPT it is called CPU/Memory cost factor). In the rest 

of the paper we will explicitly use the term iterations instead of cost factor. Apart from 

iterations, SCRYPT and Argon2 include several parameters that can be used to adjust the 

memory requirements for hash value computation. The analysis of these parameters is out of 

scope of the paper, since we will specifically focus on the iterations parameter. 

Regarding the exact value of iterations for the above hash functions, NIST guidelines 

recommend PBKDF2 with minimum 10.000 iterations [31], while the author of SCRYPT 

recommends 16384 iterations [28]. On the other hand, there is no official recommendation for 

BCRYPT and Argon2. We have only discovered that PHP programming language by default 

uses BCRYPT with 1024 iterations [32]. 

As mentioned in section 2.2, password guessing attacks greatly benefit from multiple 

processing cores, especially for hashing schemes that can be executed in parallel. MD5, SHA1, 

SHA256, SHA512 hash functions can be executed in parallel on multi-processor systems, fact 

that increases significantly the efficiency of password guessing attacks. Moreover, several 

weaknesses of PBKDF2 [33] allow efficient implementations with very little use of RAM, 

which makes brute-force attacks to PBKDF2 using FPGAs relatively cheap. Also, the work in 

[34] achieved a great optimization in running PBKDF2 on GPU hardware.  

On the other hand, BCRYPT, due to its pseudorandom access to memory makes difficult to 

cache data into the GPU’s internal memory [35]. Subsequently, BCRYPT implementations on 

GPUs use the external memory, thus spending more time transferring operands to and from the 

GPU. Thus, compared to PBKDF2, BCRYPT is less parallelizable and more resistant to 

password guessing attacks [28]. However, recent works such as [36] [37] have presented 

BCRYPT implementations that achieve a high level of parallelization in embedded hardware 

devices. Finally, MHF such as SCRYPT and Argon2 are specially designed to withstand against 
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hardware-equipped adversaries. MHF bound the memory amount and the memory bandwidth, 

limiting in this way the level of parallelism that an attacker can achieve. While a practical attack 

for SCRYPT has not been demonstrated yet, new MHF were proposed in the password hashing 

competition in 2014 [38] in which Argon2 was the winner.  

4 Cost analysis of password guessing attacks 

In this section we analyze a cost analysis framework for password guessing attacks. The 

rationale is to first compute the number of hashes, that will be performed throughout password 

guessing attacks, and secondly to estimate their effectiveness (i.e., percentage of successfully 

guessed passwords). By utilizing these two values, the cost of password guessing attacks is 

defined as the average number of hashes required to successfully crack a password hash. Lastly, 

the cost can be transformed into the average time required to crack a password hash. It is 

important to mention that the aim here is not to derive new mathematical models for password 

cracking, which has been already done in the previous works extensively (see section 0). 

Instead, our aim is to formulate a simple framework that will allow us to perform a security 

comparison and evaluation between the various CMS and application frameworks by 

quantifying the cost of password cracking. 

4.1 Parameters 

This section elaborates on the parameters of the proposed framework for the cost estimation of 

password guessing attacks. These parameters are as follows: 

• Iterations (I): The iterations parameter represents the number of consecutive 

executions of a hash function to compute the password hash. For example, a hashing 

scheme of 500 SHA1 iterations requires 500 consecutive executions of SHA1 to 

compute the hashing result. Note that this value is relevant only for iterations of MD5, 

SHA1, SHA256, SHA512 hash functions. On the other hand, PBKDF2, BCRYPT, 

SCRYPT and Argon2 that use iterations as an internal parameter, the parameter Ι is not 

considered (i.e., I=1). 

• Database passwords (D): This parameter indicates the number of password hashes in 

the database. 

• Salt (S): This parameter indicates the number of salts in the database. We will assume 

that each password has a unique salt, therefore the number of database passwords D is 

equal to number of salts S. On the other hand, if the database does not use salt, then the 

parameter S is not considered (i.e., S=1). 

• Hashrate (Hr): It is the number of calculated hash values per second. 

• Password length (pwd_length): This parameter is the length of the target passwords 

that an attacker desires to crack in a brute force attack. We also define as pwd_lengthmin 

the minimum and pwd_lengthmax, the maximum password length that the attacker aims 

to crack. 

• Charset (C): The charset is the second attacking parameter of brute force password 

guessing attacks. The value of charset depicts the number of unique characters of the 

different sets that are used for the composition of a password (see Table 3) 

• Attempts in a dictionary attack (attempts): It is the number of candidate passwords 

that an attacker will attempt to crack the passwords. This parameter is relevant only for 

a dictionary attack. 

• Effectiveness (EBF or EDC): The effectiveness of a password guessing attack is the 

percentage of password hashes in a database that will be cracked after the completion 

of the attack. The effectiveness of the brute force attack is denoted as EBF, while for the 

dictionary attack is noted as EDC. 
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Type of character set Charset (C) value 

Numeric 10 

Lowercase 26 

Uppercase 26 

Loweralphanumeric or 

Upperalphanumeric 

36 

Mixedcase 52 

Mixedalphanumeric 62 

Special 94 

Table 3: Charset value for different types of character sets  

4.2 Brute force attack 

In this section, we elaborate on the cost estimation of brute force password guessing attacks. 

The first step of the cost estimation is to compute the average number of hashes that will be 

performed during a brute force password guessing attack, defined as hashesBF. To achieve this, 

we need to calculate the number of candidate passwords, by leveraging the charset and the 

pwd_length parameters. The usage of a unique salt per password affects the hashesBF value, 

since the guessing attempts performed during a brute force attack, will be a multiplication of 

all the candidate passwords by the total number of salts. Lastly, the hashesBF is affected by the 

usage of iterations, since a guessing attempt requires iterations consecutive hash executions. 

Based on the above, it can be deduced that the hashesBF value can be estimated by using 

equation (1). Τhe hashesBF value is analogous to both the iterations I  and to the number of salts 

(i.e. S). In addition, hashesBF value is analogous to the sum of all candidate passwords (i.e. Ci), 

considering specific charset and password length values. That is,  

 

𝑯𝒂𝒔𝒉𝒆𝒔𝑩𝑭 = 𝒂 · 𝑰 · 𝑺 · ∑ 𝑪𝒊

𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒂𝒙

𝒊=𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒊𝒏

  (1) 

Note that the parameter 𝑎 is a real number, where 𝑎 ∈ (0,1]. The parameter 𝑎 is defined as the 

attack success factor and it is related to the probability to successfully crack all hashed 

passwords at the end of the attack. In the worst case scenario for the attacker, the value of 𝑎 is 

equal to 1. In this case, the attack will cover all the candidate passwords. To better understand 

the role of the parameter 𝑎, we consider the following example. Assume a brute force attack in 

which the attacker aims to crack numeric passwords (i.e., C=10 from Table 3) of minimum 

length 4 and maximum length 5 (i.e., pwd_lengthmin = 4, pwd_lengthmax = 5), for a hashing 

scheme that uses 100 iterations (I=100). The number of the hashed passwords is D=100. This 

means that the salt S is also equal to 100 (i.e., one salt per password). All the candidate 4-

character numeric passwords are 104, while the 5-character are 105, summing to a total number 

of 1.1 105 passwords. If we assume the worst case scenario for the attacker (i.e., 𝑎=1), then by 

multiplying the number of candidate passwords with the iterations and the number of salts, the 

value of hashesBF will be 1.1·109. This means that the attacker for each password (with its 

related salt) will cover all candidate passwords. On the other hand, in the average case we have 

𝛼 = 1 2⁄  and in this case the attacker will cover half of candidate passwords (i.e., 𝐻𝑎𝑠ℎ𝑒𝑠𝐵𝐹 =
1.1·109

2
). 

The second step of this analysis is to estimate the number of target password hashes that will 

be cracked by a brute force attack, defined as cracked_passBF. This can be achieved by 

leveraging the effectiveness parameter EBF, which defines the percentage of password hashes 

that will be successfully cracked by the attack. Therefore, using EBF, we can calculate the 
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cracked_passBF by multiplying the EBF with the number of password hashes in the database D, 

as shown in equation (2). 

 𝒄𝒓𝒂𝒄𝒌𝒆𝒅_𝒑𝒂𝒔𝒔𝑩𝑭 = 𝑫 · 𝑬𝑩𝑭 (2) 

Having calculated the hashesBF and the cracked_passBF, we can calculate the cost of password 

guessing for the brute force attack, (defined as costBF). The cost costBF represents the average 

number of hashes that will be performed during the attack to crack a password hash in the 

database. To calculate costBF we use the following equation. 

 𝒄𝒐𝒔𝒕𝑩𝑭 =
𝒉𝒂𝒔𝒉𝒆𝒔𝑩𝑭

𝒄𝒓𝒂𝒄𝒌𝒆𝒅_𝒑𝒂𝒔𝒔𝑩𝑭 
   

By replacing the hashesBF with equation (1) and cracked_passBF with equation (2), the final 

form of costBF can be derived as follows: 

 𝒄𝒐𝒔𝒕𝑩𝑭 =
𝒂 · 𝑰 · 𝑺

𝑫 · 𝑬𝑩𝑭

· ∑ 𝑪𝒊

𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒂𝒙

𝒊=𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒊𝒏

  (3) 

Lastly, the costBF can be translated into the average time required to crack a password hash in 

the database D, (defined as cost_timeBF) using the hashrate (i.e. Hr) parameter, as shown in 

equation (4). 

 𝒄𝒐𝒔𝒕_𝒕𝒊𝒎𝒆𝑩𝑭 =
𝒄𝒐𝒔𝒕𝑩𝑭

𝑯𝒓 
 (4) 

4.3 Dictionary Attack 

In this section, we elaborate on the cost estimation of dictionary password guessing attacks. 

The first step of the cost estimation is to compute the number of hashes that will be performed 

during an attack, defined as hashesDC. The hashesDC value can be estimated by multiplying the 

iterations I with the salt S and with the number of guessing attempts (i.e., attempts). Thus, 

hashesDC can be estimated as follows: 

 𝒉𝒂𝒔𝒉𝒆𝒔𝑫𝑪 = 𝒂 · 𝑰 · 𝑺 · 𝒂𝒕𝒕𝒆𝒎𝒑𝒕𝒔 (5) 

As in the brute force attack, the parameter 𝑎 is the attack success factor. The next step for the 

cost estimation is to compute the number of password hashes that will be cracked after the 

completion of a dictionary password guessing attack, defined as cracked_passDC. The value of 

cracked_passDC relies on the effectiveness EDC of the dictionary attacks. Note that the EDC value 

relies on the actual method of dictionary attack (e.g., pure, PCFG or Markov model). Using 

EDC, the estimated number of the cracked passwords can be computed as follows:  

 𝒄𝒓𝒂𝒄𝒌𝒆𝒅_𝒑𝒂𝒔𝒔𝑫𝑪 = 𝑫 · 𝑬𝑫𝑪 (6) 

Having calculated the hashesDC, and the cracked_passDC, the last step is to estimate the average 

hashes that will be performed in the database D until a successful password crack, defined as 

costDC. To achieve this, we divide hashesDC by cracked_passDC. 

 𝒄𝒐𝒔𝒕𝑫𝑪 =
𝒉𝒂𝒔𝒉𝒆𝒔𝑫𝑪

𝒄𝒓𝒂𝒄𝒌𝒆𝒅𝒑𝒂𝒔𝒔𝑫𝑪

  

Next, we can use equations (5) and (6), to derive the final form of costDC. 

 𝒄𝒐𝒔𝒕𝑫𝑪 =
𝒂 · 𝑰 · 𝑺 · 𝒂𝒕𝒕𝒆𝒎𝒑𝒕𝒔

𝑫 · 𝑬𝑫𝑪

 (7) 

Finally, to convert costDC into the average time required until a successful password crack in 

the database D, cost_timeDC, we need to divide costDC by the hashrate (i.e. Hr), as shown in 

equation (8). 
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 𝒄𝒐𝒔𝒕_𝒕𝒊𝒎𝒆𝑫𝑪 =
𝒄𝒐𝒔𝒕𝑫𝑪

𝑯𝒓 
 (8) 

5 Evaluation of default hashing schemes in CMS and web 

applications frameworks 

This section evaluates the default hashing schemes used by CMS and web application 

frameworks based on the following parameters: i) hash function; ii) iterations; iii) usage of salt, 

and iv) minimum acceptable pwd_length. In total, we have examined 49 commonly used CMS 

and 47 popular web application frameworks. Table 4 shows the considered CMS classified into 

7 categories: i) 13 CMS are included in the generic category, which represents CMS that allow 

the development of websites with various functionalities that focus on the content (e.g. blog, 

news web site), ii) 9 for forums, iii) 5 for ecommerce, iv) 7 for Enterprise Resource Planning 

(ERP) and Customer Relationship Management (CRM), v) 2 for coding and bug tracking, vi) 2 

for project management, and viii) 11 are classified as “Other”, which do not belong to any of 

the above categories. 

Based on the results of Table 4 which depicts the default hashing schemes of the investigated 

CMS, we can observe that 26.53% of the CMS including osCommerce, SuiteCRM, WordPress, 

X3cms, SugarCRM, CMS Made simple, Mantisbt, Simple Machines, miniBB, Phorum, MyBB, 

Observium, and Composr use the outdated hash function MD5. MD5 is highly parallelizable 

and we will analyze in section 6.1.1, it is the fastest among all hash functions that can be 

executed in GPUs. Regarding the remaining hash functions of the CMS, GetSimple CMS, 

Redmine, Collabtive, PunBB, Pligg, and Omeka (i.e. 12.24%) use the SHA1 hash function, 

which similar to MD5 is highly parallelizable on GPUs. Drupal, EspoCRM, PhreeBooks, Odoo, 

ImpressCMS, Magento, Bugzilla, TYPO3 CMS, Mediawiki, and PhpList (i.e. 20.41%) use 

either SHA256/SHA512 or PBKDF2. These hash functions are also parallelizable, thus 

increasing the effectiveness of password guessing attacks. Lastly, Joomla, Zurmo, 

OrangeHRM, SilverStripe, Elgg, XOOPS, e107, NodeBB, Concrete5, phpBB, Vanilla Forums, 

Ushahidi, Lime Survey, Mahara, Mibew, vBulletin, OpenCart, PrestaShop, and Moodle (i.e. 

40.82%) use the BCRYPT hash function. As we mentioned in section 3, BCRYPT is more 

secure than the rest of the hashing schemes, since it more difficult to be parallelized in GPU 

hardware. Based on the above we can conclude to the following observation: 

Observation 1: A whopping number (i.e., 59.18%) of CMS use default hashing schemes that 

can be highly parallelized with GPU hardware, making password guessing attacks easier. 

Indicatively, the popular CMS WordPress uses by default MD5. On the other hand, 40.82% of 

the CMS use BCRYPT by default including Joomla. 

Another observation which is related to the usage of the hashing schemes is the following: 

Observation 2: No CMS has adopted SCRYPT, Argon2 or any other MHF yet. 

Observation 2 may come as no surprise if we consider that the PHP programming language that 

all the CMS are based on, has no official SCRYPT implementation. This means that in case an 

administrator of a CMS wants to use SCRYPT, he/she should rely on a third party or custom 

implementation of SCYPT. However, using non-official implementations is considered an 

insecure practice, as they may include backdoors [39], [40] or insecure code [41]. On the other 

hand, Argon2 was included recently (late 2017) in PHP v7.2 and compared to SCRYPT it can 

be more easily adopted in a CMS. However, Argon2 is a relatively new hash function and the 

audits are too scarce to draw safe conclusions about its security properties. Finally, a common 
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Table 4: The default hashing scheme parameters of the investigated open source CMS 

CMS Category Hash 

function 

Iterations Salt Min pwd 

length 

CMS Category Hash 

function 

Iterations Salt Min pwd 

length 

Drupal 8.4.4 Generic SHA512 65536 ✔ 1 OsCommerce2.3.4.1 Ecommerce MD5 1 ✔ 5 

Joomla 3.8.3 Generic BCRYPT 1024 ✔ 4 Zen Cart 1.5.5 Ecommerce BCRYPT 1024 ✔ 7 

WordPress 4.9.1 Generic MD5 8192 ✔ 1 SuiteCRM 7.9.9 ERP/CRM MD5 1000 ✔ 1 

X3cms 0.5.3 Generic MD5 1 ✘ 5 Zurmo 3.2.3 ERP/CRM BCRYPT 4096 ✔ 5 

ImpressCMS 1.3.10 Generic SHA512 5000 ✔ 5 OrangeHRM 4.0 ERP/CRM BCRYPT 4096 ✔ 4 

GetSimple CMS 3.3.13 Generic SHA1 1 ✘ 1 SugarCRM 6.5.25 ERP/CRM MD5 1000 ✔ 1 

CMS Made simple 

2.2.5 

Generic MD5 1 ✔ 1 EspoCRM 5.0.2 ERP/CRM SHA512 1 ✔ 1 

SilverStripe 4.0.1 Generic BCRYPT 1024 ✔ 1 PhreeBooks 9 ERP/CRM SHA256 1 ✔ 5 

Elgg 2.3.5 Generic BCRYPT 1024 ✔ 6 Odoo 11 ERP/CRM PBKDF2SHA512 12000 ✔ 1 

XOOPS 2.5.9 Generic BCRYPT 1024 ✔ 5 Mantisbt 2.10.0 Coding MD5 1 ✘ 1 

e107 2.1.7 Generic BCRYPT 1024 ✔ 8 Bugzilla 5.1.1 Coding SHA256 1 ✔ 8 

TYPO3 v9 Generic PBKDF2SHA512 25000 ✔ 8 Redmine 3.4.4 Proj. Mgmt SHA1 2 ✔ 8 

Concrete5 8.3.1 Generic BCRYPT 4096 ✔ 5 Collabtive 3.1 Proj. Mgmt SHA1 1 ✘ 1 

PhpBB 3.2.2 Forum BCRYPT 1024 ✔ 6 Ushahidi 3 Other BCRYPT 4096 ✔ 7 

Vanilla Forums 2.6 Forum BCRYPT 1024 ✔ 6 Pligg 1.2.2 Other SHA1 1 ✔ 5 

Simple Machines 2.0.15 Forum MD5 1 ✔ 6 Observium 0.17.11 Other MD5 1000 ✔ 1 

MiniBB 3.2.2 Forum MD5 1 ✘ 5 Lime Survey 2 Other BCRYPT 1024 ✔ 1 

Phorum 5.2.23 Forum MD5 1 ✘ 1 MediaWiki 1.30.0 Other PBKDF2SHA512 30000 ✔ 1 

MyBB 1.8.12 Forum MD5 1 ✔ 6 Omeka 2.5 Other SHA1 1 ✔ 6 

PunBB 1.4.4 Forum SHA1 1 ✔ 4 phpList 4 Other SHA256 1 ✘ 8 

vBulletin 5.3.4 Forum BCRYPT 1024 ✔ 1 Mahara 17.04 Other BCRYPT 4096 ✔ 6 

NodeBB Forum BCRYPT 4096 ✔ 6 Mibew 3.1.3 Other BCRYPT 256 ✔ 1 

OpenCart 3.0.2.0 Ecommerce BCRYPT 1024 ✔ 4 Composr 10 Other MD5 1 ✔ 1 

PrestaShop 1.7 Ecommerce BCRYPT 1024 ✔ 5 Moodle 3.4 Other BCRYPT 1024 ✔ 8 

Magento 2.2 Ecommerce SHA256 1 ✔ 7       



12 

 

reason that hinders the adoption of both SCRYPT and Argon2 is related to the fact that the 

transition to a new hashing scheme of an already deployed website can lead to downtimes or it 

may require once again the registration of its users with a new (or the same) password. 

Therefore, for backwards compatibility reasons website administrators avoid to modify hashing 

schemes and choose to remain with legacy hash functions. A case in point is the CMS named 

Phorum; it still uses the MD5 as the default hashing scheme (see Table 4), despite the fact that 

there is a request in the official development repository of Phorum to change MD5 to a stronger 

hash function [42]. After a discussion between users and the development team (see [42]), the 

main developer opposes to this change, because the developers of Phorum CMS are considered 

how existing installations are going to update to the new hash function. Thus, they decide not 

to proceed with any modification to the hash function leaving MD5 as the main hash function. 

Another similar discussion takes place for Magento CMS [43], which is an e-commerce 

platform and still uses SHA256. 

Regarding the usage of salt, the most important finding is that 14,29% of the targeted CMS, 

and specifically X3cms, GetSimple CMS, miniBB, Phorum, MantisBT, Collabtive, and phpList 

do not use salt in their hashing scheme (see Table 4), which renders password hashes vulnerable 

to rainbow table attacks. The fact that salt is missing in these CMS implies that users with the 

same plaintext passwords will also share the same password hash. Another important finding is 

that 36.73% of the tested CMS do not use iterations in their password hashing scheme (i.e., the 

iterations value is 1). Also, the rest of the CMS that use iterations use an arbitrary number of 

iterations. For instance, for BCRYPT we observe that there are CMS that use 256, 1024, or 

4096 iterations, while for PBKDF2 we observe 10000, 12000, or 30000. This variations stems 

from the fact that BCRYPT does not have official recommendations for its iterations, while 

NIST proposes a minimum of 10.000 iterations for PBKDF2. Based on the above, we can 

conclude to the following observation: 

Observation 3: Password hashes created by 14.29% of the CMS are vulnerable to guessing 

attacks based on rainbow tables, since the relevant CMS do not use salt in their hashing scheme. 

Also, 36.73% of the CMS do not use iterations, which makes them even more vulnerable to 

password guessing attacks. On the other hand, the rest of the CMS that use iterations, select 

the number of iterations inconsistently and arbitrarily. 

The last parameter to be analyzed is the minimum acceptable password length. Although this 

parameter does not affect the execution time of a hashing scheme, password hashes created 

from small passwords are more likely to be cracked. From the analysis of Table 4 it is observed 

that only 12.24% of the CMS (i.e., e107, Typo3 CMS, Bugzilla, Redmine, Phplist, and Moodle) 

enforce passwords of 8 characters length or greater. On the other hand, 6.12% require 

passwords with a minimum length of 7 characters, 14.29% of 6 characters, 20.41% of 5 

characters and 8.16% of 4 characters. However, the most important remark is that 38.78% (i.e. 

Drupal, SuiteCRM, WordPress, SugarCRM, EspoCRM, GetSimple CMS, CMS Made simple, 

Odoo, Mantisbt, Collabtive, Vanilla Forums, Observium, Lime Survey, MediaWiki, Phorum, 

vBulletin, Mibew, and Composr) of the CMS do not check the password length during the 

registration process, since we were able to create single character passwords. Based on the 

above, we can conclude to the following observation: 

Observation 4: 38.78% of the CMS do not enforce minimum password length policy, which 

may result in users selecting weak passwords. Notably, WordPress and Drupal belong to this 

category of CMS that allow a single character password. This observation, alongside with the 

fact that many CMS use parallelizable hash functions makes password cracking even more 

effective. 

Driven by the above observations, we can conclude that the majority of CMS offer weak 

hashing schemes in the default settings. A prime example is Phorum; it uses MD5 without 
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iterations and salt, while it allows even 1-character length passwords (see Table 4). Of note, 

the majority of the considered CMS allow modifications to the default settings. For instance, 

there is a plugin for WordPress that allows to easily change the default MD5 to BCRYPT for 

password hashing. However, CMS are characterized as “plug and play” solutions. In 

particular, their main goal is to allow even non-developers to easily deploy websites. This fact 

makes it less probable that CMS administrators will ever try to modify the default 

configurations. What is more, this argument is also strengthened by the fact that in general 

individuals tend to remain at the default assignment (also known as default effect [44]). Based 

on the above, a more generic observation can be extracted as follows: 

Observation 5: CMS follow an opt-in policy for security configurations. That is, by default 

they do not provide the most secure hashing schemes, but they allow the modification to more 

secure schemes. However, considering that CMS administrators may not be developers and 

do not have the appropriate security expertise, we argue that most CMS are deployed in the 

Internet with the default security settings including the hashing scheme. 

The second part of this section examines the default hashing schemes of the most commonly 

used web application frameworks. As we mentioned in section 2.3, a key difference between 

CMS and web application frameworks is that the latter require programming knowledge and 

they are utilized by web developers, while the former (i.e., CMS) does not require coding 

knowledge, since it is based on installable modules. Table 5 shows the investigated web 

application frameworks classified into 5 categories, based on the programming language for 

web application development. More specifically, we investigated i) 10 frameworks which rely 

on PHP, ii) 14 that are based on Python, iii) 11 that use Ruby on Rails, and iv) 11 based on 

Javascript. ASP.NET is the last framework we explored, and we categorized it as “Other”, since 

it supports development in several programming languages. The default hashing schemes of the 

investigated web application frameworks are depicted in Table 5. An important observation 

that can be derived is that 48.94% of the web application frameworks do not offer a default 

password hashing scheme, which might lead to improper password hashing. Moreover, the 

Kohana PHP framework uses the same salt value for all stored passwords, thus they are 

vulnerable to rainbow table attacks. Another significant finding is that Kohana, Django, 

CherryPy, Bottle, ExpressJS, MeanJS, MernJS, nodeJS, AllcountJS, Cuba, and ASP.NET (i.e. 

23.40%) use parallelizable hash functions (i.e., MD5, SHA1, SHA256, SHA512 and PBKDF2), 

while Kohana, CherryPy, Bottle, AllcountJS, Cuba, and ASP.NET (i.e. 12.77%) use only 1 

iteration of the employed hash function. On the other hand, Laravel 5.4, Codeigniter 3.1.4, 

CakePHP 3.3, Zend framework3, Yii 2, Phalcon 3.0.4, Aura PHP, Lithium, MeteorJS, SailsJS, 

FathersJS, Derby, and Ruby on Rails, which stand for 27.66% use the BCRYPT hash function 

by default. Based on the above we can conclude to the following observation: 

Observation 6: 23.40% of the web application frameworks opt for weak (i.e., parallelizable) 

hash functions, while 12.77% of them do not use iterations. What is more, only 27.66% use the 

BCRYPT hash function by default. Similar to CMS and observation 2, SCRYPT and Argon2 are 

absent from the default settings. 

Moreover, from Table 5, we can notice that: 

Observation 7: 48.94% of the investigated web application frameworks do not offer a default 

password hashing scheme, which might lead to the selection of a weak password hashing 

scheme in web applications. 

The underlying assumption of observation 7 lies to the fact that developers are expected to have 

the knowledge of selecting appropriate hash functions and configure securely the hashing 

scheme of the websites they develop using salts. In a recent work [6], web developers were 

given the task to store passwords for authentication in a website. Among the many key insights 

of this work, the most important ones were: i) many developers stored the passwords in  



14 

 

PHP Frameworks Hash function Iterations Salt JavaScript 

Frameworks 

Hash function Iterations Salt 

Kohana 3.3 SHA256 1 ✔  

(Constant) 

MeteorJS BCRYPT 1024 ✔ 

Symfony 3.2 No default ExpressJS PBKDF2SHA512 10000 ✔ 

Laravel 5.4 BCRYPT 1024 ✔ SailsJS BCRYPT 1024 ✔ 

Codeigniter 3.1.4 BCRYPT 1024 ✔ FathersJS BCRYPT 1024 ✔ 

CakePHP 3.3 BCRYPT 1024 ✔ Derby BCRYPT 1024 ✔ 

Zend framework3 BCRYPT 16384 ✔ Wakanda No default 

Yii 2 BCRYPT 8192 ✔ MeanJS PBKDF2SHA512 10000 ✔ 

Phalcon 3.0.4 BCRYPT 256 ✔ MernJS PBKDF2SHA512 10000 ✔ 

Aura PHP BCRYPT 1024 ✔ nodeJS PBKDF2SHA512 10000 ✔ 

Lithium BCRYPT 1024 ✔ AllcountJS SHA1 1 ✔ 

Python Frameworks Hash function Iterations Salt AngularJS No default 

Django PBKDF2SHA256 30000 ✔ Ruby Frameworks Hash function Iterations Salt 

CherryPy MD5 1 ✔ Ruby on Rails BCRYPT 1024 ✔ 

Flask PBKDF2SHA256 50000 ✔ Padrino No default 

Bottle No default Nyny No default 

Pyramid SHA512 1 ✘ Grape No default 

Klein No default Nancy No default 

Web2py SHA512 1000 ✘ Ramaze No default 

Objectweb No default Cuba SHA1 1 ✔ 

Pecan No default Camping No default 

Tornado No default Scorched No default 

Grok No default Celluloid No default 

Zope No default Sinatra No default 

Turbogears No default Other Frameworks Hash function Iterations Salt 

Quixote No default ASP.NET SHA256 1 ✔ 

Table 5: The default hashing scheme parameters of the investigated web application frameworks 
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plaintext; ii) most of the developers focused on the functionality and only added security as an 

afterthought; iii) even participants who attempted to store passwords security often did it 

insecurely, because they used outdated methods (e.g., they used MD5 without even iterations) 

as security is a fast moving field; iv) different standards and security recommendations made it 

difficult for developers to decide what is the right course of actions. Therefore, all the above 

observations imply that there is a lack of adequate security knowledge even by developers, and 

simply assuming that they will select a secure password storage scheme is a dangerous 

misconception. Hence, it would be beneficial for web applications frameworks to offer secure 

default hashing schemes. 

6 Cost analysis comparison of CMS and web applications 

frameworks 

Based on the cost analysis framework that we derived in section 4, in this section we perform 

a comparison of the various CMS and web frameworks to evaluate the security of their default 

hashing scheme. In order to be able to perform this numerical comparison, first we have to 

derive the input values for our cost analysis framework. In particular, we have to derive values 

for: i) hashrates for various hash functions and iterations ii) effectiveness of dictionary attacks, 

and, iii) effectiveness of brute force attacks. 

6.1 Input values 

6.1.1 Hashrates 

First, we derive hashrate values using a popular GPU-based password cracking tool named 

Hashcat [45]. Due to its’ popularity, there are numerous benchmarks available on the Internet 

that calculate the hashrate of various GPU models. However, due to the fact that we were not 

able to find up to date benchmarks (i.e., the most recent ones were of 2014) we opted for our 

own benchmarks. To this end, we derived hashrate values (see Table 6) of various hash 

functions and iterations using the GeForce GTX 1070 [46], which was NVIDIA’s second-best 

GPU model of 2016. As expected the hash functions MD5, SHA1, SHA256 and SHA512 

exhibit high performance in the sense that GPUs can compute several hashes per second. 

PBKDF2 slows downs the computations due to the iterations used. Regarding BCRYPT and 

SCRYPT, we observe that BCRYPT has the slowest performance for number of iterations up 

to 16384 iterations, but for higher values, SCRYPT is slower than BCRYPT.  

Along with GPU based hashrates, it is imperative to derive the runtime of a hash value 

calculation in a typical Web Server machine. The reason for this calculation is that the number 

of iterations should not be set too high; otherwise the calculation of a hash value can be 

significantly delayed, disrupting the normal operation of the website. That is, authentication 

delays (due to the multiple iterations for a hash calculation) can frustrate users that are trying 

to login, especially if they have to provide multiple times their password, because they provided 

an erroneous input. As mentioned in [47], [48], authentication delays higher than 1 second are 

not acceptable by many internet users. As a side note, for an offline environment (i.e., disk 

encryption), higher numbers of iterations can be used (e.g., for key generation from low entropy 

passwords). To this end, we have used a typical server setup, an Intel Xeon E5-2640 v2 CPU 

with 4 GB RAM to estimate the runtime of the hash functions for various iterations (see Table 

6). We observe that in  almost all considered iterations values, the runtime of the hash functions 

does not exceed the upper limit of one second, except for BCRYPT for 32678 and 65536 

iterations, which the runtime is 2.72 sec and 5.45 seconds respectively. 
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Hash function (iterations) Hashrate (H/s)  

(NVIDIA GTX1070) 

Runtime (sec) 

(Intel Xeon E5-2640 v2) 

MD5 (1) 21,359,700,000.00 1.06·10-6 

SHA1 (1) 7,043,888,888.00 1.37·10-6 

SHA256 (1) 2,536,500,000.00 1.75·10-6 

SHA512 (1) 844,100,000.00 1.95·10-6 

BCRYPT (1024) 358.00 8.68·10-6 

BCRYPT (8192) 44.75 6.85·10-5 

BCRYPT (16384) 22.00 6.8·10-1 

BCRYPT (32768) 11.00 2.72 

BCRYPT (65536) 5.00 5.45 

PBKDF2SHA256 (8192) 121,375.00 1.09·10-2 

PBKDF2SHA256 (16384) 60,574.00 3.92·10-2 

PBKDF2SHA256 (32768) 30,271.50 7.67·10-2 

PBKDF2SHA256 (65536) 15243.50 1.57·10-1 

PBKDF2SHA256 (131072) 7,587.00 3.04 10-1 

PBKDF2SHA256 (262144) 3,797.00 6.16·10-1 

PBKDF2SHA512 (8192) 43,631.00 2.61·10-2 

PBKDF2SHA512 (16384) 22,174.00 5.23·10-2 

PBKDF2SHA512 (32768) 10,895.25 1.03·10-1 

PBKDF2SHA512 (65536) 5487.00 2.06·10-1 

PBKDF2SHA512 (131072) 2,752.00 4.12·10-1 

PBKDF2SHA512 (262144) 1,388.00 8.22·10-1 

SCRYPT (8192) 122.00 2.75·10-2 

SCRYPT (16384)  34.00 5.24·10-2 

SCRYPT (32768) 9.00 1.06·10-1 

SCRYPT (65536) 2.00 2.16·10-1 

SCRYPT (131072) 0.3 4.35·10-1 

SCRYPT (262144) 0.012 8.71·10-1 

Table 6: Hashrates and runtime values 

6.1.2 Effectiveness 

6.1.2.1 Dictionary  

In this section, we analyze the effectiveness EDC (see section 4.1) for three types of dictionary 

attacks: i) pure ii) Markov model and iii) PCFG. These values are obtained from the related 

work. For pure dictionary attacks, we use the EDC and the attempts parameter values from [19] 

(see Table 7). The authors of this work used dictionaries with English, Italian and Finish 

lowercase words and executed pure dictionary attacks against two databases DB1 and DB2 

respectively, recording effectiveness EDC values 24.79% and 26.02% respectively. Note that the 

DB1 included hashed passwords leaked from an Italian messaging server, while DB2 consisted 

of hashed passwords from Finnish speaking forums. 
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Dictionary attempts EDC DB1 EDC DB2 

English, Italian 

and Finnish words  
1.45·103 24.79% 26.02% 

Table 7: Effectiveness values for pure dictionary password guessing attacks (values were taken from 

[19]) 

Moreover, we have obtained the EDC values based on Markov model and PCFG as derived from 

[19] (see Table 8). The EDC for the PCFG model ranges from 41.50% for 1.45 million guessing 

attempts to 49.36% for 145 million guessing attempts. On the other hand, the Markov model is 

more efficient, since its EDC values are greater than the ones of PCFG. Particularly, by 

leveraging the Markov model, 53.49% of the passwords can be cracked with 149 million 

attempts, while this value can be increased to 99.70% for 1040 guessing attempts.  

Model attempts EDC 

PCFG 1.45·106 41.50% 

PCFG 41·106 46.33% 

PCFG 145·106 49.36% 

Markov ~149·106 53.49% 

Markov ~156·106 54.58% 

Markov ~850·106 61.90% 

Markov ~7·1016 91.44% 

Markov ~1040 99.70% 

Table 8: Effectiveness values for dictionary password guessing using PCFG or Markov models (values 

were taken from [19]) 

6.1.2.2 Brute force  

To compute the effectiveness of a brute force attack EBF, we define the parameter Ppwd_length as 

the percentage of passwords that have a specific length and the parameter PC,pwd_length, as the 

percentage of passwords to have a specific length and charset C. For instance, for 

pwd_length=8, then Ppwd_length represents the percentages of 8-character passwords, while for 

charset C=10 (see Table 3) and pwd_length=4, then PC,pwd_length is the percentage of numerical 

passwords with 4 digit numbers. Recall also from section 4.1, that pwd_lengthmin and 

pwd_lengthmax, is the minimum and maximum password length respectively that the attacker 

aims to crack. Based on the above, the EBF value can be estimated as shown in equation (9). 

 𝑬𝑩𝑭 = ∑ 𝑷𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉 · 𝑷𝑪,𝒑𝒘𝒅_𝒍𝒆𝒏𝒕𝒈𝒉

𝒑𝒘𝒅_𝒍𝒆𝒈𝒏𝒕𝒉𝒎𝒂𝒙

𝒑𝒘𝒅_𝒍𝒆𝒏𝒈𝒕𝒉𝒎𝒊𝒏

 (9) 

To the best of our knowledge there is no work that has calculated the Ppwd_length and the 

PC,pwd_length values. To this end, we perform an empirical analysis of passwords, in order to derive 

numerical values for Ppwd_length and PC,pwd_length. More specifically, we have gathered a large 

collection of leaked password datasets from various online services across multiple years (from 

2006 to 2017). The total number of collected passwords is 254.38 million passwords from 12 

datasets. Note that these datasets are public and can be found in the Internet in various blogs 

and forums. It is also important to mention that we have collected leaked datasets that include 

only plaintext passwords. This is a key factor to avoid biasing results, since in this way we 

guarantee that all passwords are included in our statistical analysis. On the contrary, if we had 

used datasets that include cracked passwords, then we would have performed a statistical 

analysis only with passwords that have been guessed biasing the results. We verified that the 

considered databases are composed of plaintext passwords using a two-step procedure: i) by 

checking that the length of the passwords in the datasets do not match the length of a hash value 

(e.g., an MD5 hash has always a fixed output of 16 bytes), and ii) by performing a cross check 



18 

 

with a historical record of leaked passwords available as a public service [49]. Considering that 

the processed usernames and passwords are in plaintext form, we do not reference their source, 

since many of these accounts may be still active.  

In Table 9, we classify the breached websites into various categories (9 in total) based on their 

content or service they provide. We observe that the associated user accounts of these websites 

are diverse in the sense that they are created from non-technical users (e.g. Mate1 was an online 

dating platform) to web developers (e.g. 000webhost is a web hosting platform for 

PHP/MySQL websites). Moreover, the breached websites offer their services globally, except 

for Auction-warehouse which explicitly requires their users to be US citizens. Therefore, we 

believe that the collected datasets represent a diverse and generic set of passwords. 

Dataset # Website Category Number of Passwords 

1 000webhost Web hosting 15.311.565 

2 1394store e-shop 20.649 

3 Auction-warehouse Auctions 26.616 

4 Clixsense Advertisemts 2.222.542 

5 Mail.ru  email 4.664.479 

6 Mate1 Social 27.403.959 

7 Neopets Gaming 68.743.269 

8 Rockyou Social 32.625.471 

9 Tuscl Adult 38.599 

10 VKontakte Social  100.544.934 

11 Yahoo voices Publishing 453.837 

12 Youporn Adult 2.325.492 

Table 9: Categories and number of leaked passwords 

The numerical values of the password analysis are shown in Table 10. Note that the presented 

values are averages of the password length and character set distributions from each one of the 

considered databases. For the character set distributions we classify the passwords based on the 

following categorization: i) numeric: only numbers (e.g., 1234567890); ii) lowercase: only 

lowercase Latin alphabet characters (e.g. password); iii) uppercase: only uppercase Latin 

alphabet characters (e.g., PASSWORD); iv) mixedcase: uppercase + lowercase (e.g., 

PassworD); v) loweralphanumeric: lowercase + numeric (e.g., passw0rd); vi) 

upperalphanumeric: uppercase + numeric (e.g., PASSW0RD); vii) mixedalphanumeric: 

mixedcase + numeric (e.g., Passw0rD); and viii) special: passwords that contains at least one 

special character (e.g., P@ssw0rD). 

Table 10 can be used to derive the Ppwd_length and PC,pwd_length values and consequently the 

effectiveness EBF of brute force attacks. To exemplify, consider an attack targeting 7 to 8-

character lowercase passwords (i.e., pwd_length=8 and C=26). In this case, Ppwd_length equals to 

20.68%, and PC,pwd_length equals to 30.36%, while pwd_lengthmin=7 and pwd_lengthmax=8. Thus, 

using equation (9), the effectiveness for a brute force attack EBF is equal to 12.16%. 

6.2 Comparative analysis 

Here we use our cost analysis model that we presented in section 4 to perform a comparative 

analysis of the cost time between different CMS and web application frameworks. To derive 

numerical results for the cost time we consider the values from section 6.1 for the hashrates as 

well as for brute force and dictionary effectiveness. We also consider the worst case scenario 

for the attacker, which means that the attack success factor 𝑎 is equal to 1 (see section 4.2). 

Table 11 summarizes the numerical results. The comparison is performed using five (5) 

different groups. Group 1 compares the cost time for a brute force attack (i.e., cost_timeBF)  
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Password 

length 

Password 

Length 

Distribution 

Character set distributions 

Numeric Lowercase Uppercase Mixedcase Loweralphenumeric Upperalphanumeric Mixedalphanumeric Special 

≤4 2,68% 38,47% 39,92% 2,06% 4,80% 3,46% 0,38% 0,08% 10,83% 

5 3,60% 13,71% 57,27% 1,83% 5,19% 9,69% 0,53% 0,40% 11,39% 

6 19,12% 25,25% 39,96% 1,21% 1,56% 28,40% 1,10% 1,21% 1,31% 

7 15,53% 10,57% 37,88% 0,96% 1,68% 42,94% 1,38% 2,18% 2,42% 

8 20,68% 13,51% 30,36% 0,61% 1,88% 44,76% 1,31% 4,78% 2,79% 

9 12,26% 6,80% 30,23% 0,77% 1,59% 50,53% 1,50% 4,36% 4,22% 

10 8,57% 9,96% 29,77% 0,49% 1,58% 46,18% 1,52% 5,14% 5,37% 

11 4,22% 6,80% 27,46% 0,59% 2,31% 44,39% 1,47% 7,95% 9,05% 

12 2,96% 3,37% 27,28% 0,52% 2,05% 45,02% 1,26% 8,44% 12,06% 

13 1,48% 2,52% 20,62% 1,48% 3,24% 44,79% 2,48% 8,30% 16,56% 

14 1,12% 3,23% 19,61% 1,29% 1,85% 44,27% 1,88% 9,10% 18,77% 

15 0,97% 2,09% 18,66% 1,54% 2,19% 43,50% 2,12% 8,43% 21,46% 

16 1,17% 3,97% 19,59% 2,24% 3,12% 34,59% 2,61% 12,65% 21,24% 

≥17 5,64% 3,49% 21,25% 1,24% 1,65% 31,83% 1,87% 9,00% 29,68% 

Table 10: Values for password length as a function of character set distributions  
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between a CMS that does not enforce a password policy by default and a CMS which applies a 

password policy. From the investigated CMS we identified that the majority of the CMS do not 

enforce a password policy by default, except for Magento CMS. To this end, in group 1 we 

include for the comparison a CMS named EspoCRM (which does not have a password policy) 

to Magento CMS (which by default uses a password policy). In particular, Magento policy 

accepts passwords that composed from at least 3 different charsets (i.e., numeric, lowercase, 

uppercase, special). Thus, for this comparison, we estimate the cost time of a brute force attack 

cost_timeBF for 8-character length mixedalphanumeric passwords for Magento (due to the 

password policy), and 8-character length lowercase passwords for EspoCRM (due to the 

absence of a password policy). Using equation (4) in section 4.2 and the input values derived 

in section 6.1 we calculate that for EspoCRM the cost_timeBF is equal to 3940 seconds, while 

for Magento is 8708036 seconds, which is a whopping 220.916% increase. This can be justified 

by the fact that password charset C of Magento is 62 (mixedalphanumeric – see Table 3) which 

greatly increases the required number of hashes for the brute force attack. 

Observation 8: A simple password policy such as the one of Magento, can have a drastic effect 

on the effort of the attacker to perform password guessing. Unfortunately, the majority of CMS 

and web application frameworks do not enforce the use of password policies, not even in the 

password length. 

Group 2 compares a CMS (i.e., Mibew) that uses BCRYPT with its lowest number of iterations 

(i.e., 2) among all CMS and web application frameworks as shown in Table 4, with a web 

application framework (i.e., Flask) that uses PBKDF2, which is the highest number of iterations 

(50.000 iterations) among all CMS and web application frameworks (see Table 4). The attack 

is brute force and since no password policy is enforced in these CMS, we select 8-character 

numeric passwords. The numerical results (see Table 11) show that even the lowest iterations 

of BCRYPT have significantly higher cost time (i.e., 2499488 seconds) compared to the highest 

iterations of PBKDF2 (i.e., 181814 seconds). This is due to the fact that BCRYPT reduces the 

level of parallelism [27]. As we mentioned in section 3, NIST guidelines [31] recommend 

PBKDF2 for hashing passwords with a minimum number of 10.000 iterations. Given our 

results, we argue that this recommendation is not adequate to withstand against offline 

passwords attacks. 

Observation 9. BCRYPT even only with 256 iterations provide significant improvements in 

terms of security over PBKDF2 with 50.000 iterations. Thus, we argue that not only the 

minimum recommended iterations of PBKDF2 by NIST is too low (i.e., 10.000), but also the 

recommended hash function itself (i.e., PBKDF2) is not resistant to password guessing. 

Group 3 investigates the effect of iterations for BCRYPT on the cost time in a dictionary attack. 

For this reason, we selected OpenCart, which uses 1024 iterations, and Zend framework, which 

uses the highest number of BCRYPT iterations among all CMS and web application 

frameworks (i.e. 16384). In this group, the derived numerical results of cost time are based on 

a dictionary attack. Specifically, we select a dictionary attack based on PCFG with 1.45·106 

attempts and EDC=41.5% (see first row of Table 8). As observed, an attacker needs 17302 

seconds to guess a password for OpenCart (i.e., 1024 BCRYPT iterations), while this value 

increases to 276836 seconds for Zend Framework (i.e., 16384 BCRYPT iterations), which is 

an 1500% increase. Considering that the runtime of BCRYPT for 16384 iterations on a server 

is 6.8·10-1 seconds (see Table 6), which is lower than the login delay threshold of one second 

(see section 6.1.1), OpenCart (and all other CMS using BCRYPT) can increase the value of 

iteration. 

Observation 10. Most CMS uses 1024 iterations for BCRYPT. This is attributed to the fact that 

the PHP programming language which all the CMS are based on, uses 1024 BCRYPT iterations 



21 

 

by default. We argue that PHP can increase the default number of BCRYPT iterations (e.g., 

16384) without imposing significant delays in the login procedure.  

Group 4 aims at investigating the cost time of MHFs compared to BCRYPT. For this reason, 

we opt for phpBB which uses BCRYPT with 1024 iterations and a hypothetical website 

utilizing SCRYPT with 16384 iterations. Note that the recommended value of SCRYPT [28] is 

16384. We select a dictionary attack based on PCFG using EDC=41.5%. From numerical results 

we can deduce that the SCRYPT hash function increases the robustness of password hashing 

schemes, considering that an attacker needs 31376 seconds to crack a password. Moreover, the 

runtime of SCRYPT on servers is negligible, since it equals to 5.24·10-2
 seconds for 16384 

iterations (see Table 6). From group 4 results, we can conclude to the following: 

Observation 11. As a long-term solution, we suggest CMS to upgrade their default hash 

function to a MHF, such as SCRYPT, which is resistant to password cracking and does not add 

login delays. Also NIST guidelines should replace PBDKF2 with a MHF. On a positive note 

recent 2017 NIST guidelines do suggest (but not impose) the use of MHF. 

Finally, group 5 aims at comparing the three most popular CMS namely WordPress, Joomla, 

and Drupal. WordPress, which is the most commonly used CMS, uses the weak MD5 hash 

function with 8192 iterations, while Drupal uses 65536 iterations of the highly parallelizable 

SHA512 hash function. On the contrary, Joomla uses BCRYPT with the PHP’s default iteration 

value (i.e. 1024). As observed, a dictionary attack with EDC=41.5% can crack a WordPress 

password in 2.4 seconds, while this value increases to 481 seconds for Drupal. The low level 

of parallelization of BCRYPT, has a significant impact on the cost_timeDC considering that an 

attacker needs 17302 seconds to crack a Joomla password hash. To conclude, the most secure 

CMS is Joomla, followed by Drupal, while WordPress is the most vulnerable to offline 

password guessing attacks despite it is the most widely used CMS.  

 Attack Target CMS 
Password 

Policy 
Hash function Iterations Attempts Effectiveness 

Cost time 

(sec) 

Group 

1 
BF 

Magento ✔ SHA256 1 628 (Pl =8, C=62) EBF =0.99% 8708036 

EspoCRM ✘ SHA512 1 268 (Pl =8, C=26) EBF =7.83% 3940 

Group 

2 
BF 

Flask ✘ PBKDF2SHA256 50000 108 (Pl =8, C=10) EBF =2.79% 181814 

Mibew ✘ BCRYPT 256 108 (Pl =8, C=10) EBF =2.79% 2499488 

Group 

3 
DC 

OpenCart ✘ BCRYPT 1024 1.45·106 EDC =41.5% 17302 

Zend ✘ BCRYPT 16384 1.45·106 EDC =41.5% 276836 

Group 

4 
DC 

PhpBB ✘ BCRYPT 1024 1.45·106 EDC =41.5% 17302 

Hypothetical 

website 
✘ SCRYPT 16384 1.45·106 EDC =41.5% 31376 

Group 

5 
DC 

WordPress ✘ MD5 8192 1.45·106 EDC =41.5% 2.4 

Drupal ✘ SHA512 65536 1.45·106 EDC =41.5% 481 

Joomla ✘ BCRYPT 1024 1.45·106 EDC =41.5% 17302 

Table 11: Numerical results of the cost time for various CMS and web application 

frameworks. 

7 Misuse of password hashing schemes for denial of service attacks 

In this section we investigate whether hashing schemes can be misused to lead to denial of 

service attacks to web applications. The rationale behind the experiments was that resource 

intensive configurations of hashing schemes (e.g., high number of iterations) can deplete the 

CPU resources of the web server and eventually result in denial of service conditions. To this 

end, we deployed a custom version of the popular WordPress CMS using the Apache web 
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server. We implemented a plugin for WordPress with which we can easily modify and configure 

all the parameters of the hashing scheme, such as the hash function, the number of iterations, 

etc (see below for the parameter values of the hashing schemes). Finally, we wrote a script that 

performs multiple login requests with a registered username and random password values, 

forcing WordPress to hash and verify them. On the web server, we measured the CPU 

utilization using htop toolkit [50]. Regarding the hardware setup, we used a Intel Xeon E5-2640 

v2 CPU and 4 GB memory running Ubuntu server 18.04, Apache 2.4.29 and PHP 7.2. 

As shown in Table 12, the parameters of the experiment were: i) the hash function, ii) iterations, 

iii) password length and iv) rate (login requests per second). More specifically, we examined 

hash functions that are used. Particularly, we considered the following hash functions, which 

are the default ones for the 3 most popular CMS (i.e., WordPress, Joomla, Drupal). That is, we 

examined: i) MD5 as it is the default one used by WordPress, ii) SHA512 which is the default 

one of Drupal, and iii) BCRYPT used by Joomla. Apart from the above hash functions we also 

included in the experiments SCRYPT, which is a memory hard function as discussed in section 

3. Moreover, the iterations value ranges from 1 to 65536 (216), while the password length ranges 

from 10 to 10000 characters. Lastly, the rate of the login requests per second of users varies 

from 1 to 30 requests per second. 

Parameter Values 

Hash function MD5, SHA512, BCRYPT, 

SCRYPT 

Iterations (I) 1, 1024, 4096, 8192, 16384, 

32768, 65536 

Password length (pwd_length) 10, 1000, 5000, 10000 

Rate (login requests per second) 1, 5, 10, 15, 20, 25, 30 

Table 12: Parameters of the hashing schemes. 

Figure 1 shows the CPU utilization as a function of the login rate for the MD5, SHA512, 

BCRYPT, and SCRYPT hash functions. In this experiment, we have used the default iteration 

values of the hash functions as they employed in the popular CMS. That is, we use: i) MD5 

with 8192 iterations, as this is the default setting in WordPress, ii) BCRYPT with 1024 

iterations, which is the default setting of Joomla iii) SHA512 with 65536 iterations, which is 

the default setting of Drupal. Moreover, to include also a MHF in the experiments, we use 

SCRYPT with 16384 iterations, as recommended in its specifications [28]. As it is observed, in 

all cases the increase of the CPU utilization is almost linear as the login rate increases. It is 

important to note that BCRYPT (i.e. Joomla), and SHA512 (i.e. Drupal) with their default 

settings could cause the CPU utilization to increase to 100% for rate equal to 20 and 25 requests 

respectively. By maintaining such CPU load, the web server cannot cope with the required login 

attempts, thus keeping occupied all the available Apache connections. This results in a denial 

of service at the application layer, since the web server cannot respond to new requests. A 

significant remark is that denial of service attacks realized even with 20-25 login requests per 

second, are not easily detectable by firewalls, if the logins are performed from different IPs 

(i.e., distributed denial of service). On the other hand, SCRYPT reaches 80% for rate equal to 

30 requests per second. It is important to mention that during the experiments we observed that 

when CPU utilization reached 80%, the website was responsive but its pages were loading after 

a significant delay (i.e., 10-15 seconds). Therefore, although SCRYPT did not reach 100% CPU 

utilization, it was still capable of clogging the web server. On the other hand, Figure 1 suggests 

that MD5 cannot deplete the CPU resources as its increase rate is very slow and does not exceed 

30% CPU utilization. Based on the above, we can conclude to the following observation: 

Observation 12: Slow rate denial of service attacks against websites that use hash functions 

with iterations are feasible (except for MD5). BCRYPT with 1024 iterations can reach 100% 
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CPU utilization, even for login rate equal to 20 requests per second. This result is alarming 

considering that distributed denial of service attacks originated by botnets can far exceed the 

rates of our experiments. As mentioned in [51] the majority of the distributed denial of service 

attacks in 2017 was performed using 100 to 1000 requests per second. 

 

Figure 1: CPU utilization vs login rate 

Although slow rate denial of service attacks are not easily detectable by intrusion detection 

systems and next generation firewalls [52], the nature of our considered denial of service based 

on password hashing has a weak point that defenders can take advantage of, to withstand 

websites against this attack. In particular, by using a mechanism called rate-limit (aka throttle), 

a website can block the usernames related to the incorrect logins, for a specific time period 

when a predefined threshold of failed consecutive attempts is reached. In this way, attackers 

cannot continue performing the denial of service for a long time period, since eventually all the 

usernames under the possession of the attacker will be blocked and the related login attempts 

will be discarded. Another beneficial characteristic of this solution lies to the fact that the rate 

limit can be applied at the application layer. As a matter of fact, there are many ready to use 

free CMS plugins, (such as [53] for WordPress) or a middleware for web application 

frameworks (such as [54] for CakePHP) that an administrator/developer can consider to use. 

Observation 13: It is imperative to employ rate-limit in websites to mitigate denial of service 

attacks based on concurrent login attempts. The rate limit of login attempts is an effective and 

easy to deploy security mechanism available in many CMS and web applications frameworks. 

NIST guidelines consider as highly important to enforce rate limits and recommend maximum 

100 failures account [31]. 

In the next two experiments we will investigate if password length and iterations can cause 

denial of service attacks even for very slow rates. More specifically, Figure 2 shows the CPU 

utilization versus the password length for the same hash functions and iterations number as in 

the previous experiment. The rate of attempts is equal to 1 request per second. The first and 

most important finding is that SHA512 with 65536 iterations (i.e., Drupal default settings) is 

vulnerable to denial of service attacks, since the CPU utilization reaches 100% for password 

length equal to 6000. MD5 has also an increasing behavior but reaches almost 15% CPU 

utilization for password length equal to 10.000. This happens because MD5 and SHA512 do 

not have a maximum acceptable password length. On the contrary, BCRYPT has a constant 

CPU utilization independent from the password length, because the maximum password length 

for BCRYPT is 72 characters. Lastly, although SCRYPT does not have a password length 

limitation, its’ CPU utilization does not change significantly, possibly due to its fast runtime on 

CPUs (see Table 6). Based on the above results, we infer that CMS and application frameworks 

should set by default a maximum acceptable password length policy to avoid denial of service 
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with very large passwords. We discovered that WordPress by default limits to 4096 characters, 

while Drupal limits even more the password length to 128 characters.  

 

Figure 2: CPU utilization vs password length  

Observation 14: All websites that use SHA1, SHA256,SHA512 or PBKDF2 with very high 

number of iterations should accordingly limit the maximum password length similarly to 

WordPress and Drupal to avoid falling victim of denial of service. On the other hand, BCRYPT 

and SCRYPT are not susceptible to denial of service with large passwords. 

Finally, Figure 3 shows the CPU utilization as a function of iterations. In this experiment, we 

use a small password length and slow login rate, equal to 10-character and 1 request/sec 

respectively. From Figure 3 we can observe that in all cases the CPU utilization increases with 

iterations. However, increasing iterations we also increase the resistance of passwords against 

guessing attacks. In other words, the iterations regulate an inherent tradeoff between security 

and performance. In particular, as the number of iterations increases, on the one hand the 

password hashes are more resistant to guessing attacks (security), but on the other hand CPU 

utilization is increased (performance). Figure 3 depicts also that BCRYPT is vulnerable to 

denial of service, since it reaches 100% CPU utilization with 32768 iterations, while SCRYPT 

reaches only 25% CPU utilization for 65536 iterations. At the same time, the runtime for 

SCRYPT is lower than 1 second in typical server machine (see Table 6), which makes it suitable 

for interactive logins, due to its small authentication delay. Subsequently, we can conclude to 

the following observation: 

 

Figure 3: CPU utilization vs iterations  

Observation 15: Compared to BCRYPT, SCRYPT is more scalable in the sense that the number 

of iterations can be increased for password security without introducing denial of service 
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conditions and login delays provided that the web server has enough physical memory ( >4 

GB).  

8 Discussion 

In light of our analysis, this section provides recommendations and alternative solutions to 

enhance robustness of passwords against guessing attacks. 

Update NIST recommendations. As mentioned previously, NIST recommends the use of 

PBKDF2 with 10.000 iterations minimum. Based our observations, we believe that NIST 

guidelines should be updated to replace PBKDF2 with a MHF, which is adequately audited and 

proved that it is robust against attacks. 

Use of secure default settings. One of the most influential insights from the behavioral 

sciences is that whatever is in the “default” position generally persist. Thus, CMS developers 

should shift from an “opt-in” to an “opt-out” policy with stronger security configurations. Web 

application frameworks should also follow this practice and avoid making the assumption that 

developers are able to select secure and appropriate hashing schemes (e.g., use of salt, password 

policy, etc.). 

Upgrade legacy hash functions. Regarding legacy hash functions, it is a fact that many 

websites have remained with outdated hash functions such as MD5 or SHA1. The problem that 

hinders adoption of a new hash function is the possible frustration to the users of the website, 

because they will be forced to register once again to provide a new password for the new hash 

function [55]. We argue that there are two possible ways to upgrade a hash function without the 

need of a new registration. The first solution is to keep two tables side by side one with the old 

hash function (e.g., MD5) and another table for the new hash function. When a user logs in for 

the first time after the addition of the new hash function, the website will first verify the legacy 

hash (e.g., MD5) and then store the new hash (derived from the new hash function). When all 

the new hashes have been calculated by all users, then the website can delete the old table with 

the MD5 hashes. This solution is feasible only for a small number of users, otherwise it could 

take an extremely long time to achieve the migration to the new hash function. The second 

solution is called layered hashing scheme and it has been adopted by Facebook [56] (see Figure 

4). The idea is to use multiple hashes one after the other. That is, the output of a hash function 

becomes input for another hash function. In this way, a website can update a hash function at 

any time simply by adding a new layer of a hash function, eliminating the need to maintain two 

separate tables and wait the users to log in first. In the case of Facebook, the layered hashing 

scheme is as follows:  

1.  H = md5(pwd)  (the legacy hash function) 

2.  H = hmacsha1(H, K1, salt) (K1 is a secret 

3.  H = Cryptoservice::hmac(H, K2) (K2 is a secret key stored in the cryptoservice) 

4.  H = scrypt(H, salt) (the new key hash function. Depending on the implementation SCRYPT output 

length can be several bytes) 

5.  H = hmacsha256(H, K3, salt)  (this hash function is used to limit the output length to 256 bits) 

Figure 4: Layered Hashing scheme of Facebook 

Note that in step 3, the Cryptoservice::hmac(H, K) refers to the computation of a hash value by 

an external service (see below for analysis) using a keyed HMAC function (this is known as 

distributed hashing – see below). In the example of Facebook, the output of the legacy MD5 

(i.e., step 1) is being used as an input to multiple hash function including a HMACSHA1 in step2, 

another HMAC value (with unknown hash function) in a remote cryptoservice (i.e., step 3), an 

SCRYPT (i.e., step 4), and finally a HMACsha256 (i.e., step 5). Therefore, using this layered 
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approach, a hash function can be updated without causing disruptions to the normal operation 

of the website. 

Distributed hashing. A solution which is orthogonal to the actual hash function that a website 

uses and can substantially protect against offline password guessing attacks is named 

distributed hashing. The main idea of this solution lies in the delegation of the hash value 

computation to an external service. More specifically, a hashing scheme which is composed of 

multiple hash functions as the one presented previously in Figure 4 can offload the computation 

of an intermediate hash calculation to a remote crypto service (aka crypto as a service) and send 

back the hashed value back to the web application to continue the calculation of the hash value. 

Note that the hash calculation in the cryptoservice is based on a keyed HMAC function, using 

a secret key, which is stored in the cryptoservice (see step 3 in Figure 4). In this way, even if 

an attacker is able to compromise the database of a web platform, in order to perform the 

guesses, he should necessarily request the cryptoservice to obtain the intermediate hash value, 

since the attacker does not possess the secret key for the HMAC function. In this way, the 

offline guessing attack becomes an online attack, which means that the cryptoservice can detect 

anomalies (i.e., a spike due to attempts of the attacker) and throttle appropriately the traffic 

(thus reducing the number of attempts an attacker can perform). Of note, recently a new 

research area has emerged [57] [58] [59] where the aim is to enhance the cryptographic 

primitives used in distributed hashing schemes to eliminate possible attacks against crypto 

services. 

Federation and FIDO. Moreover, websites can opt for federated authentication solution using 

OpenID Connect protocol. In this way, there is no need for websites to maintain a user database 

including passwords, due to the delegation of authentication to established services such as 

Google and Facebook. On the users’ side, good security practices for selecting passwords are 

still relevant. Users should select high entropy long passwords and avoid reusing passwords 

across multiple websites. What is more, passwords managers and two-factor authentication are 

traditional yet effective measures to resist against password cracking. Also, the emerging FIDO 

protocol [60], which is based on device-centric authentication, aims to eliminate the use of 

passwords using public key cryptography. 

Server relief. Regarding denial of service attacks that take advantage of intensive hash 

functions to overload web servers, these can be mitigated by the use of a relatively new 

mechanism named server relief. As a matter of fact, Argon2 has adopted this solution to 

facilitate web servers to withstand against denial of service attacks. The rationale of server relief 

mechanism is to allow the server to carry out the majority of computational burden on the client. 

That is, instead of doing the entirety of the computation on the server, the client does the most 

demanding - in terms of computation - parts and then the client sends the intermediate values 

to the server, which calculates the final hash value. Evidently, all intermediate values on the 

client side should not leak any information for the actual password. An overview of various 

server relief solutions highlighting advantages and drawbacks can be found in [61]. 

9 Conclusions 

This paper has evaluated the security of hashing schemes for popular CMS and web application 

frameworks. We proposed a framework that allows us to quantify the cost time of password 

guessing both for brute force and dictionary attacks. Next, we identified the default hashing 

schemes of various CMS and web applications frameworks and based on our findings we 

derived a set of critical observations. We concluded that the majority of CMS and web 

applications frameworks do not offer secure default settings. We observed usage of outdated 

hash functions, arbitrary number of iterations, lack of password policies and salt. Next, we 

applied our cost analysis framework to the default settings, in order to perform a comparative 

security analysis between the various CMS and web applications frameworks. We also 
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investigated whether hashing schemes can be misused to lead to denial of service attacks. 

Finally, we provided a set of best practices and alternative solutions to enhance the security of 

password storage. In general, we believe that the security status of the hashing schemes calls 

for changes with new recommendations and updates. Based on our analysis we advocate that 

password hashing standards should be updated to require and not merely suggest the use of 

MHF. It would be also beneficial, policy makers to audit and penalize organizations that fail to 

follow appropriate standards for password hashing. 
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