
Parallelizing�ickref
Didier Verna

EPITA
Research and Development Laboratory

Le Kremlin-Bicêtre, France
didier@lrde.epita.fr

ABSTRACT
Quickref is a global documentation project for Common Lisp soft-
ware. It builds a website containing reference manuals for Quicklisp
libraries. Each library is �rst compiled, loaded, and introspected.
From the collected information, a Texinfo �le is generated, which is
then processed into Html. Because of the large number of libraries
in Quicklisp, doing this sequentially may require several hours of
processing. We report on our experiments parallelizing Quickref.
Experimental data on the morphology of Quicklisp libraries has
been collected. Based on this data, we are able to propose a number
of parallelization schemes that reduce the total processing time by
a factor of 3.8 to 4.5, depending on the exact situation.

CCS CONCEPTS
• Computing methodologies → Parallel algorithms; • Soft-
ware and its engineering→ Software performance; Software
libraries and repositories; • Applied computing → Hypertext
languages;

KEYWORDS
Parallelization, Multi-Threading, Software Performance, Software
Documentation, Typesetting
ACM Reference Format:
Didier Verna. 2019. ParallelizingQuickref. In Proceedings of the 12th European
Lisp Symposium (ELS’19). ACM, New York, NY, USA, 8 pages. https://doi.
org/10.5281/zenodo.2632534

1 INTRODUCTION
Quickref is a global documentation project for Common Lisp [9]
software. It builds a website containing reference manuals for li-
braries available in Quicklisp1. Quickref is freely available2, so
anyone can create a local version of the documentation website for
personal use, but we also maintain a public website documenting
the whole Quicklisp world3.

Quickref itself is actually not much more than a layer of integra-
tion “glue” cadencing the inter-operation of four external software
components (see Section 2). Until recently, it essentially consisted
1https://www.quicklisp.org
2https://gitlab.common-lisp.net/quickref
3https://quickref.common-lisp.net

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’19, April 01–02 2019, Genova, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-3-8.
https://doi.org/10.5281/zenodo.2632534

in a big loop, iterating over every Quicklisp library, and sequentially
executing all the steps required in producing the corresponding
reference manual, from downloading the library to actually pro-
ducing an Html �le. Because Quicklisp is quite large (it currently
provides more than 1700 libraries), this process could take between
1h30 and 7 hours on our test machine, depending on the exact
conditions. Even if 7 hours, the worst case scenario, still �ts nicely
into one night of batch processing, it is worth trying to improve
the performance of the system, notably by means of parallelism.
The purpose of this article is to report on this work.

Section 2 describes the tool-chain involved in the generation of
the reference manuals and some important characteristics of the
involved software components. Section 3 presents the experimental
conditions and the various con�gurations used to perform timing
measurements. Section 4 provides and analyzes some preliminary
global measurements, giving us a general idea of what to expect.
Section 5 proposes di�erent parallel solutions, each one coming
with its pros and cons. Finally, after the conclusion, an extensive
discussion is proposed in Section 7.

2 QUICKREF TOOL-CHAIN
Figure 1 depicts the typical reference manual production pipeline
used by Quickref, for a library named foo.

(1) Quicklisp is �rst used to make sure the library is installed up-
front. This is done by calling ql-dist:ensure-installed,
and results in the presence of a directory for that library (a
release in Quicklisp terms) in the Quicklisp directory tree.
Currently, Quickref only considers one system per library,
called the primary system. How exactly this system is com-
puted is unimportant for this paper.

(2) Declt4 is then run on the primary system to generate the doc-
umentation. Declt is another library of ours, written 5 years
before Quickref, but with that kind of application in mind
right from the start. In particular, it is for that reason that
the documentation generated by Declt is in an intermediate
format called Texinfo.

(3) The Texinfo �le is �nally processed into Html. Texinfo5
is the GNU o�cial documentation format. There are two
main reasons why this format was chosen when Declt was
originally written. First, it is particularly well suited to tech-
nical documentation. More importantly, it is designed as an
abstract, intermediate format from which human-readable
documentation can in turn be generated in many di�erent
forms (Pdf and Html notably).

4https://www.lrde.epita.fr/~didier/software/lisp/misc.php#declt
5https://www.gnu.org/software/texinfo/

https://doi.org/10.5281/zenodo.2632534
https://doi.org/10.5281/zenodo.2632534
https://www.quicklisp.org
https://gitlab.common-lisp.net/quickref
https://quickref.common-lisp.net
https://doi.org/10.5281/zenodo.2632534
https://www.lrde.epita.fr/~didier/software/lisp/misc.php#declt
https://www.gnu.org/software/texinfo/


ELS’19, April 01–02 2019, Genova, Italy Didier Verna

Quicklisp foo/ Declt foo.texi Makeinfo foo.html

Figure 1: Reference Manual Generation
Main thread, External Process

Quickref essentially runs this pipeline on every available library
(it currently has the ability to limit itself to what is already installed,
or process the whole Quicklisp world). Some important remarks
need to be made about this process.

First of all, Declt works by introspection: it uses Asdf6’s load-
system function to load the system being processed, which may
involve compiling and loading some dependencies as well as the
system itself. It then introspects the system to collect documen-
tation items, notably by way of the sb-introspect facility from
Sbcl7. Given the size of Quicklisp, it would be unreasonable to
load almost two thousand libraries in a single Lisp image. For that
reason, Quickref doesn’t actually run Declt directly, but instead
uses uiop:run-program to fork an Sbcl script to do it.

Similarly, makeinfo (texi2any in fact), the program used to
convert the Texinfo �les to Html, is an external program written
in Perl (with some parts in C), not a Lisp library. Thus, here again,
uiop:run-program is used to fork a makeinfo process out of the
Quickref Lisp instance.

In light of these remarks, the reader must keep in mind the
following points.

• Declt and Texinfo are treated as monolithic black boxes (in
fact, Asdf as well), that is, we don’t attempt to alter their
operation. Any attempt at parallelization will hence boil
down to scheduling the declt and makeinfo processes in
a speci�c way. Thus, when we speak of “threads” in the re-
mainder of this paper, we actually mean small Lisp functions
that essentially fork external processes and wait for them,
in a loop.

• Because running Declt may require the compilation of Lisp
components, possibly including dependencies, and because
di�erent libraries may share the same dependencies, there is
an inherent concurrency problem in writing the compilation
�les. Care must hence be taken to protect against those
potentially concurrent accesses when needed.

3 EXPERIMENTAL CONDITIONS
3.1 Environment
All benchmarks reported in this paper were collected on a De-
bian Gnu/Linux8 system, version 9.6 “Stretch”. Quicklisp currently
requires Debian 9 for testing, and advertises the list of required
foreign dependencies. This environment hence guarantees that as
many libraries as possible could be handled. All foreign dependen-
cies were pre-installed, most of them already packaged by Debian.
We used Sbcl 1.4.0, cloned from its Git repository and manually
compiled with --fancy (which, among other things, activates multi-
threading).

6https://common-lisp.net/project/asdf/
7http://www.sbcl.org/
8http://www.debian.org

The computer used was a Dell Precision T1600, equipped with
16GB of RAM, a 120GB mechanical hard drive and an Intel Xeon
E3-1245 processor. This processor has 4 hyper-threaded cores[7],
so that 8 threads are actually available. Note that as of version 2.4,
the Linux kernel is aware of hyper-threading. Debian 9 includes
version 4.9. Although the various timings reported in this paper
were collected from single runs (as opposed to averaging several
ones), the machine was freshly rebooted in single-user mode, in
order to avoid non-deterministic operating system or hardware
side-e�ects as much as possible.

For the Quickref tool-chain, the following software components
were used: Declt 2.4.1, Makeinfo (texi2any) 6.5, and an up-to-date
Quicklisp version 2019-01-07. This version of Quicklisp contains
1719 libraries. It is worth noting that Quickref currently fails on
less than 2% of those libraries, for various reasons: dependency
problems (foreign or not), compilation problems, Declt problems
etc. These issues are out of the scope of this paper, so we simply
�ltered out the problematic libraries in our reports.

3.2 Con�guration
While Quickref is primarily meant to build a complete documenta-
tion website for Quicklisp, a number of options are available, which
need to be taken into account in our experiments.

3.2.1 Libraries and updating policy. By default, Quickref attempts
to globally update Quicklisp before processing, which is the right
thing to do for the public website. Individual users, however, also
have the possibility to create a local website for their personal
working environment only. To this end, Quickref makes it possible
to only consider the libraries already installed on the local machine
(instead of the whole Quicklisp world), and also to avoid updating
those if that is unwanted. As a consequence, and depending on the
exact situation, documenting a library with Quickref may or may
not lead to downloading some code, and may or may not trigger
some Lisp compilation (dependencies included) before actually
loading and introspecting it.

3.2.2 Cache policy. On several occasions, we observed problems
related to the compilation of common dependencies. One typical
problem is when two libraries depend on a third one, and that
dependency needs to be compiled in two di�erent ways. A global
compilation cache, as provided by Asdf by default is bound to
fail. Another problem (which, at least in our opinion, should be
regarded as a bug) is when the compilation or loading of a library
leads to global side-e�ects on the top-level environment. The latest
example we saw is that of common-lisp-stat, globally changing
the reader’s default �oat format from single-float to double-
float[10]. This kind of behavior is bound to cause problems, espe-
cially when almost two thousand libraries are involved. Because of
that, Quickref now has an option for making Asdf use a di�erent,
local, compilation cache for every documented library.

https://common-lisp.net/project/asdf/
http://www.sbcl.org/
http://www.debian.org


Parallelizing�ickref ELS’19, April 01–02 2019, Genova, Italy

Makeinfo
40 %

Declt
41 %

Loading
3 %

Compilation
16 %

Figure 2: Time Distribution w/ compilation

3.2.3 Scenarios. In order to take into account all those di�erent
options, we have experimented on 3 di�erent situations.

(1) All the libraries are already compiled, so Declt just needs
to load them. This is the best-case scenario. Also, note that
whether the compilation cache is global or local doesn’t
matter here.

(2) The libraries are not compiled, but a global compilation cache
is used, so that no redundant processing occurs. This should
be regarded as the intermediate, most frequent scenario.

(3) The libraries are not compiled, and local compilation caches
are used. This is the absolute worst-case scenario.

Note that regardless of the scenario, we always process the en-
tirety of Quicklisp (modulo the failures), and the 1719 libraries in
question are already downloaded. Network connectivity is consid-
ered too �uctuating to be included in benchmarks, and besides,
including it would hinder the idea of experimenting in single-user
mode, in order to be as deterministic as possible. Under those con-
ditions, we measured that in the original, sequential version of
Quickref, scenario 1 takes 1h 27m, scenario 2 takes 1h 51m, and
scenario 3 takes 7h 01m.

4 PRELIMINARY ANALYSIS
In order to get a general idea on the behavior of the di�erent soft-
ware components involved, we performed a set of preliminary
measurements, which we partially report and analyze in this sec-
tion. We separately collected Asdf load/compile times, and Declt
and Makeinfo processing times for every Quicklisp library. As of
this writing, the code used to collect that experimental data is avail-
able in the benchmark branch of the Quickref repository. The data
itself is also publicly available9.

4.1 Time Distribution
Figures 2 and 3 depict the time distribution for scenarios 2 and
1 respectively, that is, with a global compilation cache, with or
without compilation. The actual values were obtained by summing
the ones collected individually for each library, but they con�rm the
global timings reported at the end of section 3, which were obtained
in another run of the scenarios. Namely, compilation takes 16m
49s, loading requires 03m 22s, Declt needs 43m 19s, and Makeinfo
runs for 43m 06s. Note that the only measured redundancy here
9https://github.com/didierverna/quickref-benchmarks

Makeinfo
48 % Declt

48 %

Loading
4 %

Figure 3: Time Distribution w/o compilation

Makeinfo
10 %

Declt
10 %

Loading
1 %

Compilation
79 %

Figure 4: Time Distribution w/ separate compilation

is in Asdf load times. Indeed, compilation, Declt, and Makeinfo
processing occur only once per library. However, the load time
measurements include not only the libraries themselves, but also
their dependencies, such that the actual measure for one library
corresponds to the number of times it appears as a dependency,
plus one.

The important information we get is that Declt and Makeinfo
require practically the same amount of time to run in total. By
summing Asdf time and Declt time, we see that in scenario 1 (no
compilation required), Texinfo generation takes 52% of the time,
versus 48% for Html generation. In scenario 2, Texinfo generation
takes 60% of the time, versus 40% for Html generation. We did not
collect numbers for scenario 3 (separate compilation directories for
every library), but we can reconstruct them quite easily. Indeed, the
Makeinfo, Declt, and Asdf load times are the same. The remainder
of the 7h 01m, which amounts to 5h 32m, is thus devoted to (re-
dundant) compilation. In this scenario, shown in Figure 4, Texinfo
generation takes 90% of the time while Html generation involves
only the other 10%.

4.2 Time Shapes
Figures 5 and 6 provide two di�erent views on the Declt processing
real times. The �rst one displays the timings on a logarithmic scale,
library per library (the libraries appear by lexicographic order on the
X axis). The second one provides a histogram of the same data, with
logarithmic scale on both axis. The actual numbers unimportant.
What is important, on the other hand, is the general shape and
characteristics of the data distribution.

https://github.com/didierverna/quickref-benchmarks


ELS’19, April 01–02 2019, Genova, Italy Didier Verna

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600

Te
xi
nf
o
ge
ne
ra
tio

n
/D

ec
lt
re
al
tim

e
(s
ec
on

ds
)

Libraries

Figure 5: Declt real time per library

0.1

1

10

100

1000

10000

1 10 100

N
um

be
ro

fl
ib
ra
rie

sp
er

1/
2
se
co
nd

si
nt
er
va
ls

Texinfo generation / Declt real time (seconds)

Figure 6: Declt real time histogram

The �rst remark is the very wide range of processing times. They
spread from approximately 1s to 5m 19s. The second remark is that
most of the processing times are short compared to the maximum
value. 75% of the libraries are processed in less than 1.5s, 92% in
less than 2s, and 96% under 2.5s. Only 20 libraries require more
than 5s for processing. Unfortunately, and this is the third remark,
we cannot really take advantage of this knowledge in our parallel
design, because there isn’t any actual probability law underlying
this data distribution. The average time is 1.67s, the median is of
1.23s, but the standard deviation is 7.99, which is meaningless, given
the fact that all our timings are positive. In fact, the reason for this
is that we cannot discard the “aberrant” values as experimental
accidents, because they aren’t: they are reproducible. For example,
the library taking more than 5 minutes of Declt processing is lisp-
interface-library. Further investigation shows that no matter
how many times we repeat the Declt run, the timing will remain
within that order of magnitude. Thus, when a thread is busy running
Declt on that library, it will stay busy for around 5 minutes, a time

during which 180 average libraries could be processed. That is 10%
of Quicklisp!

We have conducted the same analysis for Asdf compile & load
times, Asdf load times only (pre-compiled), and Makeinfo process-
ing times. We do not report the results here. Su�ce to say that in
every case, we note the same kind of morphology: very wide range
of values, high concentration of smaller values with a small, yet
undiscardable number of “aberrations”.

5 PARALLEL SOLUTIONS
As of this writing, the parallel solutions presented below are all
implemented in a Quickref subsystem, automatically loaded when
Sbcl has multi-threading support compiled in. They may be dy-
namically selected and parametrized (e.g. number of threads for
each task) through a set of keywords to the main Quickref entry
point (the build function).

5.1 Solution 1
The �rst proposed solution is presented in Figure 7. This solution
uses only two threads, and takes advantage of the natural sequenc-
ing of operations to establish a shared bu�er of Texinfo �les between
Declt and Makeinfo. The main thread builds the Texinfo �les se-
quentially (in any order). The second thread waits for them, grabs
them (possibly by batches, emptying the shared bu�er in one shot),
and converts them to Html.

5.1.1 Advantages. This solution is very simple to implement. There
is only one shared resource: the bu�er of Texinfo �les. Only two
threads are required, so it can work on older CPU’s (e.g. dual-core
without hyper-threading), or be less demanding on an otherwise
busy or shared computer. Because the libraries are processed se-
quentially by Declt, no concurrent compilation occurs, so this solu-
tion may be used in either of our three scenarios.

5.1.2 Drawbacks. This solution’s strengths �ow from the same
well as its weaknesses. Because only two threads are used, it will
not take full advantage of the available resources. Besides, we know
from Section 4.1 that depending on the scenario, Texinfo processing
takes 48%, 40%, or only 10% of the time. This means that the Html
thread will in general be waiting more than working.

5.1.3 Experimentation. Experimentation with this algorithm con-
�rms our analysis. Scenario one (no compilation) now takes 48m
30s instead of 1h 27m (almost twice as fast). Scenario 2 (global cache
policy) takes 1h 05m instead of 1h 51m (we save roughly 40% of the
time). Scenario 3 (local cache) takes 6h 22m instead of 7h 01m (we
save around 10% of the time).

Note that because the Texinfo �les are completely independent
of each other and have no dependencies, it is straightforward to
add more threads for Texinfo processing (the exact same function
may be spawned multiple times). This, however, would be useless,
as Texinfo processing is not where most of the time is spent. Again,
experimentation also con�rms this. Only in the next solutions will
it become pro�table to parallelize Html generation.

5.2 Solution 2
Solution 2, presented in Figure 8 is a logical extension to solution 1.
This time, the main process spawns several threads building Texinfo



Parallelizing�ickref ELS’19, April 01–02 2019, Genova, Italy

Libraries Declt Texinfo Files Makeinfo HTML Files

Figure 7: Solution 1
Main thread, Html thread

Libraries Declt

Declt

Declt

Texinfo Files Makeinfo

Makeinfo

Makeinfo

HTML Files

Figure 8: Solution 2
Declt threads, Html threads

�les in parallel, and several others generating the Html ones. As
before, a shared bu�er of Texinfo �les is used, but compared to
solution 1, there are some notable di�erences or complications.

• Because multiple Declt threads exist, the original pool of
libraries now becomes a shared resource. The Declt threads
must hence synchronize on it as well as on the shared bu�er
of Texinfo �les.

• Contrary to solution 1, the Makeinfo threads must not empty
the bu�er at once, grabbing a whole batch of Texinfo �les
to process. Indeed, we have learnt from Section 4.2 that
the time distribution is not homogeneous, and that some
libraries take an extremely long time to process, compared
to the average. Thus, if we were to grab batches of Texinfo
�les, we would risk an accumulation e�ect, whereby multiple
“short” Texinfo �les would be blocked behind a “long” one,
essentially re-sequentializing Html generation.

• For the exact same reason, it would seem ill-advised to simply
split the initial pool of libraries into as many Declt threads as
there are, and let them process their own batch sequentially.
Instead, each thread will just process one library at the time.

5.2.1 Advantages. This solution will let us �ne-tune the number
of threads devoted to each task, depending on the machine at hand,
or the scenario involved.

5.2.2 Drawbacks. Because the libraries are processed in parallel
by Declt, in no particular order, concurrent compilation of common
dependencies may occur. This solution can thus be safely used in
scenarios 1 and 3 only.

5.2.3 Experimentation. Forti�ed by the time distribution reported
in Section 4.1, we were able to �ne-tune the number of threads in
this solution to match our expectations. For scenario 1 (no compila-
tion), the best results are achieved with the same number of threads
for Declt and Makeinfo, speci�cally 4 and 4, corresponding to the
hyper-threaded quad-core hardware con�guration used in the ex-
periments. It now takes 21m 47s to complete scenario one, which
corresponds roughly to 25% of the original 1h 27m. For scenario 3
(local cache), the best results are achieved with 8 Declt threads and
2 Makeinfo threads. It now takes 1h 51m to complete scenario 3,
which corresponds roughly to 26% of the original 7h 01m.

1 2 3 4 5 6 7 8 9 10 11

N
um

be
ro

fl
ib
ra
rie

s

Batches of standalone libraries (�rst to last)

460

305

237
268

178
162

70

22 10 4 1

Figure 9: Library batches

5.3 Solution 3
Solution 3 is a re�nement of solution 2 aiming at making it work
with scenario 2 (global compilation cache). Remember that the com-
plication comes from two libraries sharing common dependencies.
Any attempt at loading them in parallel could result in the simulta-
neous compilation of the same dependency, followed by concurrent
writing of the same fasl �le. In order to prevent this, we must en-
sure that libraries processed in parallel by Declt do not have any
dependencies in common, or only already compiled ones. We call
those standalone libraries.

This problem is of course closely related to that of topological
sorting[6], with the exception that we don’t need full serialization.
On the contrary, we want to retrieve batches of standalone libraries
for parallel processing. The proposed solution is quite simple. First,
we build a dependency graph of the libraries. The leaves in this
graph do not have any dependencies, so they can be processed
in parallel. We collect them; they constitute our �rst batch. We
remove them from the graph, which leads to a new set of leaves,
constituting the second batch. We repeat this process until the
graph is exhausted. For the curious, Figure 9 shows those batches



ELS’19, April 01–02 2019, Genova, Italy Didier Verna

Library Batch

Batch 1

Batch 2

Declt

Declt

Declt

Figure 10: Solution 3, stage 1
Main thread, Declt threads

in the current Quicklisp distribution. We got 11 batches of 460 to
only 1 libraries, from �rst to last.

In order to adapt solution 2 to this new scheme, a new shared
bu�er is created (see Figure 10). The Declt threads pick libraries
from it instead of from the original libraries pool. The main thread
sends successive batches of standalone libraries to this bu�er, and
waits for them to have been exhausted before sending the next
batch in. The rest of solution 2 is unchanged (in particular, the
Html generation code can be re-used without modi�cation).

5.3.1 Advantages. At the expense of a slightly more complicated
synchronization logic, this solution may be used in any of our 3
scenarios. In the current status of Quicklisp, the dependency graph
is relatively small (less than two thousand nodes), which means that
the additional computation time required to handle it is negligible
compared to the 21m 47s of our current most optimistic situation.

5.3.2 Drawbacks. Before sending the next batch in, themain thread
must wait for all libraries in the current batch to have been entirely
processed by a Declt thread; not just have been picked up by one
of them. At a �rst glance, this may not appear as a serious issue
because we only have 11 batches and a few threads handling them.
However, remember again from Section 4.2 that some libraries will
take a very long time to process. If, for example, such a “long”
library is part of a small batch, the batch will be quickly emptied,
and all Declt threads will essentially become dormant until the
“long” library is treated. This is yet another form of accumulation
e�ect that can potentially hinder the parallelization.

5.3.3 Experimentation. Because the time required to maintain the
dependency graph is negligible, this solution is not expected to
make much di�erence in scenarios 1 (no compilation) and 3 (local
cache), as it would boil down to handling the libraries in a di�erent
order. For scenario 2, the best result was obtained with an equal
number of threads for Declt and Makeinfo, namely, 4 of each (again,
corresponding to the hyper-threaded quad-core hardware con�g-
uration used in the experiments). There, the overall computation
time fell down to 29m 21s, that is, 26% of the original sequential
time. Given the time distribution in Figure 2, we also tried matching
that proportion, for example with 5 Declt threads and 3 Makeinfo
ones. We only got similar (inconclusive) result only di�ering by
less than 5%.

6 CONCLUSION
As mentioned in the introduction, the absolute worst case scenario
for Quickref, which is to build the complete Quicklisp documenta-
tion from scratch, takes around 7 hours on our test machine. Even
if such a duration may appear reasonable for batch processing,
we still believe that parallelization is not a vain endeavor. First of
all, the ability to use Quickref interactively (creating for example
one’s own local documentation website) makes it worth improving
its e�ciency as much as possible. Secondly, Quicklisp itself is an
ever-growing repository (monthly updates usually add at least a
dozen new libraries to the pool), and so is the time to generate the
documentation for it.

In this paper, we have devised a set of parallel algorithms, and
experimented with them in di�erent scenarios corresponding to
the typical use-cases of Quickref. On our test machine, we were
able to reduce the required processing time roughly by a factor of
4 compared to the naive sequential version, which is already quite
satisfactory. The absolute worst-case scenario fell under 2 hours,
and the most frequent one under half an hour. For all that, and in
spite of the fact that gracefully handling concurrency is always
a tricky business, our parallel solutions remain quite simple. The
implementation of solution 3, for example, requires only 3 shared
resources (2 bu�ers and a counter), 2 mutexes and 3 condition
variables. It was implemented directly with Sbcl’s multi-threading
layer, without resorting to higher level libraries.

This work also lead us to perform various preliminary measure-
ments and analysis on Common Lisp libraries (compilation and
load time, Declt and Makeinfo run time, dependency graphs, etc.).
As mentioned before, the collected experimental data and their in-
terpretation is publicly available. We think this data could be useful
for other projects, and we already know for a fact that the current
Texinfo maintainers are interested. Only a small part of those re-
sults have been presented in this paper. We are con�dent the rest
will be extremely useful for future re�nements. Indeed, there are
still many things that can be done to improve the situation even
more.

7 DISCUSSION & PERSPECTIVES
7.1 Alternative Solution
Yet another, alternative, parallel solution exists, depicted in its en-
tirety in Figure 11. This solution consists in processing the libraries
in parallel, yet, without breaking the Declt / makeinfo chain. Mul-
tiple threads (8 would probably be an appropriate number on our
test machine) pick libraries to process, and sequentially run Declt
followed by Makeinfo on them. As solution 2 (Section 5.2), this
algorithm can be made to work on scenarios 1 and 3 only, or, as
solution 3 (Section 5.3) can be combined with library batches in
order to also work on scenario 2. This is what Figure 11 depicts. In
the future, and mostly out of curiosity, we may experiment with
this solution.

Note however that we don’t expect it to make much di�erence
compared to solution 3. In solution 3, we have indeed fewer threads
picking libraries up for Declt processing, but on the other hand,
these threads also return more quickly to the library pool / batch,
since they are not in charge of Makeinfo. In fact, our gut feeling is



Parallelizing�ickref ELS’19, April 01–02 2019, Genova, Italy

Library Batch

Batch 1

Batch 2

Declt

Declt

Declt

Makeinfo

Makeinfo

Makeinfo

HTML Files

Figure 11: Alternative Solution
Main thread, Declt & Makeinfo threads

that solution 3 may remain slightly better, as it is probably more
gentle on the overall waiting times.

7.2 Dependency Management Issues
Dependency management, required by solution 3, is a relatively
fragile mechanism. Currently, we base our knowledge of depen-
dencies on static information provided by Quicklisp directly, more
speci�cally, the required-systems slot from the ql-dist:system
class. This information is based onAsdf’s depends-on, defsystem-
depends-on, and also comes from observing the state of the envi-
ronment before and after loading the library.

The reliability of that information is somehow relative, however.
Any inaccuracy in that information can potentially lead to a cor-
rupted dependency graph, in turn risking unprotected concurrent
compilation. Here is, for example, one such scenario, reported by
the author of Quicklisp. This problem is currently known to a�ect
a couple of libraries.

Consider systems A and B, where A requires B to build. When
Quicklisp test-builds A, the A prerequisites are built in such a
way that B also successfully builds to satisfy A’s requirements.
But when Quicklisp test-builds B on its own, the environment is
di�erent in a way that precludes B from building. In that case,
the metadata in Quicklisp speci�es that A requires B, but B is
not listed at all, because it does not build on its own.

7.3 Library Ordering Re�nements
In Section 5.3, we introduced the idea of library batches, that is, sets
of libraries the loading of which wouldn’t entail any compilation
con�icts, and we mentioned the need to wait for batch exhaustion
before sending in the next one. This requirement, which is a lim-
itation, actually comes from the fact that only static information
(namely, the dependency relations) is used to create the batches in
question.

It is however possible to re�ne this idea. Indeed, the most perti-
nent information for us is not that library 1 depends on library 2, but
that the compilation of library 2 is over. In other words: concurrent
compilation is problematic; concurrent loading is not.

In order to improve on solution 3, we hence need one additional
piece of (run-time) information: we need to be noti�ed when a Declt
thread has �nished processing a library. The re�nement can then
go as follows. We create the same dependency graph as before, and
also initialize the library queue with the �rst batch as before (the

libraries with no dependencies), but this time, without removing
them from the graph. From now on, as soon as a library is done
processing by a Declt thread, we remove it from the graph. Any
new leaf in the graph stemming from that removal can then safely
be pushed immediately to the library queue.

An even better re�nement would be to not wait for Declt to �nish
processing, but only forAsdf to �nish compiling (this would require
a communication channel between the main thread and the external
Declt process though). This re�nement has not been implemented
yet, but it is a high priority, as we expect a somewhat substantial
gain from it. Note also that it can be used in the alternative solution
proposed in Section 7.1.

Currently, our dependency graph is implemented as a hash ta-
ble of adjacency lists[3]: the hash keys are the library names, and
the hash values are the lists of dependencies. Another possible
(and classical) implementation consists in using an adjacency ma-
trix[1], a potentially more compact representation. Whether one
representation would be more bene�cial than the other is currently
unknown. In particular, more investigation on the dependencies
morphology should be conducted, notably to discover whether the
adjacency matrix would risk being sparse or not (very likely). In
any case, the choice of representation is not expected to have much
impact on the performance, again, because the dependency graph
is relatively small (less than two thousand nodes), in front of at
least 20 minutes of total processing.

7.4 CPU vs. I/O Consumption
While the performance improvements obtained from solution 1 are
to be expected, getting only an improvement factor of 4 in solution
2 or 3 may appear somewhat surprising, even disappointing, espe-
cially since our test machine has 8 virtual cores (4 hyper-threaded
actual cores). Of course, a factor of 8 would be unrealistic. Studies
(from Intel or otherwise) have shown that an improvement of 30%
is not unreasonable to expect from hyper-threading[2, 11]. The
problem we have here is the fact that both Declt and Makeinfo are
treated as monolithic black boxes, so we don’t have any control on
their CPU vs. I/O consumption, an otherwise important aspect of
parallelization.

Declt works in two stages: �rst, an abstract in-memory repre-
sentation of the documentation is constructed by introspecting
the library. Next, the Texinfo �le is generated from that abstract
representation. The �rst stage is CPU-intensive, the second one is



ELS’19, April 01–02 2019, Genova, Italy Didier Verna

−3

−2

−1

0

1

2

3

4

0 200 400 600 800 1000 1200 1400 1600

D
ec
lt
/M

ak
ei
nf
o
re
al
tim

e
ra
tio

s(
lo
g)

Libraries

Figure 12: Declt / Makeinfo comparative timings

more pressing on I/O. On top of that, remember that the library
needs to be loaded by Asdf �rst, possibly with some compilation.
This will also entail several CPU or I/O intensive phases.

It turns out that Makeinfo works in a similar fashion, at least for
Html production (for Pdf, TEX is used). The �rst stage reads the
Texinfo �le into an abstract in-memory representation. This stage is
written in C, with a Perl interface. Then, the abstract representation
is altered in various ways, and the Html �le is �nally created. This
last stage is entirely done in Perl, and (according to the current
Texinfo maintainers) is probably much slower than the previous
ones.

Having no control over these di�erent processing phases is un-
fortunate, and is likely to be the cause of the “25% threshold” that
we seem to reach. It may very well happen, for instance, that regard-
less of the number of threads that we have, they all end up in an I/O
phase at the same time, essentially waiting on the same disk, while
subsequent CPU-intensive computation could have been started.
Improving that situation would require cracking the Declt and
Makeinfo “black boxes” open, possibly even the Asdf one, in order
to introduce parallelism at a lower level. Although we already have
some ideas about this, it would be a completely di�erent project.

7.5 Scheduling
In addition to the points raised in the previous sections (the idea of
library ordering in particular), the general question of scheduling
could be raised. For example, we could get inspiration from the
operating system theory, and think of improving things by mini-
mizing the waiting time in the various queues, as the SJF (Shortest
Job First) does in process scheduling[8]. The problem here is to
get a notion of what makes for the complexity (hence the time) of
the various tasks. Very preliminary investigation gives a somewhat
pessimistic impression. For example, the collected experimental
data shows that there is no correlation between Declt and Makeinfo
processing time (see Figure 12). For some libraries, Declt takes more
time than Makeinfo; for some others, it is the other way around,
etc. In the worst case scenario, we would need to run Quickref and
collect the data in question (which we did for this article), and use

it on the next Quicklisp release, hoping that the situation didn’t
change too much.

7.6 SSD Technology
Finally, note that the validity of the present study is highly de-
pendent on the fact that our test machine was equipped with a
traditional, mechanical hard drive. We haven’t had the opportunity
to experiment with SSD (Solid State Drive[4]) technology yet, but
their dramatically quicker access time and lower latency[5] is very
likely to rede�ne the parameters of our study.

ACKNOWLEDGMENTS
The author would like to thank Zach Beane for his feedback on how
Quicklisp handles dependencies across libraries, and Karl Berry,
Gavin Smith, and Patrice Dumas for their insight into the inner
workings of the Texinfo system.

REFERENCES
[1] Norman Biggs. Algebraic Graph Theory. Cambridge University Press, 1993.

De�nition 2.1, p. 7.
[2] Shawn D. Casey. How to determine the e�ectiveness of hyper-threading tech-

nology with an application. Intel Technology Journal, 6(1), 2011.
[3] Thomas Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein. In-

troduction to Algorithms. The MIT Press, 2009.
[4] Neal Ekker, Tom Coughlin, and Jim Handy. An introduction to solid state storage.

SNIA White Paper, January 2009.
[5] Vamsee Kasavajhala. Solid state drive vs. hard disk drive price and performance

study. Dell Technical White Paper, May 2011.
[6] D. E. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley, 1968.

Section 2.2.3.
[7] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Koufaty,

Alan J. Miller, and Michael Upton. Hyper-threading technology architecture and
microarchitecture. Intel Technology Journal, 6(1), February 2002.

[8] Andrew S. Tannenbaum and Herbert Bos. Modern Operating Systems. Pearson,
4th edition, 2014. Section 2.4.

[9] Ansi. American National Standard: Programming Language – Common Lisp.
ANSI X3.226:1994 (R1999), 1994.

[10] Didier Verna. Standard i/o syntax, and the robustness principle. https://www.di-
dierverna.net/blog/index.php?post/2017/10/27/Standard-IO-syntax-and-the-
Robustness-Principle, November 2017. Blog Entry.

[11] Duc Vianney. Hyper-threading speeds linux. https://www.ibm.com/
developerworks/library/l-htl/index.html, 2003.

https://www.ibm.com/developerworks/library/l-htl/index.html
https://www.ibm.com/developerworks/library/l-htl/index.html

	Abstract
	1 Introduction
	2 Quickref Tool-Chain
	3 Experimental Conditions
	3.1 Environment
	3.2 Configuration

	4 Preliminary Analysis
	4.1 Time Distribution
	4.2 Time Shapes

	5 Parallel Solutions
	5.1 Solution 1
	5.2 Solution 2
	5.3 Solution 3

	6 Conclusion
	7 Discussion & Perspectives
	7.1 Alternative Solution
	7.2 Dependency Management Issues
	7.3 Library Ordering Refinements
	7.4 CPU vs. I/O Consumption
	7.5 Scheduling
	7.6 SSD Technology

	Acknowledgments
	References

