
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

116,000 120M

TOP 1%154

4,100



Chapter 1

New Insights and Horizons from the Linear Response
Function in Conceptual DFT

Paul Geerlings, Stijn Fias, Thijs Stuyver, Paul Ayers,
Robert Balawender and Frank De Proft

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.80280

Abstract

An overview is given of our recent work on the linear response function (LRF) χ r; r0ð Þ and
its congener, the softness kernel s r; r0ð Þ, the second functional derivatives of the energy E

and the grand potential Ω with respect to the external potential at constant N and μ,

respectively. In a first section on new insights into the LRF in the context of conceptual
DFT, the mathematical and physical properties of these kernels are scrutinized through

the concavity of the E ¼ E N; v½ � andΩ ¼ Ω μ; v
� �

functionals in v rð Þ resulting, for example,

in the negative semidefiniteness of χ. As an example of the analogy between the CDFT
functionals and thermodynamic state functions, the analogy between the stability condi-
tions of the macroscopic Gibbs free energy function and the concavity conditions for Ω is
established, yielding a relationship between the global and local softness and the softness
kernel. The role of LRF and especially the softness kernel in Kohn’s nearsightedness of
electronic matter (NEM) principle is highlighted. The first numerical results on the soft-
ness kernel for molecules are reported and scrutinized for their nearsightedness, reconcil-
ing the physicists’ NEM view and the chemists’ transferability paradigm. The extension of
LRF in the context of spin polarized conceptual DFT is presented. Finally, two sections are
devoted to ‘new horizons’ for the LRF. The role of LRF in (evaluating) alchemical deriva-
tives is stressed, the latter playing a promising role in exploring the chemical compound
space. Examples for the transmutation of N2 and the CC ! BN substitution pattern in 2D
and 3D carbocyclic systems illustrate the computational efficiency of the use of alchemical
derivatives in exploring nearest neighbours in the chemical compound space. As a second
perspective, the role of LRF in evaluating and interpreting molecular conductivity is
described. Returning to its forerunner, Coulson’s atom-atom polarizability, it is shown
how in conjugated π systems (and within certain approximations) a remarkable integral-
integrand relationship between the atom-atom polarizability and the transmission proba-
bility between the atoms/contacts exists, leading to similar trends in both properties. A
simple selection rule for transmission probability in alternating hydrocarbons is derived
based on the sign of the atom-atom polarizability.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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1. Introduction

A continuous challenge for theoretical and quantum chemists is to see if ‘classical’ chemical

concepts describing bonding, structure and reactivity—the common language of all chemists

—can still be retrieved from the nowadays extensive and complex computational results

obtained at different levels of complexity with wave function or density functional theory.

Conceptual density functional theory (CDFT) [1–6] has played an important role in this

endeavour in the past decades. CDFT is a branch of DFT [7, 8] aiming to give precision to

often well-known but sometimes vaguely defined chemical concepts (e.g. electronegativity,

hardness and softness), affording their numerical evaluation, and to use them either as such

or in the context of principles such as Sanderson’s electronegativity equalization principle [9]

or Pearson’s hard and soft acids and bases principle [10]. ‘Chemical’ DFT or even ‘chemical

reactivity’ DFT would have been a better name for the obvious reason that concepts are

essential for all branches of DFT (especially the fundamentals) and that chemical reactivity is

one of the main issues addressed in conceptual DFT.

When looking at the basics of CDFT, the energy functional, E ¼ E N; v½ �, stands out [8]. Why? It

is the key ingredient to get (qualitative and quantitative) insight into the eagerness of an atom,

or a molecule, to adapt itself to changes in the number of electrons, N, and/or the external

potential, v rð Þ, that is, the potential felt by the electrons due to the nuclei. These changes are

essential in describing (the onset of) a chemical reaction, hence chemical reactivity. The readi-

ness of a system to adapt itself to these new conditions is quantified through response functions,

δm ∂
nE=∂Nnð Þ=δv r1ð Þ…δv rmð Þ, which are the cornerstones of CDFT. Literature on these response

functions is abundant, especially on the first-order responses (electronic chemical potential μ

[11] n ¼ 1;m ¼ 0ð Þ and the electron density r rð Þ n ¼ 0;m ¼ 1ð Þ, the cornerstone of DFT itself)

and two of the second-order responses (chemical hardness η n ¼ 2;m ¼ 0ð Þ and its inverse, the

chemical softness S [12], and the electronic Fukui function f rð Þ n ¼ 1;m ¼ 1ð Þ [13]). The most

prominent of the third-order response functions [14] is the dual descriptor f 2ð Þ rð Þ [15], the

N-derivative of the Fukui function n ¼ 1;m ¼ 1ð Þ. Remarkably, response functions diagonal

in v rð Þ n ¼ 0;m ¼ 2� 3ð Þ were nearly absent in the CDFT literature until about 10 years ago

(see [16] for an overview of this early work). The reasons are obvious; here we concentrate on

its simplest member n ¼ 0;m ¼ 2ð Þ, the linear response function (LRF).

χ r; r0ð Þ ¼ δ2E=δv rð Þδv r0ð Þ
� �

N
(1)

The calculation of this kernel turns out to be far from trivial, as is the representation of this

quantity, a function of six Cartesian coordinates, and by extension its link to ‘chemical’ concepts.

Density Functional Theory4



Note that in the context of time-dependent DFT [17–19], the LRF has made its appearance

many years ago as it was realized that the poles of its frequency-dependent form are nothing

other than the electronic excitation energies. Thanks to Casida’s elegant matrix formalism [20],

electronic transition frequencies, intensities and assignments are nowadays routinely performed,

implemented as they are in standard quantum chemistry packages. However, this evolution was

not accompanied by a parallel endeavour on the evaluation, representation and chemical inter-

pretation of the frequency-independent or static LRF.

In the past decade, the ALGC group, in collaboration with colleagues from different countries

(Canada (Ayers), US (Yang), Spain (Sola), Poland (Balawender), etc.), set out a program aiming

at the systematic evaluation, representation and interpretation of the LRF with the following

results obtained until 2013, summarized in a review paper in Chemical Society Reviews [16]

(no explicit reference to each of the individual constituting studies will be given).

1. The LRF can now be routinely calculated at several levels of approximation for which the

coupled perturbed Kohn-Sham perturbational approach turns out to be the most attractive

approach, also permitting different levels of sophistication depending on the treatment of

the exchange correlation potential (vxc) term in the perturbation equations. In its simplest

form (neglecting the influence of the external potential variation on the Coulomb and

exchange-correlation terms in the perturbational equations), the independent particle

expression, already presented by Ayers and Parr [8, 21], is retrieved.

2. The representation can be done via contour diagrams (fixing, e.g. r0) as demonstrated for

atoms and molecules, or in the case of molecules, after condensation, via a simple atom-

atom matrix, reminiscent of reporting the results of a population analysis.

3. An abundance of chemical information was shown to be present in the LRF ranging from

the shell structure of atoms, to inductive and mesomeric effects, electron (de)localization

and (anti)aromaticity in molecules.

In the present chapter, a synopsis is given of the progress made since then by the ALGC group

in collaboration with other groups as witnessed by two of the authors (P.A and R. B.), both on

fundamental and applied aspects, that is, on new insights into the properties of the LRF and on

new areas where the LRF is at stake. In Section 2 the mathematical/physical properties of the

LRF are revised together with those of its congener, the softness kernel s r; r
0ð Þ, the latter

playing a fundamental role in scrutinizing Kohn’s nearsightedness of electronic matter

(NEM) principle. The extension of LRF in the context of spin polarized DFT is also addressed.

In Section 3, we highlight the importance of the LRF in the emerging field of alchemical

derivatives when exploring the chemical compound space. We illustrate the potential of

alchemical derivatives in exploring the CC ! BN isoelectronic substitution in 2D and 3D

unsaturated carbocyclic molecules: benzene and the C60 fullerenes. Finally, in Section 4 we

show how the LRF (in fact its forerunner, Coulson’s atom-atom polarizability) can be used to

predict/interpret the conductivity behaviour of unsaturated hydrocarbons, thus entering the

vibrant field of molecular electronics.
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2. Theoretical developments

2.1. On the negative and positive semidefiniteness of the LRF and the softness kernel and

thermodynamic analogies

The properties of the LRF χ r; r0ð Þ are intimately related to the concavity/convexity properties of

E N; v½ � that we addressed in recent years [22, 23]. Where E N; v½ � is convex with respect to (w.r.t.)

N [24], it is well established that E N; v½ � is concave w.r.t. v rð Þ following the Jensen’s inequality.

E N;λv1 þ 1� λð Þv2½ � ≥ λE N; v1½ � þ 1� λð ÞE N; v2½ � ∧ λ∈ 0; 1½ � (2)

(see for example Lieb [25], Eschrig [26], and Helgaker et al. [27]). In Figure 1 (after Helgaker

[28]) we illustrate the physical interpretation of this concavity property. For a given potential

v1, the associated ground state energy is given by the expectation value ψ1 H v1½ �j jψ1

� �

, with

ground state wave function ψ1, the red point in the figure. Changing v1 to v2, with constant ψ,

induces changes in energy linear in δv rð Þ as a consequence of the term
Ð

r rð Þv rð Þdr in the DFT

energy expression. Relaxing the wave function yields an energy lowering (blue arrow) until

the energy obtained by applying the variational principle with v ¼ v2 is reached (with associ-

ated wave function ψ2). Consequently, the true energy (black line) will always be found below

the tangent line ensuring concavity.

Figure 1. Illustration of the concavity of the E ¼ E v½ � functional (after Helgaker [28]) (Reprinted by permission from

Springer Nature, Copyright 2016 [22]).

Density Functional Theory6



A direct consequence is that the LRF is negative semidefinite.

ðð

χ r; r0ð Þθ rð Þθ r
0ð Þdrdr0 ≤ 0 (3)

where θ rð Þ is any continuous function [23]. This inequality shows up when considering the

second-order variation of the energy

δE 2ð Þ ¼ 1=2

ðð

δ2E=δv rð Þδv r
0ð Þ

� �

N
δv rð Þδv r

0ð Þdrdr0 (4)

When adopting the δv rð Þ ¼ V0δ r � r
00ð Þ choice for δv rð Þ, where V0 is a constant one gets

δE 2ð Þ ¼ 1=2V
2
0χ r

00; r00ð Þ ≤ 0 (5)

showing that the diagonal elements of the linear response function χ r; r0ð Þ should be negative

or zero. This result links the concavity of the E N; v½ � functional to the diagonal elements of the

linear response function defined on R3 � R3. This negativity was retrieved in all our numerical

results (non-integrated and condensed) (see for example [29, 30]). Its physical interpretation is

straightforward through the definition of χ r; r0ð Þ as δr rð Þ=δv r
0ð Þð ÞN: if the potential at a given

point r is increased (made less negative), this electron-unfavourable situation will lead to

electron depletion at that point, yielding a negative χ r; rð Þ.

In Section 4, we will point out that Coulson’s atom-atom polarizability πAB [31] can be

considered as a Hückel-theory forerunner of the LRF and exploit its properties in discussing

molecular conductivity. Defined as

πAB ¼ ∂qA=∂αB ¼ ∂
2E=∂αA∂αB ¼ πBA (6)

the analogy emerges as qA is the π-electron charge on atom A, whereas (the change in) the

Coulomb integral αB is equivalent to a change in the external potential. The case A ¼ B was

explored by Coulson using his complex integral formalism for Hückel’s π energy and its

derivatives, proving that πAA can be written as

πAA ¼ 1=πð Þ

ð

þ∞

�∞

ΔAA iyð Þ=Δ iyð Þð Þ2dy (7)

Here, Δ represents the Hückel secular determinant (or characteristic function) and ΔAA is its

counterpart with row A and column A deleted. It turns out that ΔAA iyð Þ=Δ iyð Þ is imaginary and

therefore πAA is negative (see also Section 4).

When introducing the E ¼ E N; v½ � functional, it was stressed that in the LRF the second

functional derivative is taken at constant N. In the remaining part of this chapter, it turns out

that no less important role in CDFT is played by the softness kernel, which is the second

functional derivative with respect to v rð Þ of the Ω ¼ Ω μ; v
� �

functional (the grand potential)
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at constant μ. Here, we switch from the canonical ensemble to the grand canonical ensemble

[32] connecting two ways of specifying the same physics via functionals of each time two

variables differing in one pair that is connected through a Legendre transformation (see for

example [33]).

Ω μ; v
� �

¼ E ~N μ; v
� �

; v� � μ~N μ; v
� ��

(8)

where μ and N are conjugate variables which are related by identities ~N μ; v
� �

¼ N and

~μ N; v½ � ¼ μ. Its apparent analogy with classical thermodynamics will be addressed later.

In [23], we pointed out that Ω μ; v
� �

just as E N; v½ � is concave w.r.t. v rð Þ, implying that its

second functional derivative at constant μ, the softness kernel (note the negative sign in the

definition) [34].

s r; r0ð Þ ¼ � δ2Ω=δv rð Þδv r
0ð Þ

� �

μ
(9)

is positive semidefinite. This property fits the well-known Berkowitz-Parr relationship [33]

linking χ r; r0ð Þ and s r; r0ð Þ (vide infra).

s r; r0ð Þ ¼ �χ r; r0ð Þ þ f rð Þf r
0ð Þ=η (10)

where f rð Þ is the Fukui function and η is the hardness. Indeed,

ðð

s r; r0ð Þθ rð Þθ r
0ð Þdrdr0 ¼

ðð

�χ r; r0ð Þ þ f rð Þf r
0ð Þ=ηð Þθ rð Þθ r

0ð Þdrdr0

¼ �

ðð

χ r; r0ð Þθ rð Þθ r
0ð Þdrdr0 þ 1=η

ð

f rð Þθ rð Þð Þ2dr ≥ 0

(11)

since the hardness is nonnegative and χ r; r0ð Þ was shown to be negative semidefinite.

The properties of χ r; r0ð Þ and s r; r0ð Þ incited us to reconsider the analogy between the DFT

functionals E and Ω [32] on the one hand and the macroscopic thermodynamic state functions

U ¼ U S;V½ �, F ¼ F T;V½ �, H ¼ H S;P½ � and G ¼ G T;P½ � on the other hand (internal energy,

Helmholtz free energy, enthalpy and Gibbs free energy written as functions of volume (V),

temperature (T), pressure (P) and entropy (S)). Parr and Nalewajski extended the notion of

intensive and extensive variables T;Pð Þ and S;Vð Þ, respectively, in thermodynamics to the

variables in DFT functionals by classifying external variables as properties additive with

respect to any partitioning of the electron density r rð Þ ¼ rA rð Þ þ rB rð Þ [32]. In this way, r rð Þ

and N are clearly extensive, and μ and v rð Þ are intensive. The analogy between G T;P½ � and

Ω μ; v
� �

can now be stressed: both the state function G and the DFT functional Ω contain two

intensive variables. This situation leads to a remarkable property when formulating a DFT

analogue of the stability analysis in macroscopic thermodynamics [33, 35, 36]. Concavity for

G T;P½ � in all directions then implies that

d2G ¼ GTT ΔTð Þ2 þ 2GTPΔTΔPþ GPP ΔPð Þ2 ≤ 0, (12)

Density Functional Theory8



where GTT , GTP and GPP are the second derivatives of Gibbs free energy, GXY ¼ ∂
2
G=∂X∂Y

� �

.

This stability condition implies the negative semidefiniteness of the Hessian matrix. It yields

GPP ¼ ∂V=∂Pð ÞT ¼ �κTV ≤ 0 (13)

GTT ¼ � ∂S=∂Tð ÞP ¼ �CP=T ≤ 0 (14)

that is, the isothermal compressibility κT and the heat capacity at constant pressure CP should

be positive, and the condition that

GTTGPP � G2
PT

� �

¼ κTVCP=T � α2V2
� �

≥ 0 ⇔ κTCP=T ≥α2V (15)

where α ¼ ∂V=∂Tð ÞP=V is the coefficient of thermal expansion. Another classical example of

such stability analysis is the entropy written as S U;V½ � (at constant number of particles) where

both variables are now extensive [33].

Let us now consider the analogy with Ω μ; v
� �

. It is well known that

∂
2
Ω=∂μ2

� �

v
¼ �S μ; v

� �

, (16)

where S is the global softness [3]. As the r.h.s. of (16) is negative, concavity for Ω μ; v
� �

in μ

shows up. As discussed above, Ω is also concave in v rð Þ, leading to the positive semidefi-

niteness of s r; r0ð Þ (these expressions being the counterparts of (13) and (14)). The condition for

concavity in all directions leads after some algebra (see [23]) to the condition

∂
2
Ω=∂μ2

� �

v
Δμþ

Ð

∂ δΩ=δv rð Þð Þμ=∂μ
� 	

v
Δv rð Þdr

� 	2
þ
ÐÐ

∂
2
Ω=∂μ2

� �

v
δ2Ω=δv rð Þδv r

0ð Þ
� �

μ

�

� ∂ δΩ=δv rð Þð Þμ=∂μ
� 	

v
∂ δΩ=δv r

0ð Þð Þμ=∂μ
� 	

v
ÞΔv rð ÞdrΔv r

0ð Þdr0 ≥ 0 (17)

and finally to

ðð

s r; r0ð ÞS� s rð Þs r
0ð Þð ÞΔv rð ÞdrΔv r

0ð Þdr0 ≥ 0, (18)

the analogue of (15) where the local softness

s rð Þ ¼ ∂ δΩ=δv rð Þð Þμ=∂μ
� 	

v
¼ ∂r rð Þ=∂μ

� �

v
(19)

has been introduced [37]. Taking again for Δv rð Þ and Δv r
0ð Þ Dirac delta functions δ r � r

00ð Þ and

δ r
0 � r

00ð Þ, one obtains the condition

s r; rð ÞS ≥ s rð Þð Þ2 ≥ 0: (20)

This inequality shows that the diagonal elements s r; rð Þ should be positive, as could be inferred

from the concavity of Ω μ; v
� �

but, more importantly, they impose a restriction on the relative

New Insights and Horizons from the Linear Response Function in Conceptual DFT
http://dx.doi.org/10.5772/intechopen.80280

9



values of the three softness descriptors s r; r0ð Þ,S and s rð Þ in analogy to the thermodynamic

relationship between κT, CP and α at given T and P (V ¼ V T;P½ �). This result is compatible

with the aforementioned Berkowitz-Parr relationship. Indeed, starting from their expression

for r0 ¼ r (see (10), the relations s rð Þ ¼ f rð Þ=η)

s r; rð Þ ¼ �χ r; rð Þ þ s rð Þs rð Þ=S (21)

and knowing that χ r; rð Þ ≤ 0 (vide supra) one obtains

s r; rð Þ � s rð Þs rð Þ=S ≥ 0, (22)

retrieving our conclusions above.

2.2. Kohn’s nearsightedness of electronic matter revisited

We now report on our recent explorations [38] on Kohn’s NEM principle. Kohn introduced the

NEM concept in 1996 [39] and elaborated on it in 2005 with Prodan et al. [40]. In his own

words, it can be viewed as ‘underlying such important ideas as Pauling’s chemical bond,

transferability, and Yang’s computational principle of divide and conquer’ [40]. Certainly in

view of the two former issues, this principle, formulated by a physicist, touches the very heart

of chemistry and so, in our opinion, it was tempting to look at it with a chemist’s eye. Why

however is this issue addressed in this chapter; in other words, what is the link between the

LRF and nearsightedness?

The quintessence of the NEM principle is as follows (Figure 2): consider a (many) electron

system characterized by an electron density function r rð Þ with a given electronic chemical

potential μ. Now, concentrate on a point r0 and perturb the system in its external potential v rð Þ

at point r0, outside a sphere with radius R around r0 at constant electronic potential μ. Then, the

NEM principle states that the absolute value of the density change at r0, Δr r0ð Þj j, will be lower

than a finite maximum value Δr , which depends on r0 and R, whatever the magnitude of the

perturbation. As stated by Kohn, anthropomorphically the particle density r rð Þcannot ‘see’ any

perturbation v rð Þ beyond the distance R r0;Δr
� �

within an accuracy Δr, that is, the density shows

nearsightedness. Kohn offered evidence that in the case of 1D ‘gapped’ systems (i.e. with

hardness η larger than zero) the decay of Δr as a function of R (i.e. upon increasing r� r0j j) is

exponential and that for gapless systems it follows a power law. This suggests that in the

molecular world, where η is observed to be always positive, the electron density should only be

sensitive to nearby changes in the external potential. In [38], we provided the first numerical

confirmation of this nearsightedness principle for real, 3D, molecules.

Again, why address this issue in this LRF chapter? Going back to Kohn’s formulation quintes-

sentially a change in density at a given point Δr r0ð Þ in response to a change in external

potential Δv r0ð Þ at different points is analysed. These are the typical ingredients of the LRF

(change in v produces a change in r), and in this case the process is considered at constant

electronic chemical potential μ, in order words δr rð Þ=δv r0ð Þð Þμ is the key quantity. This is

nothing else than the softness kernel s r; r0ð Þ with a minus sign in front. Indeed,

Density Functional Theory10



δr rð Þ=δv r0ð Þð Þμ ¼ �s r; r0ð Þ ¼ δ2Ω=δv rð Þδv r0ð Þ
� �

μ
(23)

The Berkowitz-Parr relationship [34] can then be written as

δr rð Þ=δv r0ð Þð ÞN ¼ δr rð Þ=δv r0ð Þð Þμ � ∂r rð Þ=∂μ
� �

v
δμ=δv r0ð Þ

� �

N
(24)

an equation transforming conditions of constant N into constant μ, for taking the functional

derivative of r rð Þ w.r.t. δv rð Þ in analogy with this type of equation for partial derivatives in

macroscopic thermodynamics [33]. As ∂r rð Þ=∂μ
� �

v
equals the local softness s rð Þ and δμ=δv r0ð Þ

� �

N

is an alternative way, as compared to ∂r rð Þ=∂Nð Þv to write the Fukui function f(r), one retrieves

from (28)

s r; r0ð Þ ¼ �χ r; r0ð Þ þ f rð Þf r0ð Þ=η (25)

which will be the key equation in this section. As analytical methods are available to evaluate

χ r; r0ð Þ, f rð Þ and η on equal footing [41], s r; r0ð Þ can be evaluated, and its difference with χ r; r0ð Þ

analysed, in order to scrutinize nearsightedness.

Figure 2. Pictorial representation of the nearsightedness of electronic matter principle: when δv r0ð Þ ≥ δv2 r0ð Þ, with r0

outside a sphere with radius R around r0, δr0 r0ð Þ no longer increases—δr0 r0ð Þ ¼ Δr r0;Rð Þ no matter how large δv r0ð Þ.

The intensity of the red and blue regions represents the magnitude of v r0ð Þ and r rð Þ, respectively.
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In Figure 3, we depict the atom condensed linear response function and the softness kernel, the

matrices χAB and sAB, of 1,3,5-hexatriene. Condensation was performed by integrating the

kernels over the domains of atoms A and B, represented by VA and VA, that is,

sAB ¼

ð

VA

ð

VB

s r; r0ð Þdrdr0 (26)

From our previous work on polyenes [42], the χAB matrix elements are known to show an

alternating behaviour with maxima on mesomeric active atoms (C2,C4 and C6) and minima for

mesomeric passive atoms (C3 and C5), with the change in v rð Þ taking place at C1.The picture

illustrates that the softness kernel is more nearsighted than the LRF (all its values are lower)

and that s1,5 and s1,6 are very close to zero; the effect of the perturbation has died off completely,

confirming the nearsightedness of the softness kernel. This effect can be traced back to a cancel-

lation of the LRF, which is non-nearsighted, by the second term in Eq. (25), and accounts for the

density changes induced by charge transfer from the electron reservoir to keep the chemical

potential constant. Note that this condition, at first sight somewhat strange, is an often more

realistic perspective when considering for example the reactivity of molecules in solution where

the chemical potential is fixed by the solvent allowing (partial) charge transfer to or from the

molecule while keeping its chemical potential constant [43, 44].

As a second example, we show in Figure 4 the change in density of the 1,3,5-heptatrienyl

cation when the C atom of one of the terminal CH2 atoms was alchemically replaced by an N

atom. The corresponding density difference was evaluated through the alchemical derivatives

approach (Section 3) where the carbon atom of the CH2 group was annihilated and replaced by

a nitrogen atom at constant geometry and constant number of electrons. It is clear that the

Figure 3. Atom condensed linear response function and softness kernel of 1,3,5-hexatriene. The curves of the softness

kernels using f+ and f� are overlapping [38].

Density Functional Theory12



effect of functionalization dies off much more quickly under constant μ conditions. In fact, the

third carbon atom is hardly affected in this—it should be stressed—unsaturated system, offering

the possibility for mesomerism. In the LRF, the decay is slow and effects are still relatively important

five bonds away from the perturbation.

Further case studies on ‘3D’ systems (e.g. alchemically changing methylcubane to fluorocubane

and on functionalized neopentane) yield similar results. All together, the results on the near-

sightedness of the softness kernel found for all systems discussed in [38] are the first and a firm

numerical confirmation of Kohn’s NEM principle in the molecular world. To put it in chemical

terms, these findings provide computational evidence for the transferability of functional

groups: molecular systems can be divided into locally interacting subgroups retaining a similar

functionality and reactivity that can only be influenced by changes in the direct environment of

the functional group. Thus, the physicist’s NEM principle and the chemist’s transferability

principle [45]—at the heart of, for example, the whole of organic chemistry [46]—are reconciled.

2.3. Extension of χ r; r0ð Þ in the context of spin polarized CDFT

As a natural extension of CDFT to the case where spin polarization is included [47–49], spin

polarized conceptual DFTwas introduced by Galvan et al. [50, 51] (see also Ghanty and Ghosh

Figure 4. Alchemical change in density using the linear response (top) and softness kernel (bottom) for the heptatrienyl

cation to 1,3,5-hexatriene-1-amine [38].
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[52] and for a review see [53]). In the so-called Nα;Nβ

� �

representation, the response of the

electronic energy to perturbations in the number of α electrons, Nα, the number of β electrons,

Nβ, the external potential acting on the α electrons, vα rð Þ, and the external potential acting on

the β electrons, vβ rð Þ, is studied. In this representation, the E ¼ E N; v½ � functional from Section

2.1 is generalized to the E ¼ E Nα;Nβ; vα; vβ
� �

functional. In the second, equivalent, N;NSð Þ

representation, in fact the one introduced by Galvan, the E ¼ E N; v½ � functional is generalized

to E ¼ E N;NS; v; vS½ � or E ¼ E N;NS; v;B½ � where NS denotes the electron spin number defined

as the difference between the number of α and β electrons, NS ¼ Nα �Nβ, whereas vs is given

by vS rð Þ ¼ vα rð Þ � vβ rð Þ
� �

=2.

v rð Þ is equal to vα rð Þ þ vβ rð Þ
� �

=2 and B represents an external magnetic field. If the magnetic

field is static and uniform along the z axis, one has vα rð Þ ¼ v rð Þ þ μBBZ and vβ rð Þ ¼ v rð Þ � μBBZ,

v rð Þ is the usual external spin-free potential (as used in CDFT without spin polarization),

whereas vS rð Þ is related to the magnetic field B rð Þ. In this context, and sticking to the N;NSð Þ

representation, three linear response functions can now be defined:

χNN r; r0ð Þ ¼ δ2E=δv rð Þδv r0ð Þ
� �

N,NS,vS
(27)

χSS r; r0ð Þ ¼ δ2E=δvS rð ÞδvS r0ð Þ
� �

N,NS,v
(28)

χNS r; r0ð Þ ¼ δ2E=δv rð ÞδvS r0ð Þ
� �

N,NS
¼ δrN rð Þ=δvS r0ð Þð ÞN,NS,v

¼ δrS r0ð Þ=δv rð Þð ÞN,NS,v
¼ δ2E=δvS r0ð Þδv rð Þ

� �

N,NS
¼ χSN r0; rð Þ

(29)

where rN rð Þ ¼ rα rð Þ þ rβ rð Þ and rS rð Þ ¼ rα rð Þ � rβ rð Þ are the total and spin densities, respec-

tively. χNN r; r0ð Þ is the analogue of the spin-independent CDFT expression for the LRF χ r; r0ð Þ

(Eq. (1)).

Space limitations prevent us to go in detail on the results reported in [47, 48]. We only depict in

Figure 5 the SPCDFT analogue of the contour plots for χ r; r0ð Þ for closed shell atoms as

discussed in [47] and the Chem Soc Rev paper [16]. In Figure 5, we plot the LRF, in the

Nα;Nβ

� �

representation, for the ground state of Li ((1s)2 (2s)1). The structure of χαα r; r0ð Þ and

χββ r; r0ð Þ is similar to the χ r; r0ð Þ plots for closed shell atoms: a negative diagonal part (cfr [47]

and Section 2.1) and alternating positive and negative parts for r or r0 = constant in order to

obey the trivial equation (cf. [47])

ð

χ r; r0ð Þdr ¼

ð

δrN rð Þ=δv r0ð Þð ÞNdr ¼ δN=δv r0ð Þð ÞN ¼ 0 (30)

χαα extends further away from the nucleus than χββ in line with the extra α electron with the

higher principal quantum number (n = 2) extending farther away from the nucleus than

the n = 1 β electron. χββ looks similar to the χββ plot for He (insert) but contracted more to the

origin (due to higher nuclear charge). The χαβ and χαβ plots show some evident symmetry,

χαβ r; r0ð Þ ¼ χβα r0; rð Þ, and show positive regions along the diagonal. A positive perturbation in

Density Functional Theory14



Figure 5. Contour plots of the radial distribution function of the spin polarized linear response function of Lithium in the [Nα,

Nβ] representation. r is represented on the horizontal axis, r0 on the vertical axis [(a) Lithium χαα, (b) Lithium χαβ, (c) Lithium

χαα, (d) Lithium χββ. In the insert, the χββ plot for He (see text) (Reprinted from [48] with the permission of AIP Publishing)].
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the α external potential δvα rð Þ will cause a depletion of electrons in the vicinity of the pertur-

bation, the β electrons are not affected directly. However, the depletion in α electrons will

influence the Coulomb potential and due to the lower electron-electron repulsion, an accumu-

lation in β electrons in the region considered will occur resulting in a positive diagonal χβα r; rð Þ

value. The concentration of the χαβ and χαβ isocontours along the r and r0 axes can be

interpreted when referring to the χαα and χββ plots: perturbing vβ rð Þ at a distance r0 larger than

3 a.u. clearly has no effect on the β density, the Coulomb potential, the overall density and

consequently on the α density. This results in δrα rð Þ=δvβ r0ð Þ
� �

¼ χaβ r; r0ð Þ having zero values

for r0 larger than 3 a.u. On the other hand, perturbing vβ rð Þ close to the nucleus induces a

change in the β density, with repercussion on the Coulomb potential and so on the α density

farther away from the nucleus (on the r axis) even in regions where the β density is no longer

affected. All these features account for the ‘partial plane filling’ of the χαβ and χαβ plots with a

‘demarcation’ line at 3 a.u.

To close this section, we mention that once χ r; r0ð Þ (or its counterparts in SPCDFT) is known, a

local version of the polarizability tensor components, say αxy, namely αxy rð Þ can be obtained by

straightforward integration:

αxy rð Þ ¼ �

ð

x rð Þχ r; r0ð Þy r0ð Þdr0 (31)

An example is given in Figure 6 [48] where for the atoms Li through Ne the trend of the

spherically averaged α rð Þ 1
3 αxx rð Þ þ αyy rð Þ þ αzz rð Þ
� �� �

is given. From 2 a.u. on, the trends in

α rð Þ for Li up to Ne parallel the global polarizability, known to decrease along a period of the

periodic table. At lower distances (preceding the valence region), inversions with even negative

values occur. The present results are evidently important when, for example, disentangling

reaction mechanisms where local polarizabilities, that is, in certain regions of the reagents, are

Figure 6. Plot of the local polarizability α(r) of the atoms Li through Ne via CPKS (see text) (Reprinted by permission of

the publisher (Taylor and Francis Ltd.) [48]).
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at stake and not the overall polarizability. The parallel between the relationship between local

and global softness (Section 2.1) is obvious.

3. The role of the LRF in alchemical derivatives and exploring chemical

compound space

3.1. Context

The LRF has recently been exploited when investigating Chemical Compound Space [54–56].

Chemists are continuously exploring chemical compound space (CCS) [57, 58], the space popu-

lated by all imaginable chemicals with natural nuclear charges and realistic interatomic distances

for which chemical interactions exist. Navigating through this space is costly, obviously for

synthetic-experimental chemists and also for theoretical and computational chemists who might

and should be guides for indicating relevant domains in CCS to their experimental colleagues.

Doing even a simple single-point SCF calculation at every imaginable point leads to prohibitively

large computing times (not to speak about bookkeeping aspects and manipulation of the com-

puted data). A very promising ansatzwas initiated byVon Lilienfeld et al. [59–63] in his alchemical

coupling approach where two, isoelectronic molecules in CCS are coupled ‘alchemically’ through

the interpolation of their external potentials (see also the work by Yang and co-workers on

designing molecules by optimizing potentials [64]). At the heart of this ansatz are the alchemical

derivatives, partial derivatives of the energyw.r.t. one or more nuclear charges at constant number

of electrons and geometry. The simplest members of this new family of response functions are:

the alchemical potential

μ
al
A
N;Z;R½ � � ∂W=∂ZAð ÞN ,R ¼ ∂E=∂ZAð ÞN ,R þ ∂Vnn=∂ZAð ÞN ,R ¼ μ

al,el
A

þ μ
al,nuc
A

(32)

and the alchemical hardness

η
al
AB

N;Z;R½ � � ∂
2
W=∂ZA∂ZB

� �

N ,R
¼ ∂

2
E=∂ZA∂ZB

� �

N ,R
þ ∂

2
Vnn=∂ZA∂ZB

� �

N ,R
¼ η

al,el
AB

þ η
al,nuc
AB

¼ η
al
BA
, (33)

where W N;Z;R½ � � E N; v Z;R½ �½ � þ Vnn Z;R½ � is the total energy of a system,R ¼ RA;RB;…ð Þ

denotes constant geometry and Z ¼ ZA;ZB;…;ð Þdenotes the nuclear charges vector. The anal-

ogy with the electronic chemical potential and hardness (see Section 1) is striking. Some years

ago, one of the present authors (R.B.) presented a strategy to calculate these derivatives for any

atom or atom-atom combination analytically and to use them, starting from a single SCF

calculation on the parent or reference molecule, to explore the CCS of first neighbours, imply-

ing changes of nuclear charges of +1 or �1 [65]. In this way, simple arithmetic can be used,

starting from a Taylor expansion

ΔW dZ½ � ¼ W N;Zþ dZ;R½ � �W N;Z;R½ � ¼
X

A

μ
al
A
dZA þ 1=2

X

A

X

B

η
al
AB
dZAdZB (34)

instead of a new SCF calculation for each transmutant.
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The position of the alchemical derivatives in CDFT was already mentioned: they are response

functions, now related to a particular charge in external potential, namely the charge in one or

more nuclear charges. As the second derivatives are ‘diagonal’ in these particular external

potential changes, a direct link with the LRF can be expected. Using the chain rule, one easily

writes

ηal,el
AB

¼ ∂
2
E N; v Z;R½ �½ �=∂ZA∂ZB

� �

N,R
¼

ð ð

δr rð Þ=δv r0ð Þð ÞN ∂v rð Þ=∂ZAð ÞN ,R ∂v r0ð Þ=∂ZBð ÞN ,Rdrdr
0

¼

ð ð

χ r; r0ð Þ 1= r� RAj jð Þ 1= r0 � RBj jð Þdrdr0
(35)

indicating that the alchemical hardness is obtained by integration of the LRF after multiplica-

tion by 1= r� RAj j and 1= r0 � RBj j. The basic relationship of the alchemical derivatives and the

LRF shows how, again, the LRF makes its appearance in sometimes unexpected areas (see also

Section 4). In the case of the first derivative, the δE=δv rð Þð ÞN factor in the integrand simplifies to

r rð Þ(see Section 1), yielding.

μal,el
A

¼

ð

r rð Þ= r� RAj jdr (36)

the electronic potential at the nucleus, well known as the electronic part of the molecular

electrostatic potential [66].

3.2. Applications

As a very simple example, we consider the transmutation of the nitrogen molecule. Five chem-

ically relevant mutants can be generated (see Figure 7) as nearest neighbours in CCS (ΔZ = �1)

and at constant number of electrons: CO, NO
þ, O2þ

2 , CN� and C2�
2 . The differences between

‘vertical’ (i.e. exact, via two SCF calculations) and alchemical transmutation energies were

evaluated at the B3LYP/cc-pCVTZ level (note the inclusion of additional tight functions ‘C in

Figure 7. Transmutation of the nitrogen molecule to its nearest neighbours in chemical compound space (Reprinted with

permission from [54]. Copyright (2017) American Chemical Society).
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order to recover the (changes in) core-core and core-valence correlation). The mean absolute

error was only 0.034 a.u., the N2 ! COtransmutation being particularly successful with a

difference in energy of only 0.004 a.u., that is, 2 kcal mol �1
. The transmutation into a neutral

system results in the cancellation of the odd terms in the Taylor expansion. Of course, we do

not claim ‘chemical accuracy’, yet the ordering of the energy of all transmutants came out

correctly, indicating that the alchemical procedure (even when stopped at second order) is a

simple, straightforward road to explore CCS for neighbouring structures.

Similar conclusions could be drawn for transmutation of benzene, for example, by the substi-

tution of CC units by their isoelectronic BN units. The replacement of a CC unit in an aromatic

molecule by an isoelectronic unit BN has been shown to impart important, interesting elec-

tronic, photophysical and chemical properties, often distinct from the parent hydrocarbon [67].

An in-depth study of all azoborines (Figure 8) C6H6 ! C6-2nH6 BNð Þn (n ¼ 1, 2, 3) turned out

to reproduce correctly the stability of all possible isomers for a given n value (3,11,3 for

n ¼ 1, 2, 3), which is of importance for applications in graphene chemistry where the

CCð Þn ! BNð Þn substitution is a topic that has received great interest in recent years [68].

As a computational ‘tour de force’ , and passing from ‘2D’ benzene to ‘3D’ fullerenes, we

recently explored the alchemical approach to study the complete CCð Þn ! BNð Þn substitution

pattern of C60, all the way down to BNð Þ30. C60 ! C60-2n BNð Þn, n ¼ 1, 2,…, 30, predicting and

interpreting via ‘alchemical rules’ the most stable isomers for each value of n. This study is

based on a single SCF calculation on C60 and its alchemical derivatives up to second order,

enabling each possible transmutation energy to be evaluated by simple arithmetic (the diago-

nal elements of the alchemical hardness matrix are equal)

ΔWn N ¼ N1;…;Nnð Þ;B ¼ B1;…;Bnð Þ½ � ¼ nηal11 þ
X

i¼1

X

j>i

η
al
NiNj þ η

al
BiBj

� 	

�
X

i¼1

X

j¼1

η
al
NiBj, (37)

where ΔWn is the transmutation energy from C60 to C60-2n BNð Þn and N=B is a vector of the

carbon atoms replaced by the nitrogen/boron atoms.

Figure 8. CC-BN Substitutions in 2D and 3D unsaturated carbocyclic systems (number of isomers for the 2D case in

parentheses).
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In (37), it is seen that the linear term drops as μi is unique by symmetry for all atoms in C60 and

because Σ ΔZ i = 0 for any transmutation. The alchemical hardness matrix η thus completely

determines the substitution energy and pattern. To summarize the results (for an in-depth

discussion see [55]), the study reveals that the correct sequence of stabilization energies for

each n is retrieved by adopting an approach in which for each n value the problem is looked

upon without prejudice of the n � 1 result (called the ‘simultaneous’ approach). The other,

simpler method (we called it the ‘successive’ approach) was shown to fail already after n = 13,

be it that at some n values identical values were obtained with both approaches, for example,

for the Belt structure (n = 20). Needless to say that even the ‘successive’ approach might

already be prohibitively demanding for standard ab initio or DFT calculations, let it be for the

simultaneous method. The sequence of substitutions could be interpreted in terms of a number

of ‘alchemical’ rules of which the two most important are when (referring to earlier work by

Kar et al. [69]): (1�) hexagon-hexagon junctions are preferably substituted, in a way that

minimizes the homonuclear (BB,NN) bonds and (2�) the higher stability is created by maxi-

mizing the number of filled hexagons. For the subsequent, more intricate, rules we refer to [55].

Shortage of space prevents us to comment on our recent results on the evaluation of isolated atom

alchemical derivatives up to third order with different techniques, from numerical differentiation

(not discussed hitherto in this chapter), via the coupled perturbed Kohn-Sham approach as

discussed before, to the March and Parr combined 1=Z and N
�1=3

E N;Z½ � expansion ansatz [70],

permitting a walk through the periodic table on the road to scrutinize periodicity effects [56].

4. The role of the LRF (or its forerunner, the atom-atom polarizability) in

evaluating and interpreting molecular electronics

4.1. Context

In this section the role of the LRF in molecular electronics is highlighted [72] has been a vibrant

area of research in recent years. An ever-increasing number of papers (both experimental and

theoretical) studied the transport properties of typically organic molecules containing π-conju-

gated systems and considering possible applications for incorporation in molecular electronic

devices (MED) [73]. Most of these theoretical studies have been performed at a high level of theory,

but this type of calculation does not always lead to simple insights into why some molecules will

conduct and which will insulate, and how the positions of the contacts influence this behaviour.

We therefore adopted a simple ansatz based on Ernzerhof’s source and sink potential (for

details see [74, 75]) in Fowler’s tight-binding Hückel approach [76]. One thereby considers

only the π electrons of the molecule and cuts the resonance effects between the contact and the

molecule after the molecule’s nearest neighbour in the contact. In the so-called weak interac-

tion limit (see details in [71]), the transmission probability at the Fermi level T 0ð Þ, which is

directly proportional to the conductance, can then be written as

T 0ð Þ ¼ 4β2Δ2
AB
=Δ2 (38)
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Here, as in Section 2.1, Δ is the Hückel determinant for the isolated molecule, from which in

ΔAB its A-th row and B-th column are deleted and β is a measure of the interaction between the

contact atom and its molecular neighbour. Again, what is the role of the LRF in this road to

calculating/understanding molecular conductivity?

4.2. The atom-atom polarizability as a conductivity indicator

Going back to expression (7) for the diagonal elements of Coulson’s atom-atom polarizability,

a general element πAB of this forerunner of the LRF can be written as

πAB ¼ 1=πð Þ

ðþ∞
�∞

ΔAB iyð Þ=Δ iyð Þð Þ2dy (39)

(the contour integral in the complex plane in Coulson’s formalism [31] is hereby reduced to an

integral along the imaginary axis). The integrand of πAB thus turns out to be related to the

transition probability at the Fermi level Tr TAB 0ð Þ when the contacts are placed at atoms A and

B of the molecule. An intimate relation between πAB and TAB 0ð Þ thus exists; the precise

connection was evaluated by explicit calculation of πAB and TAB 0ð Þ, some results being visual-

ized in Figure 9. There, we depict both the πAB and TAB 0ð Þ values for some linear acenes

(benzene, naphthalene, anthracene and tetracene), taking always one atom as the reference

atom. For the atom-atom polarizability, the reference atom is denoted by a green circle with its

area proportional to the self-polarizability of that atom which is as pointed out in Section 2.1 as

always negative. Black and red circles on the other atoms denote the atom-atom polarizability

values corresponding to a perturbation on the reference atom (varying αA) on the (charge of

the) considered atom B(qB). Black circles correspond to πAB > 0, red circles to πAB < 0. For

TAB 0ð Þ, a similar approach is followed. The empty green circle denotes the position of the

first contact ‘A’ (zero ‘ipso’ transmission [71]), the magnitude of the black circles on the other

atoms ‘B’ denotes the magnitude of the transmission when the second contact is placed at

position B; note that no red circles arise as TAB 0ð Þ, the transmission probability, always lies

between 0 and 1.

Figure 9 shows that the pattern in the two plots is completely analogous and leads to the

conjecture that a positive atom-atom polarizability seems to be a necessary condition in these

Kekulean benzenoids in order to have transmission for a certain configuration of the contacts

on the molecule. If the areas of the circles are considered, no exact proportionality between πAB

and TAB 0ð Þ can be inferred, but they are correlated.

This issue was further investigated in the next linear acene and pentacene (Figure 10), by

varying the position of the first contact. For a fixed first contact, the highest transmission

occurs when the second contact is at the atom with the highest πAB value involving the first

atom. From that atom on, a monotonously decreasing probability is noticed in either direc-

tions. The sharpest decline in T is in the direction of the neighbour that exhibits the lowest

atom-atom polarizability. On the basis of these results, it can indeed be conjectured that a

positive atom-atom polarizability is a necessary condition for transmission and that the ten-

dencies between the two series of values are similar.
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Further analysis of the behaviour of the ΔAB=Δð Þ2 function in the complex plane was done in

the case of alternant non-singular hydrocarbons (for details see [71]). Coulson’s and Longuet

Higgins’ pairing theorem shows that if A and B are drawn from the same partite set (all

‘starred’ or ‘unstarred’ atoms, respectively) ∆2
AB ƶð Þ=∆ ƶð Þ2 is odd and if A and B are taken from

Figure 9. The atom-atom polarizability (left) and transmission probability at the Fermi level (right) for a single reference

atom for benzene, naphthalene, anthracene and tetracene (Reprinted from [71] with permission of AIP Publishing).

Figure 10. The atom-atom polarizability (left) and transmission probability at the Fermi level (right) for pentacene for

variable reference atom (Reprinted from [71] with permission of AIP Publishing).
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a different set this function is even. It is then easily seen that the odd function has no real part

along the imaginary axis, leading to a negative ΔAB=Δð Þ2 value along the y axis and zero at the

origin, yielding a negative atom-atom polarizability and zero transmission at the Fermi level

(T 0ð Þ). On the other hand, when A and B are drawn from opposite sets, ΔAB=Δ is an even

function yielding real values along the y axis. A positive πAB value results with either insula-

tion or transmission, depending on whether ΔAB 0ð Þ is zero or not. Note that the analysis for

A ¼ B leads to the same result as for A 6¼ B but belonging to the same set yielding a negative

πAA value. The following overall conclusion, formulated as a selection rule, can be drawn:

negative atom-atom polarizabilities for non-singular alternant hydrocarbons correspond to

devices with insulation at the Fermi level. Conduction at the Fermi level requires, but is not

guaranteed by, a positive atom-atom polarizability.

The aforementioned properties were used as guiding principle in our later studies towards a

chemical interpretation of molecular electronic conductivity [77] leading to a simple, back-

of-the-envelope determination of quantum interference [78], thus bridging the gap between

chemical reactivity theory and molecular electronics.

5. Conclusions

The LRF and its congener, the softness kernel, are now in a stage where many of their

mathematical and physical properties are well understood. The possibility to evaluate, repre-

sent and interpret them puts them on equal footing for their use in conceptual DFT with their

already more traditional second-order companions, the chemical hardness and the Fukui

function. In view of the ‘chemistry’ contained in the LRF kernel as shown some years ago, it

is not unexpected, but it still remains to be unravelled whether they are major players in very

fundamental issues pertaining to the electronic structure of matter as in Kohn’s nearsighted-

ness of electronic matter principle, as well as in more applied fields where they are shown to be

of great use to explore chemical compound space (through the alchemical derivatives) and to

predict/interpret molecular conductivity.
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