Predict Default of Credit Card Clients

By: Varsha Waingankar

Overview

- Data source
- Data cleaning and preprocessing
- Code
- Scaling normalizing data
- Handling imbalanced data
- Feature engineering
- Predictive modeling
- Accuracy and best model

Data source and Problem Statement

Data source UCI Machine Learning Repository

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

• This research aimed at the case of customers default payments in Taiwan and compares the predictive accuracy of probability of default using various methods

Data Frame

#Reading the data using pandas

df = pd.read_excel("default of credit card clients.xls")

#default of credit card clients.xls

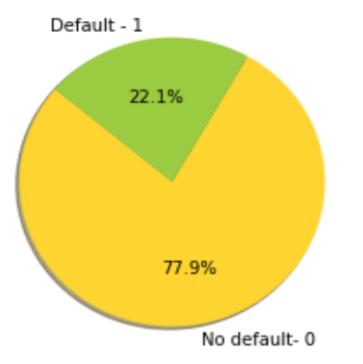
df.head()

\GE	AGE	PAY_0	PAY_2	PAY_3	PAY_4	 BILL_AMT4	BILL_AMT5	BILL_AMT6	PAY_AMT1	PAY_AMT2	PAY_AMT3	PAY_AMT4	PAY_AMT5	PAY_AMT6	default payment next month
1	24	2	2	-1	-1	 0	0	0	0	689	0	0	0	0	1
2	26	-1	2	0	0	 3272	3455	3261	0	1000	1000	1000	0	2000	1
2	34	0	0	0	0	 14331	14948	15549	1518	1500	1000	1000	1000	5000	0
1	37	0	0	0	0	 28314	28959	29547	2000	2019	1200	1100	1069	1000	0
1	57	-1	0	-1	0	 20940	19146	19131	2000	36681	10000	9000	689	679	0
	-					convenien ment next		"default"	}, inplac	e = True)				

#checking the columns

df.columns

Distribution of data (2 categories)



Data is highly imbalanced

78 percent is credit card amount payed duly

22 percent is credit card default

Data Manipulation

Data Manipulation:

Reduced unknown values to category 4 (Education)

df['EDUCATION'].unique()

```
array([2, 1, 3, 5, 4, 6, 0])
```

```
#Change values for education (1 = graduate school; 2 = university; 3 = high school; 4 = others)
#Anything other than 4 will be changed to 4
```

```
fil = (df['EDUCATION'] == 5) | (df['EDUCATION'] == 6) | (df['EDUCATION']== 0)
df.loc[fil, 'EDUCATION'] = 4
df['EDUCATION'].value_counts()
```

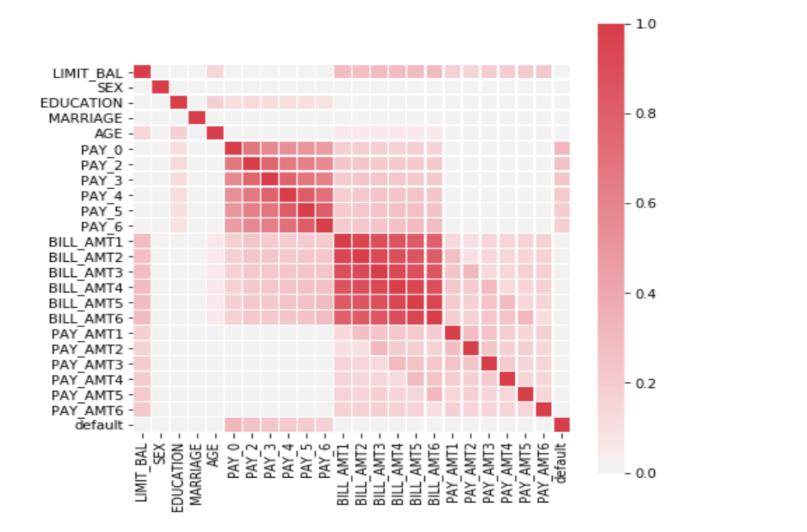
2 14030 1 10585 3 4917 4 468 Name: EDUCATION, dtype: int64

df['MARRIAGE'].unique()

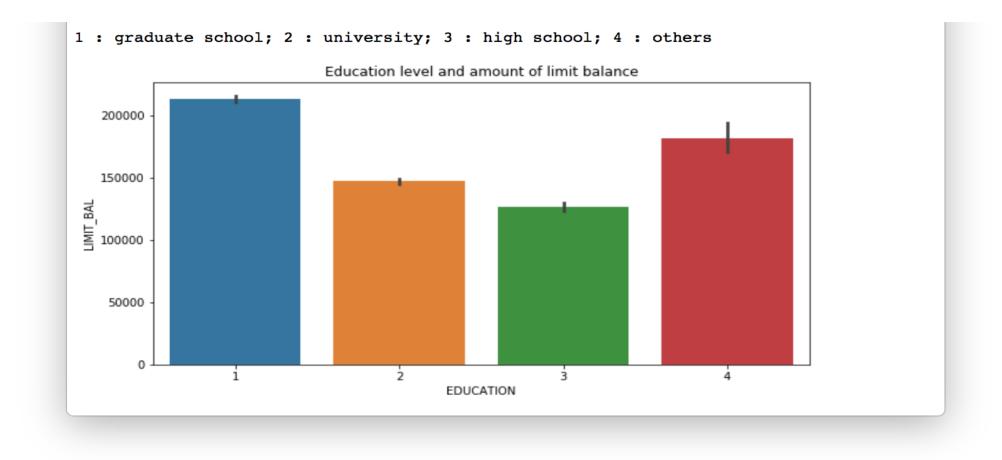
array([1, 2, 3, 0])

Similar manipulation was performed on various other fields, that had different values other than the ones defined.

Correlation coefficient of variables



Distribution of Education field



Applying Minmax Scaler

```
minmax_scale = preprocessing.MinMaxScaler().fit(df)
df_minmax = minmax_scale.transform(df)
df_minmax = pd.DataFrame(df_minmax, columns= list(df))
df_minmax.hist(figsize=(20,20))
plt.show()
```

Models :(sklearn Library)

Logistic Regression

Most widely used for Binary classification problem. The sigmoid function snaps values to 0 and 1, and we predict a class value.

• K Nearest Neighbors

For a data point to be classified into two different categories, We find the k nearest neighbors (k is any odd value) Then we use majority voting on the labels. The majority class label is assigned to the data point If k is even then distance is calculated. The shorted distance is used

Decision Tree Classifier

DTC will segregate the data points based on all values of variables and identify the variable, which creates the best homogeneous sets of data points (which are heterogeneous to each other)

• Random Forest Classifier

Random forests are a way of averaging multiple deep decision trees, trained on different parts of the same training set, with the goal of reducing the variance

Dividing the data into train and test

```
In [240]: #Perform oversampling to balance the data
          X = df minmax.drop(["default"], axis=1).values #Setting the X to do the split
          y = df minmax["default"].values # transforming the values in array
          X train, X test, y train, y test=train test split(X, y, random state=2, test size=0.20)
          # Separate majority and minority classes
          df majority = df minmax[df minmax['default']==0]
          df minority = df minmax[df minmax['default']==1]
          print(df majority['default'].count())
          print("-----")
          print(df minority['default'].count())
          print("-----")
          print(df['default'].value counts())
          23364
          6636
          0
               23364
```

1 6636

Name: default, dtype: int64

Predictive Modeling on Imbalanced Data

```
from sklearn import linear_model
logreg = linear_model.LogisticRegression(C=1e5)
logreg.fit(X_train, y_train)
prediction = logreg.predict(X_test)
print("accuaracy of model")
a= accuracy_score(y_test, prediction)
a=a*100
print(a)
```

accuaracy of model 81.0166666666666667

Conclusion of running model on imbalanced data:

Since distribution is 78:22 ratio, so running a model yeilds an 80 percent accuarcy. So it makes no sense to run a model on imbalanced data. Even random guess will give this result.

No other model was tried, cause running model on imbalanced data doesn't serve the purpose.

Random Oversampling of Minority

Now the distribution of non default and default are almost close

Out[243]: 0.0 23364 1.0 22677 Name: default, dtype: int64

Splitting into train and test 80 percent train, 20 percent test

```
In [244]: #using the new data frame - oversampled dataframe --- oversampling of minority class
X = df_oversample.drop(["default"], axis=1).values #Setting the X to do the split
y = df_oversample["default"].values # transforming the values in array
X_train, X_test, y_train, y_test=train_test_split(X, y, random_state=2, test_size=0.20)
```

Logistic Regression

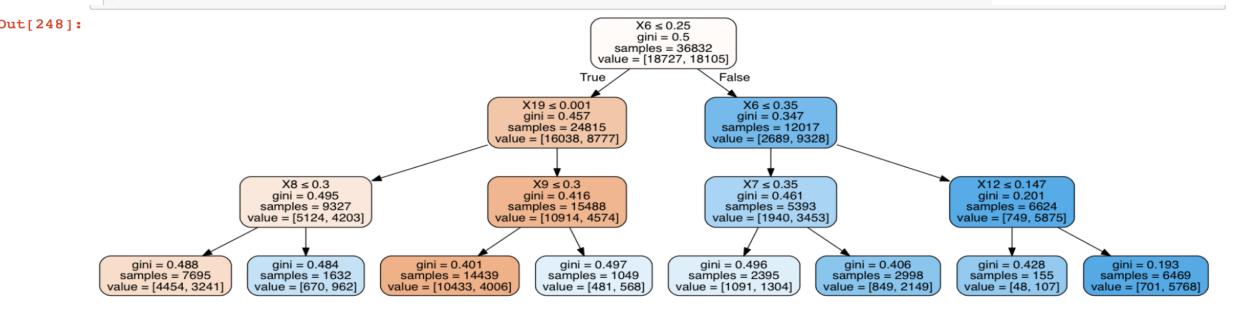
```
[245]: # Create dictionary for storing values of all models
       prediction = dict()
       #Run the logistic Regression model
       #import the linear model class from sklearn package
       from sklearn import linear model
       #create an object of the class, logreg is the object of class LogisticRegression
       logreg = linear model.LogisticRegression(C=1e5)
       #call object.fir on (X train----Set of predictors, Y train -----target variable. 80 percent is used for training)
       logreg.fit(X train, y train)
       #Model learns from training process
       #After training the model -- predict the the class for rest of 20 percent of data
       prediction['Logistic'] = logreg.predict(X test)
       #after predicting we check for the accuracy
       #Accuracy is defined as comparison between the actual class of target variable from the test data vs predicted
       print("accuaracy of model")
       a= accuracy_score(y_test, prediction['Logistic'])
       a=a*100
       print(a)
       #Print the confusion matrix
       #Confusion matrix is classifying Actual and predicted
       #False negative ---Predicted as negative but actually positive
       #True Positive ----Predicted as positive and actually positive
       #True Negative ---- Predicted as negative and actually negative
       #False Positive----Predicted as positive but actually negative
       from sklearn.metrics import confusion matrix
       confusion matrix = confusion matrix(y test, prediction['Logistic'])
```

K Nearest Neighbors

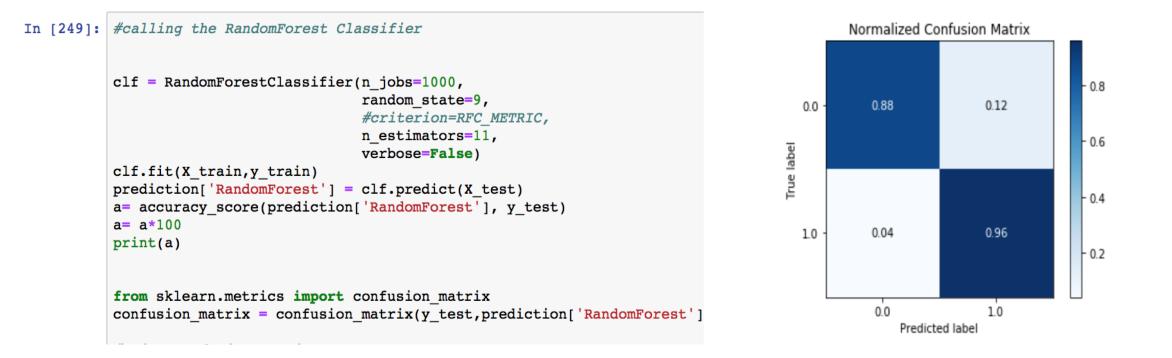
```
In [246]: from sklearn.neighbors import KNeighborsClassifier
          classifier = KNeighborsClassifier(n neighbors=5)
          classifier.fit(X train, y train)
          prediction['KNN']= classifier.predict(X test)
          print("accuaracy of model")
          a= accuracy score(y test, prediction['KNN'])
          a=a*100
          print(a)
          from sklearn.metrics import confusion matrix
          confusion matrix = confusion matrix(y test, prediction['KNN'])
          #print(confusion matrix)
          import scikitplot as skplt
          skplt.metrics.plot confusion matrix(y test, prediction['KNN'])
          plt.show()
          skplt.metrics.plot confusion matrix(y test, prediction['KNN'],normalize=True)
          plt.show()
          average precision = average precision score(y test, prediction['KNN'])
          print('Average precision-recall score: {0:0.2f}'.format(
                average precision))
```

Decision Tree Classifier

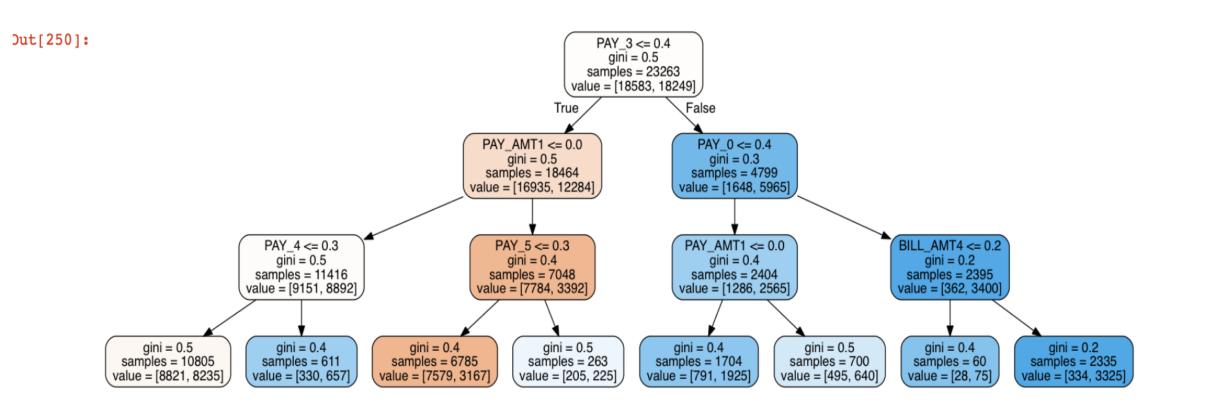




Random Forest Classifier



Random Forest Tree



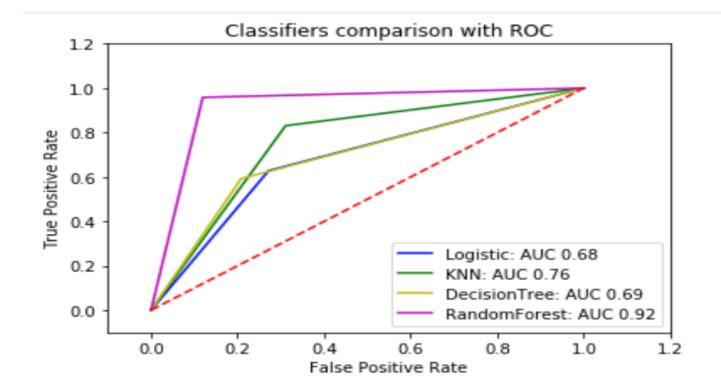
Running model on Randomly Oversampled Data

```
from sklearn.metrics import accuracy_score

cmp = 0
for model, predicted in prediction.items():
    accuracy = accuracy_score(y_test, predicted)
    accuracy
    print(model, accuracy*100)
    cmp += 1
```

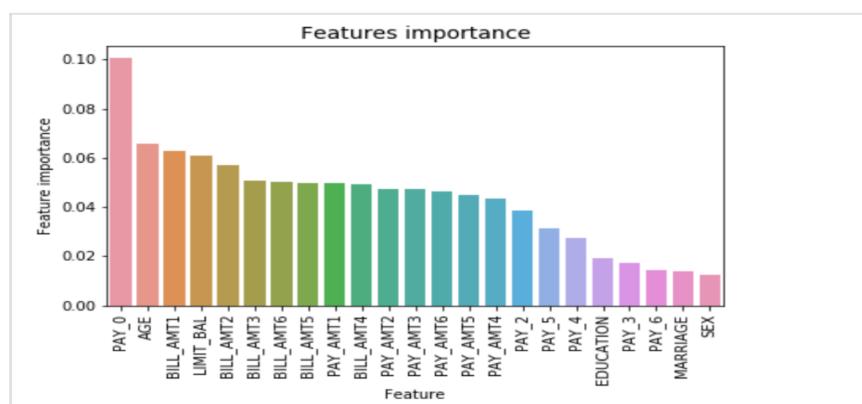
Logistic 67.86838961885113 KNN 75.93658377674014 DecisionTree 69.26919318058421 RandomForest 91.91008795743295

Receiver Operator Characteristic (Area under curve)



Feature Selection

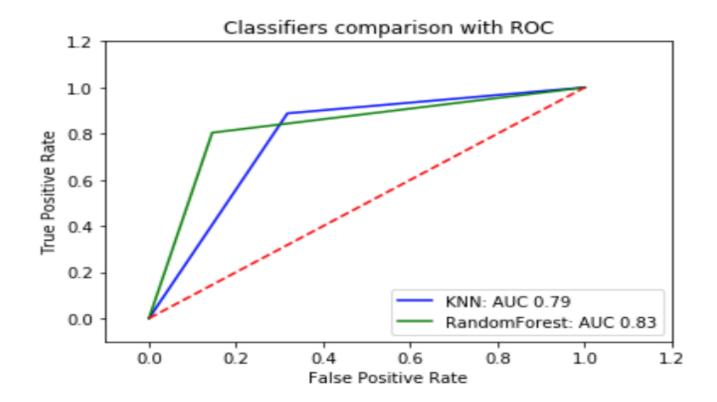
• We can select the best features based on the correlation coefficient of predictors with target . (forward ,backward, automated(random forest))



SMOTE

- Using SMOTE Synthetic Minority Oversampling Technique
- over-sampling approach in which the minority class is over-sampled by creating synthetic examples , that is learning from the data and generating data points.
- Reduces the chance of overfitting
- Accuracy
- ≻KNN 78.45067408517012
- ≻ Random Forest -83.59726086026107

Receiver Operator Characteristic (Area under curve)



Learning Processes

- Using MinMax Scaler to Normalize data.
- Understanding the effect of unbalanced data
- Random oversampling of minority class, under sampling of majority class, SMOTE.
- Using Sklearn library for running various models.
- Using feature engineering.
- Understanding confusion matrix , accuracy and Receiver Operator characteristic concepts.(precision /recall)
- Understanding the concepts behind each model
- Logistic Regression (sigmoid function)
- KNN Nearest neighbors, odd value of K and majority vote.
- Decision Tree/ Random Forest Condition based classification, with second being more deeper.

Conclusion

- The most important parameters in determining default of credit cards are the Repayment status variable.
- With Random oversampling of data and Random Forest classifier, achieves the best accuracy of 91 percent , with precision recall score of 0.87 and area under curve of 0.92
- With , SMOTE Random Forest Classifier , achieves the best accuracy of 82 percent , with precision recall score of 0.79 and area under curve of 0.83
- KNN is the next best model.
- Random Under sampling didn't yield great results because of less data points.