<!DOCTYPE html>
<html>
<head><meta charset="utf-8" />

<title>Varsha_Project2_CreditDefault</title>

<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>



<style type="text/css">
    /*!
*
* Twitter Bootstrap
*
*/
/*!
 * Bootstrap v3.3.7 (http://getbootstrap.com)
 * Copyright 2011-2016 Twitter, Inc.
 * Licensed under MIT (https://github.com/twbs/bootstrap/blob/master/LICENSE)
 */
/*! normalize.css v3.0.3 | MIT License | github.com/necolas/normalize.css */
html {
  font-family: sans-serif;
  -ms-text-size-adjust: 100%;
  -webkit-text-size-adjust: 100%;
}
body {
  margin: 0;
}
article,
aside,
details,
figcaption,
figure,
footer,
header,
hgroup,
main,
menu,
nav,
section,
summary {
  display: block;
}
audio,
canvas,
progress,
video {
  display: inline-block;
  vertical-align: baseline;
}
audio:not([controls]) {
  display: none;
  height: 0;
}
[hidden],
template {
  display: none;
}
a {
  background-color: transparent;
}
a:active,
a:hover {
  outline: 0;
}
abbr[title] {
  border-bottom: 1px dotted;
}
b,
strong {
  font-weight: bold;
}
dfn {
  font-style: italic;
}
h1 {
  font-size: 2em;
  margin: 0.67em 0;
}
mark {
  background: #ff0;
  color: #000;
}
small {
  font-size: 80%;
}
sub,
sup {
  font-size: 75%;
  line-height: 0;
  position: relative;
  vertical-align: baseline;
}
sup {
  top: -0.5em;
}
sub {
  bottom: -0.25em;
}
img {
  border: 0;
}
svg:not(:root) {
  overflow: hidden;
}
figure {
  margin: 1em 40px;
}
hr {
  box-sizing: content-box;
  height: 0;
}
pre {
  overflow: auto;
}
code,
kbd,
pre,
samp {
  font-family: monospace, monospace;
  font-size: 1em;
}
button,
input,
optgroup,
select,
textarea {
  color: inherit;
  font: inherit;
  margin: 0;
}
button {
  overflow: visible;
}
button,
select {
  text-transform: none;
}
button,
html input[type="button"],
input[type="reset"],
input[type="submit"] {
  -webkit-appearance: button;
  cursor: pointer;
}
button[disabled],
html input[disabled] {
  cursor: default;
}
button::-moz-focus-inner,
input::-moz-focus-inner {
  border: 0;
  padding: 0;
}
input {
  line-height: normal;
}
input[type="checkbox"],
input[type="radio"] {
  box-sizing: border-box;
  padding: 0;
}
input[type="number"]::-webkit-inner-spin-button,
input[type="number"]::-webkit-outer-spin-button {
  height: auto;
}
input[type="search"] {
  -webkit-appearance: textfield;
  box-sizing: content-box;
}
input[type="search"]::-webkit-search-cancel-button,
input[type="search"]::-webkit-search-decoration {
  -webkit-appearance: none;
}
fieldset {
  border: 1px solid #c0c0c0;
  margin: 0 2px;
  padding: 0.35em 0.625em 0.75em;
}
legend {
  border: 0;
  padding: 0;
}
textarea {
  overflow: auto;
}
optgroup {
  font-weight: bold;
}
table {
  border-collapse: collapse;
  border-spacing: 0;
}
td,
th {
  padding: 0;
}
/*! Source: https://github.com/h5bp/html5-boilerplate/blob/master/src/css/main.css */
@media print {
  *,
  *:before,
  *:after {
    background: transparent !important;
    box-shadow: none !important;
    text-shadow: none !important;
  }
  a,
  a:visited {
    text-decoration: underline;
  }
  a[href]:after {
    content: " (" attr(href) ")";
  }
  abbr[title]:after {
    content: " (" attr(title) ")";
  }
  a[href^="#"]:after,
  a[href^="javascript:"]:after {
    content: "";
  }
  pre,
  blockquote {
    border: 1px solid #999;
    page-break-inside: avoid;
  }
  thead {
    display: table-header-group;
  }
  tr,
  img {
    page-break-inside: avoid;
  }
  img {
    max-width: 100% !important;
  }
  p,
  h2,
  h3 {
    orphans: 3;
    widows: 3;
  }
  h2,
  h3 {
    page-break-after: avoid;
  }
  .navbar {
    display: none;
  }
  .btn > .caret,
  .dropup > .btn > .caret {
    border-top-color: #000 !important;
  }
  .label {
    border: 1px solid #000;
  }
  .table {
    border-collapse: collapse !important;
  }
  .table td,
  .table th {
    background-color: #fff !important;
  }
  .table-bordered th,
  .table-bordered td {
    border: 1px solid #ddd !important;
  }
}
@font-face {
  font-family: 'Glyphicons Halflings';
  src: url('../components/bootstrap/fonts/glyphicons-halflings-regular.eot');
  src: url('../components/bootstrap/fonts/glyphicons-halflings-regular.eot?#iefix') format('embedded-opentype'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.woff2') format('woff2'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.woff') format('woff'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.ttf') format('truetype'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.svg#glyphicons_halflingsregular') format('svg');
}
.glyphicon {
  position: relative;
  top: 1px;
  display: inline-block;
  font-family: 'Glyphicons Halflings';
  font-style: normal;
  font-weight: normal;
  line-height: 1;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
}
.glyphicon-asterisk:before {
  content: "\002a";
}
.glyphicon-plus:before {
  content: "\002b";
}
.glyphicon-euro:before,
.glyphicon-eur:before {
  content: "\20ac";
}
.glyphicon-minus:before {
  content: "\2212";
}
.glyphicon-cloud:before {
  content: "\2601";
}
.glyphicon-envelope:before {
  content: "\2709";
}
.glyphicon-pencil:before {
  content: "\270f";
}
.glyphicon-glass:before {
  content: "\e001";
}
.glyphicon-music:before {
  content: "\e002";
}
.glyphicon-search:before {
  content: "\e003";
}
.glyphicon-heart:before {
  content: "\e005";
}
.glyphicon-star:before {
  content: "\e006";
}
.glyphicon-star-empty:before {
  content: "\e007";
}
.glyphicon-user:before {
  content: "\e008";
}
.glyphicon-film:before {
  content: "\e009";
}
.glyphicon-th-large:before {
  content: "\e010";
}
.glyphicon-th:before {
  content: "\e011";
}
.glyphicon-th-list:before {
  content: "\e012";
}
.glyphicon-ok:before {
  content: "\e013";
}
.glyphicon-remove:before {
  content: "\e014";
}
.glyphicon-zoom-in:before {
  content: "\e015";
}
.glyphicon-zoom-out:before {
  content: "\e016";
}
.glyphicon-off:before {
  content: "\e017";
}
.glyphicon-signal:before {
  content: "\e018";
}
.glyphicon-cog:before {
  content: "\e019";
}
.glyphicon-trash:before {
  content: "\e020";
}
.glyphicon-home:before {
  content: "\e021";
}
.glyphicon-file:before {
  content: "\e022";
}
.glyphicon-time:before {
  content: "\e023";
}
.glyphicon-road:before {
  content: "\e024";
}
.glyphicon-download-alt:before {
  content: "\e025";
}
.glyphicon-download:before {
  content: "\e026";
}
.glyphicon-upload:before {
  content: "\e027";
}
.glyphicon-inbox:before {
  content: "\e028";
}
.glyphicon-play-circle:before {
  content: "\e029";
}
.glyphicon-repeat:before {
  content: "\e030";
}
.glyphicon-refresh:before {
  content: "\e031";
}
.glyphicon-list-alt:before {
  content: "\e032";
}
.glyphicon-lock:before {
  content: "\e033";
}
.glyphicon-flag:before {
  content: "\e034";
}
.glyphicon-headphones:before {
  content: "\e035";
}
.glyphicon-volume-off:before {
  content: "\e036";
}
.glyphicon-volume-down:before {
  content: "\e037";
}
.glyphicon-volume-up:before {
  content: "\e038";
}
.glyphicon-qrcode:before {
  content: "\e039";
}
.glyphicon-barcode:before {
  content: "\e040";
}
.glyphicon-tag:before {
  content: "\e041";
}
.glyphicon-tags:before {
  content: "\e042";
}
.glyphicon-book:before {
  content: "\e043";
}
.glyphicon-bookmark:before {
  content: "\e044";
}
.glyphicon-print:before {
  content: "\e045";
}
.glyphicon-camera:before {
  content: "\e046";
}
.glyphicon-font:before {
  content: "\e047";
}
.glyphicon-bold:before {
  content: "\e048";
}
.glyphicon-italic:before {
  content: "\e049";
}
.glyphicon-text-height:before {
  content: "\e050";
}
.glyphicon-text-width:before {
  content: "\e051";
}
.glyphicon-align-left:before {
  content: "\e052";
}
.glyphicon-align-center:before {
  content: "\e053";
}
.glyphicon-align-right:before {
  content: "\e054";
}
.glyphicon-align-justify:before {
  content: "\e055";
}
.glyphicon-list:before {
  content: "\e056";
}
.glyphicon-indent-left:before {
  content: "\e057";
}
.glyphicon-indent-right:before {
  content: "\e058";
}
.glyphicon-facetime-video:before {
  content: "\e059";
}
.glyphicon-picture:before {
  content: "\e060";
}
.glyphicon-map-marker:before {
  content: "\e062";
}
.glyphicon-adjust:before {
  content: "\e063";
}
.glyphicon-tint:before {
  content: "\e064";
}
.glyphicon-edit:before {
  content: "\e065";
}
.glyphicon-share:before {
  content: "\e066";
}
.glyphicon-check:before {
  content: "\e067";
}
.glyphicon-move:before {
  content: "\e068";
}
.glyphicon-step-backward:before {
  content: "\e069";
}
.glyphicon-fast-backward:before {
  content: "\e070";
}
.glyphicon-backward:before {
  content: "\e071";
}
.glyphicon-play:before {
  content: "\e072";
}
.glyphicon-pause:before {
  content: "\e073";
}
.glyphicon-stop:before {
  content: "\e074";
}
.glyphicon-forward:before {
  content: "\e075";
}
.glyphicon-fast-forward:before {
  content: "\e076";
}
.glyphicon-step-forward:before {
  content: "\e077";
}
.glyphicon-eject:before {
  content: "\e078";
}
.glyphicon-chevron-left:before {
  content: "\e079";
}
.glyphicon-chevron-right:before {
  content: "\e080";
}
.glyphicon-plus-sign:before {
  content: "\e081";
}
.glyphicon-minus-sign:before {
  content: "\e082";
}
.glyphicon-remove-sign:before {
  content: "\e083";
}
.glyphicon-ok-sign:before {
  content: "\e084";
}
.glyphicon-question-sign:before {
  content: "\e085";
}
.glyphicon-info-sign:before {
  content: "\e086";
}
.glyphicon-screenshot:before {
  content: "\e087";
}
.glyphicon-remove-circle:before {
  content: "\e088";
}
.glyphicon-ok-circle:before {
  content: "\e089";
}
.glyphicon-ban-circle:before {
  content: "\e090";
}
.glyphicon-arrow-left:before {
  content: "\e091";
}
.glyphicon-arrow-right:before {
  content: "\e092";
}
.glyphicon-arrow-up:before {
  content: "\e093";
}
.glyphicon-arrow-down:before {
  content: "\e094";
}
.glyphicon-share-alt:before {
  content: "\e095";
}
.glyphicon-resize-full:before {
  content: "\e096";
}
.glyphicon-resize-small:before {
  content: "\e097";
}
.glyphicon-exclamation-sign:before {
  content: "\e101";
}
.glyphicon-gift:before {
  content: "\e102";
}
.glyphicon-leaf:before {
  content: "\e103";
}
.glyphicon-fire:before {
  content: "\e104";
}
.glyphicon-eye-open:before {
  content: "\e105";
}
.glyphicon-eye-close:before {
  content: "\e106";
}
.glyphicon-warning-sign:before {
  content: "\e107";
}
.glyphicon-plane:before {
  content: "\e108";
}
.glyphicon-calendar:before {
  content: "\e109";
}
.glyphicon-random:before {
  content: "\e110";
}
.glyphicon-comment:before {
  content: "\e111";
}
.glyphicon-magnet:before {
  content: "\e112";
}
.glyphicon-chevron-up:before {
  content: "\e113";
}
.glyphicon-chevron-down:before {
  content: "\e114";
}
.glyphicon-retweet:before {
  content: "\e115";
}
.glyphicon-shopping-cart:before {
  content: "\e116";
}
.glyphicon-folder-close:before {
  content: "\e117";
}
.glyphicon-folder-open:before {
  content: "\e118";
}
.glyphicon-resize-vertical:before {
  content: "\e119";
}
.glyphicon-resize-horizontal:before {
  content: "\e120";
}
.glyphicon-hdd:before {
  content: "\e121";
}
.glyphicon-bullhorn:before {
  content: "\e122";
}
.glyphicon-bell:before {
  content: "\e123";
}
.glyphicon-certificate:before {
  content: "\e124";
}
.glyphicon-thumbs-up:before {
  content: "\e125";
}
.glyphicon-thumbs-down:before {
  content: "\e126";
}
.glyphicon-hand-right:before {
  content: "\e127";
}
.glyphicon-hand-left:before {
  content: "\e128";
}
.glyphicon-hand-up:before {
  content: "\e129";
}
.glyphicon-hand-down:before {
  content: "\e130";
}
.glyphicon-circle-arrow-right:before {
  content: "\e131";
}
.glyphicon-circle-arrow-left:before {
  content: "\e132";
}
.glyphicon-circle-arrow-up:before {
  content: "\e133";
}
.glyphicon-circle-arrow-down:before {
  content: "\e134";
}
.glyphicon-globe:before {
  content: "\e135";
}
.glyphicon-wrench:before {
  content: "\e136";
}
.glyphicon-tasks:before {
  content: "\e137";
}
.glyphicon-filter:before {
  content: "\e138";
}
.glyphicon-briefcase:before {
  content: "\e139";
}
.glyphicon-fullscreen:before {
  content: "\e140";
}
.glyphicon-dashboard:before {
  content: "\e141";
}
.glyphicon-paperclip:before {
  content: "\e142";
}
.glyphicon-heart-empty:before {
  content: "\e143";
}
.glyphicon-link:before {
  content: "\e144";
}
.glyphicon-phone:before {
  content: "\e145";
}
.glyphicon-pushpin:before {
  content: "\e146";
}
.glyphicon-usd:before {
  content: "\e148";
}
.glyphicon-gbp:before {
  content: "\e149";
}
.glyphicon-sort:before {
  content: "\e150";
}
.glyphicon-sort-by-alphabet:before {
  content: "\e151";
}
.glyphicon-sort-by-alphabet-alt:before {
  content: "\e152";
}
.glyphicon-sort-by-order:before {
  content: "\e153";
}
.glyphicon-sort-by-order-alt:before {
  content: "\e154";
}
.glyphicon-sort-by-attributes:before {
  content: "\e155";
}
.glyphicon-sort-by-attributes-alt:before {
  content: "\e156";
}
.glyphicon-unchecked:before {
  content: "\e157";
}
.glyphicon-expand:before {
  content: "\e158";
}
.glyphicon-collapse-down:before {
  content: "\e159";
}
.glyphicon-collapse-up:before {
  content: "\e160";
}
.glyphicon-log-in:before {
  content: "\e161";
}
.glyphicon-flash:before {
  content: "\e162";
}
.glyphicon-log-out:before {
  content: "\e163";
}
.glyphicon-new-window:before {
  content: "\e164";
}
.glyphicon-record:before {
  content: "\e165";
}
.glyphicon-save:before {
  content: "\e166";
}
.glyphicon-open:before {
  content: "\e167";
}
.glyphicon-saved:before {
  content: "\e168";
}
.glyphicon-import:before {
  content: "\e169";
}
.glyphicon-export:before {
  content: "\e170";
}
.glyphicon-send:before {
  content: "\e171";
}
.glyphicon-floppy-disk:before {
  content: "\e172";
}
.glyphicon-floppy-saved:before {
  content: "\e173";
}
.glyphicon-floppy-remove:before {
  content: "\e174";
}
.glyphicon-floppy-save:before {
  content: "\e175";
}
.glyphicon-floppy-open:before {
  content: "\e176";
}
.glyphicon-credit-card:before {
  content: "\e177";
}
.glyphicon-transfer:before {
  content: "\e178";
}
.glyphicon-cutlery:before {
  content: "\e179";
}
.glyphicon-header:before {
  content: "\e180";
}
.glyphicon-compressed:before {
  content: "\e181";
}
.glyphicon-earphone:before {
  content: "\e182";
}
.glyphicon-phone-alt:before {
  content: "\e183";
}
.glyphicon-tower:before {
  content: "\e184";
}
.glyphicon-stats:before {
  content: "\e185";
}
.glyphicon-sd-video:before {
  content: "\e186";
}
.glyphicon-hd-video:before {
  content: "\e187";
}
.glyphicon-subtitles:before {
  content: "\e188";
}
.glyphicon-sound-stereo:before {
  content: "\e189";
}
.glyphicon-sound-dolby:before {
  content: "\e190";
}
.glyphicon-sound-5-1:before {
  content: "\e191";
}
.glyphicon-sound-6-1:before {
  content: "\e192";
}
.glyphicon-sound-7-1:before {
  content: "\e193";
}
.glyphicon-copyright-mark:before {
  content: "\e194";
}
.glyphicon-registration-mark:before {
  content: "\e195";
}
.glyphicon-cloud-download:before {
  content: "\e197";
}
.glyphicon-cloud-upload:before {
  content: "\e198";
}
.glyphicon-tree-conifer:before {
  content: "\e199";
}
.glyphicon-tree-deciduous:before {
  content: "\e200";
}
.glyphicon-cd:before {
  content: "\e201";
}
.glyphicon-save-file:before {
  content: "\e202";
}
.glyphicon-open-file:before {
  content: "\e203";
}
.glyphicon-level-up:before {
  content: "\e204";
}
.glyphicon-copy:before {
  content: "\e205";
}
.glyphicon-paste:before {
  content: "\e206";
}
.glyphicon-alert:before {
  content: "\e209";
}
.glyphicon-equalizer:before {
  content: "\e210";
}
.glyphicon-king:before {
  content: "\e211";
}
.glyphicon-queen:before {
  content: "\e212";
}
.glyphicon-pawn:before {
  content: "\e213";
}
.glyphicon-bishop:before {
  content: "\e214";
}
.glyphicon-knight:before {
  content: "\e215";
}
.glyphicon-baby-formula:before {
  content: "\e216";
}
.glyphicon-tent:before {
  content: "\26fa";
}
.glyphicon-blackboard:before {
  content: "\e218";
}
.glyphicon-bed:before {
  content: "\e219";
}
.glyphicon-apple:before {
  content: "\f8ff";
}
.glyphicon-erase:before {
  content: "\e221";
}
.glyphicon-hourglass:before {
  content: "\231b";
}
.glyphicon-lamp:before {
  content: "\e223";
}
.glyphicon-duplicate:before {
  content: "\e224";
}
.glyphicon-piggy-bank:before {
  content: "\e225";
}
.glyphicon-scissors:before {
  content: "\e226";
}
.glyphicon-bitcoin:before {
  content: "\e227";
}
.glyphicon-btc:before {
  content: "\e227";
}
.glyphicon-xbt:before {
  content: "\e227";
}
.glyphicon-yen:before {
  content: "\00a5";
}
.glyphicon-jpy:before {
  content: "\00a5";
}
.glyphicon-ruble:before {
  content: "\20bd";
}
.glyphicon-rub:before {
  content: "\20bd";
}
.glyphicon-scale:before {
  content: "\e230";
}
.glyphicon-ice-lolly:before {
  content: "\e231";
}
.glyphicon-ice-lolly-tasted:before {
  content: "\e232";
}
.glyphicon-education:before {
  content: "\e233";
}
.glyphicon-option-horizontal:before {
  content: "\e234";
}
.glyphicon-option-vertical:before {
  content: "\e235";
}
.glyphicon-menu-hamburger:before {
  content: "\e236";
}
.glyphicon-modal-window:before {
  content: "\e237";
}
.glyphicon-oil:before {
  content: "\e238";
}
.glyphicon-grain:before {
  content: "\e239";
}
.glyphicon-sunglasses:before {
  content: "\e240";
}
.glyphicon-text-size:before {
  content: "\e241";
}
.glyphicon-text-color:before {
  content: "\e242";
}
.glyphicon-text-background:before {
  content: "\e243";
}
.glyphicon-object-align-top:before {
  content: "\e244";
}
.glyphicon-object-align-bottom:before {
  content: "\e245";
}
.glyphicon-object-align-horizontal:before {
  content: "\e246";
}
.glyphicon-object-align-left:before {
  content: "\e247";
}
.glyphicon-object-align-vertical:before {
  content: "\e248";
}
.glyphicon-object-align-right:before {
  content: "\e249";
}
.glyphicon-triangle-right:before {
  content: "\e250";
}
.glyphicon-triangle-left:before {
  content: "\e251";
}
.glyphicon-triangle-bottom:before {
  content: "\e252";
}
.glyphicon-triangle-top:before {
  content: "\e253";
}
.glyphicon-console:before {
  content: "\e254";
}
.glyphicon-superscript:before {
  content: "\e255";
}
.glyphicon-subscript:before {
  content: "\e256";
}
.glyphicon-menu-left:before {
  content: "\e257";
}
.glyphicon-menu-right:before {
  content: "\e258";
}
.glyphicon-menu-down:before {
  content: "\e259";
}
.glyphicon-menu-up:before {
  content: "\e260";
}
* {
  -webkit-box-sizing: border-box;
  -moz-box-sizing: border-box;
  box-sizing: border-box;
}
*:before,
*:after {
  -webkit-box-sizing: border-box;
  -moz-box-sizing: border-box;
  box-sizing: border-box;
}
html {
  font-size: 10px;
  -webkit-tap-highlight-color: rgba(0, 0, 0, 0);
}
body {
  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
  font-size: 13px;
  line-height: 1.42857143;
  color: #000;
  background-color: #fff;
}
input,
button,
select,
textarea {
  font-family: inherit;
  font-size: inherit;
  line-height: inherit;
}
a {
  color: #337ab7;
  text-decoration: none;
}
a:hover,
a:focus {
  color: #23527c;
  text-decoration: underline;
}
a:focus {
  outline: 5px auto -webkit-focus-ring-color;
  outline-offset: -2px;
}
figure {
  margin: 0;
}
img {
  vertical-align: middle;
}
.img-responsive,
.thumbnail > img,
.thumbnail a > img,
.carousel-inner > .item > img,
.carousel-inner > .item > a > img {
  display: block;
  max-width: 100%;
  height: auto;
}
.img-rounded {
  border-radius: 3px;
}
.img-thumbnail {
  padding: 4px;
  line-height: 1.42857143;
  background-color: #fff;
  border: 1px solid #ddd;
  border-radius: 2px;
  -webkit-transition: all 0.2s ease-in-out;
  -o-transition: all 0.2s ease-in-out;
  transition: all 0.2s ease-in-out;
  display: inline-block;
  max-width: 100%;
  height: auto;
}
.img-circle {
  border-radius: 50%;
}
hr {
  margin-top: 18px;
  margin-bottom: 18px;
  border: 0;
  border-top: 1px solid #eeeeee;
}
.sr-only {
  position: absolute;
  width: 1px;
  height: 1px;
  margin: -1px;
  padding: 0;
  overflow: hidden;
  clip: rect(0, 0, 0, 0);
  border: 0;
}
.sr-only-focusable:active,
.sr-only-focusable:focus {
  position: static;
  width: auto;
  height: auto;
  margin: 0;
  overflow: visible;
  clip: auto;
}
[role="button"] {
  cursor: pointer;
}
h1,
h2,
h3,
h4,
h5,
h6,
.h1,
.h2,
.h3,
.h4,
.h5,
.h6 {
  font-family: inherit;
  font-weight: 500;
  line-height: 1.1;
  color: inherit;
}
h1 small,
h2 small,
h3 small,
h4 small,
h5 small,
h6 small,
.h1 small,
.h2 small,
.h3 small,
.h4 small,
.h5 small,
.h6 small,
h1 .small,
h2 .small,
h3 .small,
h4 .small,
h5 .small,
h6 .small,
.h1 .small,
.h2 .small,
.h3 .small,
.h4 .small,
.h5 .small,
.h6 .small {
  font-weight: normal;
  line-height: 1;
  color: #777777;
}
h1,
.h1,
h2,
.h2,
h3,
.h3 {
  margin-top: 18px;
  margin-bottom: 9px;
}
h1 small,
.h1 small,
h2 small,
.h2 small,
h3 small,
.h3 small,
h1 .small,
.h1 .small,
h2 .small,
.h2 .small,
h3 .small,
.h3 .small {
  font-size: 65%;
}
h4,
.h4,
h5,
.h5,
h6,
.h6 {
  margin-top: 9px;
  margin-bottom: 9px;
}
h4 small,
.h4 small,
h5 small,
.h5 small,
h6 small,
.h6 small,
h4 .small,
.h4 .small,
h5 .small,
.h5 .small,
h6 .small,
.h6 .small {
  font-size: 75%;
}
h1,
.h1 {
  font-size: 33px;
}
h2,
.h2 {
  font-size: 27px;
}
h3,
.h3 {
  font-size: 23px;
}
h4,
.h4 {
  font-size: 17px;
}
h5,
.h5 {
  font-size: 13px;
}
h6,
.h6 {
  font-size: 12px;
}
p {
  margin: 0 0 9px;
}
.lead {
  margin-bottom: 18px;
  font-size: 14px;
  font-weight: 300;
  line-height: 1.4;
}
@media (min-width: 768px) {
  .lead {
    font-size: 19.5px;
  }
}
small,
.small {
  font-size: 92%;
}
mark,
.mark {
  background-color: #fcf8e3;
  padding: .2em;
}
.text-left {
  text-align: left;
}
.text-right {
  text-align: right;
}
.text-center {
  text-align: center;
}
.text-justify {
  text-align: justify;
}
.text-nowrap {
  white-space: nowrap;
}
.text-lowercase {
  text-transform: lowercase;
}
.text-uppercase {
  text-transform: uppercase;
}
.text-capitalize {
  text-transform: capitalize;
}
.text-muted {
  color: #777777;
}
.text-primary {
  color: #337ab7;
}
a.text-primary:hover,
a.text-primary:focus {
  color: #286090;
}
.text-success {
  color: #3c763d;
}
a.text-success:hover,
a.text-success:focus {
  color: #2b542c;
}
.text-info {
  color: #31708f;
}
a.text-info:hover,
a.text-info:focus {
  color: #245269;
}
.text-warning {
  color: #8a6d3b;
}
a.text-warning:hover,
a.text-warning:focus {
  color: #66512c;
}
.text-danger {
  color: #a94442;
}
a.text-danger:hover,
a.text-danger:focus {
  color: #843534;
}
.bg-primary {
  color: #fff;
  background-color: #337ab7;
}
a.bg-primary:hover,
a.bg-primary:focus {
  background-color: #286090;
}
.bg-success {
  background-color: #dff0d8;
}
a.bg-success:hover,
a.bg-success:focus {
  background-color: #c1e2b3;
}
.bg-info {
  background-color: #d9edf7;
}
a.bg-info:hover,
a.bg-info:focus {
  background-color: #afd9ee;
}
.bg-warning {
  background-color: #fcf8e3;
}
a.bg-warning:hover,
a.bg-warning:focus {
  background-color: #f7ecb5;
}
.bg-danger {
  background-color: #f2dede;
}
a.bg-danger:hover,
a.bg-danger:focus {
  background-color: #e4b9b9;
}
.page-header {
  padding-bottom: 8px;
  margin: 36px 0 18px;
  border-bottom: 1px solid #eeeeee;
}
ul,
ol {
  margin-top: 0;
  margin-bottom: 9px;
}
ul ul,
ol ul,
ul ol,
ol ol {
  margin-bottom: 0;
}
.list-unstyled {
  padding-left: 0;
  list-style: none;
}
.list-inline {
  padding-left: 0;
  list-style: none;
  margin-left: -5px;
}
.list-inline > li {
  display: inline-block;
  padding-left: 5px;
  padding-right: 5px;
}
dl {
  margin-top: 0;
  margin-bottom: 18px;
}
dt,
dd {
  line-height: 1.42857143;
}
dt {
  font-weight: bold;
}
dd {
  margin-left: 0;
}
@media (min-width: 541px) {
  .dl-horizontal dt {
    float: left;
    width: 160px;
    clear: left;
    text-align: right;
    overflow: hidden;
    text-overflow: ellipsis;
    white-space: nowrap;
  }
  .dl-horizontal dd {
    margin-left: 180px;
  }
}
abbr[title],
abbr[data-original-title] {
  cursor: help;
  border-bottom: 1px dotted #777777;
}
.initialism {
  font-size: 90%;
  text-transform: uppercase;
}
blockquote {
  padding: 9px 18px;
  margin: 0 0 18px;
  font-size: inherit;
  border-left: 5px solid #eeeeee;
}
blockquote p:last-child,
blockquote ul:last-child,
blockquote ol:last-child {
  margin-bottom: 0;
}
blockquote footer,
blockquote small,
blockquote .small {
  display: block;
  font-size: 80%;
  line-height: 1.42857143;
  color: #777777;
}
blockquote footer:before,
blockquote small:before,
blockquote .small:before {
  content: '\2014 \00A0';
}
.blockquote-reverse,
blockquote.pull-right {
  padding-right: 15px;
  padding-left: 0;
  border-right: 5px solid #eeeeee;
  border-left: 0;
  text-align: right;
}
.blockquote-reverse footer:before,
blockquote.pull-right footer:before,
.blockquote-reverse small:before,
blockquote.pull-right small:before,
.blockquote-reverse .small:before,
blockquote.pull-right .small:before {
  content: '';
}
.blockquote-reverse footer:after,
blockquote.pull-right footer:after,
.blockquote-reverse small:after,
blockquote.pull-right small:after,
.blockquote-reverse .small:after,
blockquote.pull-right .small:after {
  content: '\00A0 \2014';
}
address {
  margin-bottom: 18px;
  font-style: normal;
  line-height: 1.42857143;
}
code,
kbd,
pre,
samp {
  font-family: monospace;
}
code {
  padding: 2px 4px;
  font-size: 90%;
  color: #c7254e;
  background-color: #f9f2f4;
  border-radius: 2px;
}
kbd {
  padding: 2px 4px;
  font-size: 90%;
  color: #888;
  background-color: transparent;
  border-radius: 1px;
  box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.25);
}
kbd kbd {
  padding: 0;
  font-size: 100%;
  font-weight: bold;
  box-shadow: none;
}
pre {
  display: block;
  padding: 8.5px;
  margin: 0 0 9px;
  font-size: 12px;
  line-height: 1.42857143;
  word-break: break-all;
  word-wrap: break-word;
  color: #333333;
  background-color: #f5f5f5;
  border: 1px solid #ccc;
  border-radius: 2px;
}
pre code {
  padding: 0;
  font-size: inherit;
  color: inherit;
  white-space: pre-wrap;
  background-color: transparent;
  border-radius: 0;
}
.pre-scrollable {
  max-height: 340px;
  overflow-y: scroll;
}
.container {
  margin-right: auto;
  margin-left: auto;
  padding-left: 0px;
  padding-right: 0px;
}
@media (min-width: 768px) {
  .container {
    width: 768px;
  }
}
@media (min-width: 992px) {
  .container {
    width: 940px;
  }
}
@media (min-width: 1200px) {
  .container {
    width: 1140px;
  }
}
.container-fluid {
  margin-right: auto;
  margin-left: auto;
  padding-left: 0px;
  padding-right: 0px;
}
.row {
  margin-left: 0px;
  margin-right: 0px;
}
.col-xs-1, .col-sm-1, .col-md-1, .col-lg-1, .col-xs-2, .col-sm-2, .col-md-2, .col-lg-2, .col-xs-3, .col-sm-3, .col-md-3, .col-lg-3, .col-xs-4, .col-sm-4, .col-md-4, .col-lg-4, .col-xs-5, .col-sm-5, .col-md-5, .col-lg-5, .col-xs-6, .col-sm-6, .col-md-6, .col-lg-6, .col-xs-7, .col-sm-7, .col-md-7, .col-lg-7, .col-xs-8, .col-sm-8, .col-md-8, .col-lg-8, .col-xs-9, .col-sm-9, .col-md-9, .col-lg-9, .col-xs-10, .col-sm-10, .col-md-10, .col-lg-10, .col-xs-11, .col-sm-11, .col-md-11, .col-lg-11, .col-xs-12, .col-sm-12, .col-md-12, .col-lg-12 {
  position: relative;
  min-height: 1px;
  padding-left: 0px;
  padding-right: 0px;
}
.col-xs-1, .col-xs-2, .col-xs-3, .col-xs-4, .col-xs-5, .col-xs-6, .col-xs-7, .col-xs-8, .col-xs-9, .col-xs-10, .col-xs-11, .col-xs-12 {
  float: left;
}
.col-xs-12 {
  width: 100%;
}
.col-xs-11 {
  width: 91.66666667%;
}
.col-xs-10 {
  width: 83.33333333%;
}
.col-xs-9 {
  width: 75%;
}
.col-xs-8 {
  width: 66.66666667%;
}
.col-xs-7 {
  width: 58.33333333%;
}
.col-xs-6 {
  width: 50%;
}
.col-xs-5 {
  width: 41.66666667%;
}
.col-xs-4 {
  width: 33.33333333%;
}
.col-xs-3 {
  width: 25%;
}
.col-xs-2 {
  width: 16.66666667%;
}
.col-xs-1 {
  width: 8.33333333%;
}
.col-xs-pull-12 {
  right: 100%;
}
.col-xs-pull-11 {
  right: 91.66666667%;
}
.col-xs-pull-10 {
  right: 83.33333333%;
}
.col-xs-pull-9 {
  right: 75%;
}
.col-xs-pull-8 {
  right: 66.66666667%;
}
.col-xs-pull-7 {
  right: 58.33333333%;
}
.col-xs-pull-6 {
  right: 50%;
}
.col-xs-pull-5 {
  right: 41.66666667%;
}
.col-xs-pull-4 {
  right: 33.33333333%;
}
.col-xs-pull-3 {
  right: 25%;
}
.col-xs-pull-2 {
  right: 16.66666667%;
}
.col-xs-pull-1 {
  right: 8.33333333%;
}
.col-xs-pull-0 {
  right: auto;
}
.col-xs-push-12 {
  left: 100%;
}
.col-xs-push-11 {
  left: 91.66666667%;
}
.col-xs-push-10 {
  left: 83.33333333%;
}
.col-xs-push-9 {
  left: 75%;
}
.col-xs-push-8 {
  left: 66.66666667%;
}
.col-xs-push-7 {
  left: 58.33333333%;
}
.col-xs-push-6 {
  left: 50%;
}
.col-xs-push-5 {
  left: 41.66666667%;
}
.col-xs-push-4 {
  left: 33.33333333%;
}
.col-xs-push-3 {
  left: 25%;
}
.col-xs-push-2 {
  left: 16.66666667%;
}
.col-xs-push-1 {
  left: 8.33333333%;
}
.col-xs-push-0 {
  left: auto;
}
.col-xs-offset-12 {
  margin-left: 100%;
}
.col-xs-offset-11 {
  margin-left: 91.66666667%;
}
.col-xs-offset-10 {
  margin-left: 83.33333333%;
}
.col-xs-offset-9 {
  margin-left: 75%;
}
.col-xs-offset-8 {
  margin-left: 66.66666667%;
}
.col-xs-offset-7 {
  margin-left: 58.33333333%;
}
.col-xs-offset-6 {
  margin-left: 50%;
}
.col-xs-offset-5 {
  margin-left: 41.66666667%;
}
.col-xs-offset-4 {
  margin-left: 33.33333333%;
}
.col-xs-offset-3 {
  margin-left: 25%;
}
.col-xs-offset-2 {
  margin-left: 16.66666667%;
}
.col-xs-offset-1 {
  margin-left: 8.33333333%;
}
.col-xs-offset-0 {
  margin-left: 0%;
}
@media (min-width: 768px) {
  .col-sm-1, .col-sm-2, .col-sm-3, .col-sm-4, .col-sm-5, .col-sm-6, .col-sm-7, .col-sm-8, .col-sm-9, .col-sm-10, .col-sm-11, .col-sm-12 {
    float: left;
  }
  .col-sm-12 {
    width: 100%;
  }
  .col-sm-11 {
    width: 91.66666667%;
  }
  .col-sm-10 {
    width: 83.33333333%;
  }
  .col-sm-9 {
    width: 75%;
  }
  .col-sm-8 {
    width: 66.66666667%;
  }
  .col-sm-7 {
    width: 58.33333333%;
  }
  .col-sm-6 {
    width: 50%;
  }
  .col-sm-5 {
    width: 41.66666667%;
  }
  .col-sm-4 {
    width: 33.33333333%;
  }
  .col-sm-3 {
    width: 25%;
  }
  .col-sm-2 {
    width: 16.66666667%;
  }
  .col-sm-1 {
    width: 8.33333333%;
  }
  .col-sm-pull-12 {
    right: 100%;
  }
  .col-sm-pull-11 {
    right: 91.66666667%;
  }
  .col-sm-pull-10 {
    right: 83.33333333%;
  }
  .col-sm-pull-9 {
    right: 75%;
  }
  .col-sm-pull-8 {
    right: 66.66666667%;
  }
  .col-sm-pull-7 {
    right: 58.33333333%;
  }
  .col-sm-pull-6 {
    right: 50%;
  }
  .col-sm-pull-5 {
    right: 41.66666667%;
  }
  .col-sm-pull-4 {
    right: 33.33333333%;
  }
  .col-sm-pull-3 {
    right: 25%;
  }
  .col-sm-pull-2 {
    right: 16.66666667%;
  }
  .col-sm-pull-1 {
    right: 8.33333333%;
  }
  .col-sm-pull-0 {
    right: auto;
  }
  .col-sm-push-12 {
    left: 100%;
  }
  .col-sm-push-11 {
    left: 91.66666667%;
  }
  .col-sm-push-10 {
    left: 83.33333333%;
  }
  .col-sm-push-9 {
    left: 75%;
  }
  .col-sm-push-8 {
    left: 66.66666667%;
  }
  .col-sm-push-7 {
    left: 58.33333333%;
  }
  .col-sm-push-6 {
    left: 50%;
  }
  .col-sm-push-5 {
    left: 41.66666667%;
  }
  .col-sm-push-4 {
    left: 33.33333333%;
  }
  .col-sm-push-3 {
    left: 25%;
  }
  .col-sm-push-2 {
    left: 16.66666667%;
  }
  .col-sm-push-1 {
    left: 8.33333333%;
  }
  .col-sm-push-0 {
    left: auto;
  }
  .col-sm-offset-12 {
    margin-left: 100%;
  }
  .col-sm-offset-11 {
    margin-left: 91.66666667%;
  }
  .col-sm-offset-10 {
    margin-left: 83.33333333%;
  }
  .col-sm-offset-9 {
    margin-left: 75%;
  }
  .col-sm-offset-8 {
    margin-left: 66.66666667%;
  }
  .col-sm-offset-7 {
    margin-left: 58.33333333%;
  }
  .col-sm-offset-6 {
    margin-left: 50%;
  }
  .col-sm-offset-5 {
    margin-left: 41.66666667%;
  }
  .col-sm-offset-4 {
    margin-left: 33.33333333%;
  }
  .col-sm-offset-3 {
    margin-left: 25%;
  }
  .col-sm-offset-2 {
    margin-left: 16.66666667%;
  }
  .col-sm-offset-1 {
    margin-left: 8.33333333%;
  }
  .col-sm-offset-0 {
    margin-left: 0%;
  }
}
@media (min-width: 992px) {
  .col-md-1, .col-md-2, .col-md-3, .col-md-4, .col-md-5, .col-md-6, .col-md-7, .col-md-8, .col-md-9, .col-md-10, .col-md-11, .col-md-12 {
    float: left;
  }
  .col-md-12 {
    width: 100%;
  }
  .col-md-11 {
    width: 91.66666667%;
  }
  .col-md-10 {
    width: 83.33333333%;
  }
  .col-md-9 {
    width: 75%;
  }
  .col-md-8 {
    width: 66.66666667%;
  }
  .col-md-7 {
    width: 58.33333333%;
  }
  .col-md-6 {
    width: 50%;
  }
  .col-md-5 {
    width: 41.66666667%;
  }
  .col-md-4 {
    width: 33.33333333%;
  }
  .col-md-3 {
    width: 25%;
  }
  .col-md-2 {
    width: 16.66666667%;
  }
  .col-md-1 {
    width: 8.33333333%;
  }
  .col-md-pull-12 {
    right: 100%;
  }
  .col-md-pull-11 {
    right: 91.66666667%;
  }
  .col-md-pull-10 {
    right: 83.33333333%;
  }
  .col-md-pull-9 {
    right: 75%;
  }
  .col-md-pull-8 {
    right: 66.66666667%;
  }
  .col-md-pull-7 {
    right: 58.33333333%;
  }
  .col-md-pull-6 {
    right: 50%;
  }
  .col-md-pull-5 {
    right: 41.66666667%;
  }
  .col-md-pull-4 {
    right: 33.33333333%;
  }
  .col-md-pull-3 {
    right: 25%;
  }
  .col-md-pull-2 {
    right: 16.66666667%;
  }
  .col-md-pull-1 {
    right: 8.33333333%;
  }
  .col-md-pull-0 {
    right: auto;
  }
  .col-md-push-12 {
    left: 100%;
  }
  .col-md-push-11 {
    left: 91.66666667%;
  }
  .col-md-push-10 {
    left: 83.33333333%;
  }
  .col-md-push-9 {
    left: 75%;
  }
  .col-md-push-8 {
    left: 66.66666667%;
  }
  .col-md-push-7 {
    left: 58.33333333%;
  }
  .col-md-push-6 {
    left: 50%;
  }
  .col-md-push-5 {
    left: 41.66666667%;
  }
  .col-md-push-4 {
    left: 33.33333333%;
  }
  .col-md-push-3 {
    left: 25%;
  }
  .col-md-push-2 {
    left: 16.66666667%;
  }
  .col-md-push-1 {
    left: 8.33333333%;
  }
  .col-md-push-0 {
    left: auto;
  }
  .col-md-offset-12 {
    margin-left: 100%;
  }
  .col-md-offset-11 {
    margin-left: 91.66666667%;
  }
  .col-md-offset-10 {
    margin-left: 83.33333333%;
  }
  .col-md-offset-9 {
    margin-left: 75%;
  }
  .col-md-offset-8 {
    margin-left: 66.66666667%;
  }
  .col-md-offset-7 {
    margin-left: 58.33333333%;
  }
  .col-md-offset-6 {
    margin-left: 50%;
  }
  .col-md-offset-5 {
    margin-left: 41.66666667%;
  }
  .col-md-offset-4 {
    margin-left: 33.33333333%;
  }
  .col-md-offset-3 {
    margin-left: 25%;
  }
  .col-md-offset-2 {
    margin-left: 16.66666667%;
  }
  .col-md-offset-1 {
    margin-left: 8.33333333%;
  }
  .col-md-offset-0 {
    margin-left: 0%;
  }
}
@media (min-width: 1200px) {
  .col-lg-1, .col-lg-2, .col-lg-3, .col-lg-4, .col-lg-5, .col-lg-6, .col-lg-7, .col-lg-8, .col-lg-9, .col-lg-10, .col-lg-11, .col-lg-12 {
    float: left;
  }
  .col-lg-12 {
    width: 100%;
  }
  .col-lg-11 {
    width: 91.66666667%;
  }
  .col-lg-10 {
    width: 83.33333333%;
  }
  .col-lg-9 {
    width: 75%;
  }
  .col-lg-8 {
    width: 66.66666667%;
  }
  .col-lg-7 {
    width: 58.33333333%;
  }
  .col-lg-6 {
    width: 50%;
  }
  .col-lg-5 {
    width: 41.66666667%;
  }
  .col-lg-4 {
    width: 33.33333333%;
  }
  .col-lg-3 {
    width: 25%;
  }
  .col-lg-2 {
    width: 16.66666667%;
  }
  .col-lg-1 {
    width: 8.33333333%;
  }
  .col-lg-pull-12 {
    right: 100%;
  }
  .col-lg-pull-11 {
    right: 91.66666667%;
  }
  .col-lg-pull-10 {
    right: 83.33333333%;
  }
  .col-lg-pull-9 {
    right: 75%;
  }
  .col-lg-pull-8 {
    right: 66.66666667%;
  }
  .col-lg-pull-7 {
    right: 58.33333333%;
  }
  .col-lg-pull-6 {
    right: 50%;
  }
  .col-lg-pull-5 {
    right: 41.66666667%;
  }
  .col-lg-pull-4 {
    right: 33.33333333%;
  }
  .col-lg-pull-3 {
    right: 25%;
  }
  .col-lg-pull-2 {
    right: 16.66666667%;
  }
  .col-lg-pull-1 {
    right: 8.33333333%;
  }
  .col-lg-pull-0 {
    right: auto;
  }
  .col-lg-push-12 {
    left: 100%;
  }
  .col-lg-push-11 {
    left: 91.66666667%;
  }
  .col-lg-push-10 {
    left: 83.33333333%;
  }
  .col-lg-push-9 {
    left: 75%;
  }
  .col-lg-push-8 {
    left: 66.66666667%;
  }
  .col-lg-push-7 {
    left: 58.33333333%;
  }
  .col-lg-push-6 {
    left: 50%;
  }
  .col-lg-push-5 {
    left: 41.66666667%;
  }
  .col-lg-push-4 {
    left: 33.33333333%;
  }
  .col-lg-push-3 {
    left: 25%;
  }
  .col-lg-push-2 {
    left: 16.66666667%;
  }
  .col-lg-push-1 {
    left: 8.33333333%;
  }
  .col-lg-push-0 {
    left: auto;
  }
  .col-lg-offset-12 {
    margin-left: 100%;
  }
  .col-lg-offset-11 {
    margin-left: 91.66666667%;
  }
  .col-lg-offset-10 {
    margin-left: 83.33333333%;
  }
  .col-lg-offset-9 {
    margin-left: 75%;
  }
  .col-lg-offset-8 {
    margin-left: 66.66666667%;
  }
  .col-lg-offset-7 {
    margin-left: 58.33333333%;
  }
  .col-lg-offset-6 {
    margin-left: 50%;
  }
  .col-lg-offset-5 {
    margin-left: 41.66666667%;
  }
  .col-lg-offset-4 {
    margin-left: 33.33333333%;
  }
  .col-lg-offset-3 {
    margin-left: 25%;
  }
  .col-lg-offset-2 {
    margin-left: 16.66666667%;
  }
  .col-lg-offset-1 {
    margin-left: 8.33333333%;
  }
  .col-lg-offset-0 {
    margin-left: 0%;
  }
}
table {
  background-color: transparent;
}
caption {
  padding-top: 8px;
  padding-bottom: 8px;
  color: #777777;
  text-align: left;
}
th {
  text-align: left;
}
.table {
  width: 100%;
  max-width: 100%;
  margin-bottom: 18px;
}
.table > thead > tr > th,
.table > tbody > tr > th,
.table > tfoot > tr > th,
.table > thead > tr > td,
.table > tbody > tr > td,
.table > tfoot > tr > td {
  padding: 8px;
  line-height: 1.42857143;
  vertical-align: top;
  border-top: 1px solid #ddd;
}
.table > thead > tr > th {
  vertical-align: bottom;
  border-bottom: 2px solid #ddd;
}
.table > caption + thead > tr:first-child > th,
.table > colgroup + thead > tr:first-child > th,
.table > thead:first-child > tr:first-child > th,
.table > caption + thead > tr:first-child > td,
.table > colgroup + thead > tr:first-child > td,
.table > thead:first-child > tr:first-child > td {
  border-top: 0;
}
.table > tbody + tbody {
  border-top: 2px solid #ddd;
}
.table .table {
  background-color: #fff;
}
.table-condensed > thead > tr > th,
.table-condensed > tbody > tr > th,
.table-condensed > tfoot > tr > th,
.table-condensed > thead > tr > td,
.table-condensed > tbody > tr > td,
.table-condensed > tfoot > tr > td {
  padding: 5px;
}
.table-bordered {
  border: 1px solid #ddd;
}
.table-bordered > thead > tr > th,
.table-bordered > tbody > tr > th,
.table-bordered > tfoot > tr > th,
.table-bordered > thead > tr > td,
.table-bordered > tbody > tr > td,
.table-bordered > tfoot > tr > td {
  border: 1px solid #ddd;
}
.table-bordered > thead > tr > th,
.table-bordered > thead > tr > td {
  border-bottom-width: 2px;
}
.table-striped > tbody > tr:nth-of-type(odd) {
  background-color: #f9f9f9;
}
.table-hover > tbody > tr:hover {
  background-color: #f5f5f5;
}
table col[class*="col-"] {
  position: static;
  float: none;
  display: table-column;
}
table td[class*="col-"],
table th[class*="col-"] {
  position: static;
  float: none;
  display: table-cell;
}
.table > thead > tr > td.active,
.table > tbody > tr > td.active,
.table > tfoot > tr > td.active,
.table > thead > tr > th.active,
.table > tbody > tr > th.active,
.table > tfoot > tr > th.active,
.table > thead > tr.active > td,
.table > tbody > tr.active > td,
.table > tfoot > tr.active > td,
.table > thead > tr.active > th,
.table > tbody > tr.active > th,
.table > tfoot > tr.active > th {
  background-color: #f5f5f5;
}
.table-hover > tbody > tr > td.active:hover,
.table-hover > tbody > tr > th.active:hover,
.table-hover > tbody > tr.active:hover > td,
.table-hover > tbody > tr:hover > .active,
.table-hover > tbody > tr.active:hover > th {
  background-color: #e8e8e8;
}
.table > thead > tr > td.success,
.table > tbody > tr > td.success,
.table > tfoot > tr > td.success,
.table > thead > tr > th.success,
.table > tbody > tr > th.success,
.table > tfoot > tr > th.success,
.table > thead > tr.success > td,
.table > tbody > tr.success > td,
.table > tfoot > tr.success > td,
.table > thead > tr.success > th,
.table > tbody > tr.success > th,
.table > tfoot > tr.success > th {
  background-color: #dff0d8;
}
.table-hover > tbody > tr > td.success:hover,
.table-hover > tbody > tr > th.success:hover,
.table-hover > tbody > tr.success:hover > td,
.table-hover > tbody > tr:hover > .success,
.table-hover > tbody > tr.success:hover > th {
  background-color: #d0e9c6;
}
.table > thead > tr > td.info,
.table > tbody > tr > td.info,
.table > tfoot > tr > td.info,
.table > thead > tr > th.info,
.table > tbody > tr > th.info,
.table > tfoot > tr > th.info,
.table > thead > tr.info > td,
.table > tbody > tr.info > td,
.table > tfoot > tr.info > td,
.table > thead > tr.info > th,
.table > tbody > tr.info > th,
.table > tfoot > tr.info > th {
  background-color: #d9edf7;
}
.table-hover > tbody > tr > td.info:hover,
.table-hover > tbody > tr > th.info:hover,
.table-hover > tbody > tr.info:hover > td,
.table-hover > tbody > tr:hover > .info,
.table-hover > tbody > tr.info:hover > th {
  background-color: #c4e3f3;
}
.table > thead > tr > td.warning,
.table > tbody > tr > td.warning,
.table > tfoot > tr > td.warning,
.table > thead > tr > th.warning,
.table > tbody > tr > th.warning,
.table > tfoot > tr > th.warning,
.table > thead > tr.warning > td,
.table > tbody > tr.warning > td,
.table > tfoot > tr.warning > td,
.table > thead > tr.warning > th,
.table > tbody > tr.warning > th,
.table > tfoot > tr.warning > th {
  background-color: #fcf8e3;
}
.table-hover > tbody > tr > td.warning:hover,
.table-hover > tbody > tr > th.warning:hover,
.table-hover > tbody > tr.warning:hover > td,
.table-hover > tbody > tr:hover > .warning,
.table-hover > tbody > tr.warning:hover > th {
  background-color: #faf2cc;
}
.table > thead > tr > td.danger,
.table > tbody > tr > td.danger,
.table > tfoot > tr > td.danger,
.table > thead > tr > th.danger,
.table > tbody > tr > th.danger,
.table > tfoot > tr > th.danger,
.table > thead > tr.danger > td,
.table > tbody > tr.danger > td,
.table > tfoot > tr.danger > td,
.table > thead > tr.danger > th,
.table > tbody > tr.danger > th,
.table > tfoot > tr.danger > th {
  background-color: #f2dede;
}
.table-hover > tbody > tr > td.danger:hover,
.table-hover > tbody > tr > th.danger:hover,
.table-hover > tbody > tr.danger:hover > td,
.table-hover > tbody > tr:hover > .danger,
.table-hover > tbody > tr.danger:hover > th {
  background-color: #ebcccc;
}
.table-responsive {
  overflow-x: auto;
  min-height: 0.01%;
}
@media screen and (max-width: 767px) {
  .table-responsive {
    width: 100%;
    margin-bottom: 13.5px;
    overflow-y: hidden;
    -ms-overflow-style: -ms-autohiding-scrollbar;
    border: 1px solid #ddd;
  }
  .table-responsive > .table {
    margin-bottom: 0;
  }
  .table-responsive > .table > thead > tr > th,
  .table-responsive > .table > tbody > tr > th,
  .table-responsive > .table > tfoot > tr > th,
  .table-responsive > .table > thead > tr > td,
  .table-responsive > .table > tbody > tr > td,
  .table-responsive > .table > tfoot > tr > td {
    white-space: nowrap;
  }
  .table-responsive > .table-bordered {
    border: 0;
  }
  .table-responsive > .table-bordered > thead > tr > th:first-child,
  .table-responsive > .table-bordered > tbody > tr > th:first-child,
  .table-responsive > .table-bordered > tfoot > tr > th:first-child,
  .table-responsive > .table-bordered > thead > tr > td:first-child,
  .table-responsive > .table-bordered > tbody > tr > td:first-child,
  .table-responsive > .table-bordered > tfoot > tr > td:first-child {
    border-left: 0;
  }
  .table-responsive > .table-bordered > thead > tr > th:last-child,
  .table-responsive > .table-bordered > tbody > tr > th:last-child,
  .table-responsive > .table-bordered > tfoot > tr > th:last-child,
  .table-responsive > .table-bordered > thead > tr > td:last-child,
  .table-responsive > .table-bordered > tbody > tr > td:last-child,
  .table-responsive > .table-bordered > tfoot > tr > td:last-child {
    border-right: 0;
  }
  .table-responsive > .table-bordered > tbody > tr:last-child > th,
  .table-responsive > .table-bordered > tfoot > tr:last-child > th,
  .table-responsive > .table-bordered > tbody > tr:last-child > td,
  .table-responsive > .table-bordered > tfoot > tr:last-child > td {
    border-bottom: 0;
  }
}
fieldset {
  padding: 0;
  margin: 0;
  border: 0;
  min-width: 0;
}
legend {
  display: block;
  width: 100%;
  padding: 0;
  margin-bottom: 18px;
  font-size: 19.5px;
  line-height: inherit;
  color: #333333;
  border: 0;
  border-bottom: 1px solid #e5e5e5;
}
label {
  display: inline-block;
  max-width: 100%;
  margin-bottom: 5px;
  font-weight: bold;
}
input[type="search"] {
  -webkit-box-sizing: border-box;
  -moz-box-sizing: border-box;
  box-sizing: border-box;
}
input[type="radio"],
input[type="checkbox"] {
  margin: 4px 0 0;
  margin-top: 1px \9;
  line-height: normal;
}
input[type="file"] {
  display: block;
}
input[type="range"] {
  display: block;
  width: 100%;
}
select[multiple],
select[size] {
  height: auto;
}
input[type="file"]:focus,
input[type="radio"]:focus,
input[type="checkbox"]:focus {
  outline: 5px auto -webkit-focus-ring-color;
  outline-offset: -2px;
}
output {
  display: block;
  padding-top: 7px;
  font-size: 13px;
  line-height: 1.42857143;
  color: #555555;
}
.form-control {
  display: block;
  width: 100%;
  height: 32px;
  padding: 6px 12px;
  font-size: 13px;
  line-height: 1.42857143;
  color: #555555;
  background-color: #fff;
  background-image: none;
  border: 1px solid #ccc;
  border-radius: 2px;
  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
  -webkit-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
  -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
  transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
}
.form-control:focus {
  border-color: #66afe9;
  outline: 0;
  -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
  box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
}
.form-control::-moz-placeholder {
  color: #999;
  opacity: 1;
}
.form-control:-ms-input-placeholder {
  color: #999;
}
.form-control::-webkit-input-placeholder {
  color: #999;
}
.form-control::-ms-expand {
  border: 0;
  background-color: transparent;
}
.form-control[disabled],
.form-control[readonly],
fieldset[disabled] .form-control {
  background-color: #eeeeee;
  opacity: 1;
}
.form-control[disabled],
fieldset[disabled] .form-control {
  cursor: not-allowed;
}
textarea.form-control {
  height: auto;
}
input[type="search"] {
  -webkit-appearance: none;
}
@media screen and (-webkit-min-device-pixel-ratio: 0) {
  input[type="date"].form-control,
  input[type="time"].form-control,
  input[type="datetime-local"].form-control,
  input[type="month"].form-control {
    line-height: 32px;
  }
  input[type="date"].input-sm,
  input[type="time"].input-sm,
  input[type="datetime-local"].input-sm,
  input[type="month"].input-sm,
  .input-group-sm input[type="date"],
  .input-group-sm input[type="time"],
  .input-group-sm input[type="datetime-local"],
  .input-group-sm input[type="month"] {
    line-height: 30px;
  }
  input[type="date"].input-lg,
  input[type="time"].input-lg,
  input[type="datetime-local"].input-lg,
  input[type="month"].input-lg,
  .input-group-lg input[type="date"],
  .input-group-lg input[type="time"],
  .input-group-lg input[type="datetime-local"],
  .input-group-lg input[type="month"] {
    line-height: 45px;
  }
}
.form-group {
  margin-bottom: 15px;
}
.radio,
.checkbox {
  position: relative;
  display: block;
  margin-top: 10px;
  margin-bottom: 10px;
}
.radio label,
.checkbox label {
  min-height: 18px;
  padding-left: 20px;
  margin-bottom: 0;
  font-weight: normal;
  cursor: pointer;
}
.radio input[type="radio"],
.radio-inline input[type="radio"],
.checkbox input[type="checkbox"],
.checkbox-inline input[type="checkbox"] {
  position: absolute;
  margin-left: -20px;
  margin-top: 4px \9;
}
.radio + .radio,
.checkbox + .checkbox {
  margin-top: -5px;
}
.radio-inline,
.checkbox-inline {
  position: relative;
  display: inline-block;
  padding-left: 20px;
  margin-bottom: 0;
  vertical-align: middle;
  font-weight: normal;
  cursor: pointer;
}
.radio-inline + .radio-inline,
.checkbox-inline + .checkbox-inline {
  margin-top: 0;
  margin-left: 10px;
}
input[type="radio"][disabled],
input[type="checkbox"][disabled],
input[type="radio"].disabled,
input[type="checkbox"].disabled,
fieldset[disabled] input[type="radio"],
fieldset[disabled] input[type="checkbox"] {
  cursor: not-allowed;
}
.radio-inline.disabled,
.checkbox-inline.disabled,
fieldset[disabled] .radio-inline,
fieldset[disabled] .checkbox-inline {
  cursor: not-allowed;
}
.radio.disabled label,
.checkbox.disabled label,
fieldset[disabled] .radio label,
fieldset[disabled] .checkbox label {
  cursor: not-allowed;
}
.form-control-static {
  padding-top: 7px;
  padding-bottom: 7px;
  margin-bottom: 0;
  min-height: 31px;
}
.form-control-static.input-lg,
.form-control-static.input-sm {
  padding-left: 0;
  padding-right: 0;
}
.input-sm {
  height: 30px;
  padding: 5px 10px;
  font-size: 12px;
  line-height: 1.5;
  border-radius: 1px;
}
select.input-sm {
  height: 30px;
  line-height: 30px;
}
textarea.input-sm,
select[multiple].input-sm {
  height: auto;
}
.form-group-sm .form-control {
  height: 30px;
  padding: 5px 10px;
  font-size: 12px;
  line-height: 1.5;
  border-radius: 1px;
}
.form-group-sm select.form-control {
  height: 30px;
  line-height: 30px;
}
.form-group-sm textarea.form-control,
.form-group-sm select[multiple].form-control {
  height: auto;
}
.form-group-sm .form-control-static {
  height: 30px;
  min-height: 30px;
  padding: 6px 10px;
  font-size: 12px;
  line-height: 1.5;
}
.input-lg {
  height: 45px;
  padding: 10px 16px;
  font-size: 17px;
  line-height: 1.3333333;
  border-radius: 3px;
}
select.input-lg {
  height: 45px;
  line-height: 45px;
}
textarea.input-lg,
select[multiple].input-lg {
  height: auto;
}
.form-group-lg .form-control {
  height: 45px;
  padding: 10px 16px;
  font-size: 17px;
  line-height: 1.3333333;
  border-radius: 3px;
}
.form-group-lg select.form-control {
  height: 45px;
  line-height: 45px;
}
.form-group-lg textarea.form-control,
.form-group-lg select[multiple].form-control {
  height: auto;
}
.form-group-lg .form-control-static {
  height: 45px;
  min-height: 35px;
  padding: 11px 16px;
  font-size: 17px;
  line-height: 1.3333333;
}
.has-feedback {
  position: relative;
}
.has-feedback .form-control {
  padding-right: 40px;
}
.form-control-feedback {
  position: absolute;
  top: 0;
  right: 0;
  z-index: 2;
  display: block;
  width: 32px;
  height: 32px;
  line-height: 32px;
  text-align: center;
  pointer-events: none;
}
.input-lg + .form-control-feedback,
.input-group-lg + .form-control-feedback,
.form-group-lg .form-control + .form-control-feedback {
  width: 45px;
  height: 45px;
  line-height: 45px;
}
.input-sm + .form-control-feedback,
.input-group-sm + .form-control-feedback,
.form-group-sm .form-control + .form-control-feedback {
  width: 30px;
  height: 30px;
  line-height: 30px;
}
.has-success .help-block,
.has-success .control-label,
.has-success .radio,
.has-success .checkbox,
.has-success .radio-inline,
.has-success .checkbox-inline,
.has-success.radio label,
.has-success.checkbox label,
.has-success.radio-inline label,
.has-success.checkbox-inline label {
  color: #3c763d;
}
.has-success .form-control {
  border-color: #3c763d;
  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
}
.has-success .form-control:focus {
  border-color: #2b542c;
  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #67b168;
  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #67b168;
}
.has-success .input-group-addon {
  color: #3c763d;
  border-color: #3c763d;
  background-color: #dff0d8;
}
.has-success .form-control-feedback {
  color: #3c763d;
}
.has-warning .help-block,
.has-warning .control-label,
.has-warning .radio,
.has-warning .checkbox,
.has-warning .radio-inline,
.has-warning .checkbox-inline,
.has-warning.radio label,
.has-warning.checkbox label,
.has-warning.radio-inline label,
.has-warning.checkbox-inline label {
  color: #8a6d3b;
}
.has-warning .form-control {
  border-color: #8a6d3b;
  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
}
.has-warning .form-control:focus {
  border-color: #66512c;
  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #c0a16b;
  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #c0a16b;
}
.has-warning .input-group-addon {
  color: #8a6d3b;
  border-color: #8a6d3b;
  background-color: #fcf8e3;
}
.has-warning .form-control-feedback {
  color: #8a6d3b;
}
.has-error .help-block,
.has-error .control-label,
.has-error .radio,
.has-error .checkbox,
.has-error .radio-inline,
.has-error .checkbox-inline,
.has-error.radio label,
.has-error.checkbox label,
.has-error.radio-inline label,
.has-error.checkbox-inline label {
  color: #a94442;
}
.has-error .form-control {
  border-color: #a94442;
  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
}
.has-error .form-control:focus {
  border-color: #843534;
  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #ce8483;
  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #ce8483;
}
.has-error .input-group-addon {
  color: #a94442;
  border-color: #a94442;
  background-color: #f2dede;
}
.has-error .form-control-feedback {
  color: #a94442;
}
.has-feedback label ~ .form-control-feedback {
  top: 23px;
}
.has-feedback label.sr-only ~ .form-control-feedback {
  top: 0;
}
.help-block {
  display: block;
  margin-top: 5px;
  margin-bottom: 10px;
  color: #404040;
}
@media (min-width: 768px) {
  .form-inline .form-group {
    display: inline-block;
    margin-bottom: 0;
    vertical-align: middle;
  }
  .form-inline .form-control {
    display: inline-block;
    width: auto;
    vertical-align: middle;
  }
  .form-inline .form-control-static {
    display: inline-block;
  }
  .form-inline .input-group {
    display: inline-table;
    vertical-align: middle;
  }
  .form-inline .input-group .input-group-addon,
  .form-inline .input-group .input-group-btn,
  .form-inline .input-group .form-control {
    width: auto;
  }
  .form-inline .input-group > .form-control {
    width: 100%;
  }
  .form-inline .control-label {
    margin-bottom: 0;
    vertical-align: middle;
  }
  .form-inline .radio,
  .form-inline .checkbox {
    display: inline-block;
    margin-top: 0;
    margin-bottom: 0;
    vertical-align: middle;
  }
  .form-inline .radio label,
  .form-inline .checkbox label {
    padding-left: 0;
  }
  .form-inline .radio input[type="radio"],
  .form-inline .checkbox input[type="checkbox"] {
    position: relative;
    margin-left: 0;
  }
  .form-inline .has-feedback .form-control-feedback {
    top: 0;
  }
}
.form-horizontal .radio,
.form-horizontal .checkbox,
.form-horizontal .radio-inline,
.form-horizontal .checkbox-inline {
  margin-top: 0;
  margin-bottom: 0;
  padding-top: 7px;
}
.form-horizontal .radio,
.form-horizontal .checkbox {
  min-height: 25px;
}
.form-horizontal .form-group {
  margin-left: 0px;
  margin-right: 0px;
}
@media (min-width: 768px) {
  .form-horizontal .control-label {
    text-align: right;
    margin-bottom: 0;
    padding-top: 7px;
  }
}
.form-horizontal .has-feedback .form-control-feedback {
  right: 0px;
}
@media (min-width: 768px) {
  .form-horizontal .form-group-lg .control-label {
    padding-top: 11px;
    font-size: 17px;
  }
}
@media (min-width: 768px) {
  .form-horizontal .form-group-sm .control-label {
    padding-top: 6px;
    font-size: 12px;
  }
}
.btn {
  display: inline-block;
  margin-bottom: 0;
  font-weight: normal;
  text-align: center;
  vertical-align: middle;
  touch-action: manipulation;
  cursor: pointer;
  background-image: none;
  border: 1px solid transparent;
  white-space: nowrap;
  padding: 6px 12px;
  font-size: 13px;
  line-height: 1.42857143;
  border-radius: 2px;
  -webkit-user-select: none;
  -moz-user-select: none;
  -ms-user-select: none;
  user-select: none;
}
.btn:focus,
.btn:active:focus,
.btn.active:focus,
.btn.focus,
.btn:active.focus,
.btn.active.focus {
  outline: 5px auto -webkit-focus-ring-color;
  outline-offset: -2px;
}
.btn:hover,
.btn:focus,
.btn.focus {
  color: #333;
  text-decoration: none;
}
.btn:active,
.btn.active {
  outline: 0;
  background-image: none;
  -webkit-box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
  box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
}
.btn.disabled,
.btn[disabled],
fieldset[disabled] .btn {
  cursor: not-allowed;
  opacity: 0.65;
  filter: alpha(opacity=65);
  -webkit-box-shadow: none;
  box-shadow: none;
}
a.btn.disabled,
fieldset[disabled] a.btn {
  pointer-events: none;
}
.btn-default {
  color: #333;
  background-color: #fff;
  border-color: #ccc;
}
.btn-default:focus,
.btn-default.focus {
  color: #333;
  background-color: #e6e6e6;
  border-color: #8c8c8c;
}
.btn-default:hover {
  color: #333;
  background-color: #e6e6e6;
  border-color: #adadad;
}
.btn-default:active,
.btn-default.active,
.open > .dropdown-toggle.btn-default {
  color: #333;
  background-color: #e6e6e6;
  border-color: #adadad;
}
.btn-default:active:hover,
.btn-default.active:hover,
.open > .dropdown-toggle.btn-default:hover,
.btn-default:active:focus,
.btn-default.active:focus,
.open > .dropdown-toggle.btn-default:focus,
.btn-default:active.focus,
.btn-default.active.focus,
.open > .dropdown-toggle.btn-default.focus {
  color: #333;
  background-color: #d4d4d4;
  border-color: #8c8c8c;
}
.btn-default:active,
.btn-default.active,
.open > .dropdown-toggle.btn-default {
  background-image: none;
}
.btn-default.disabled:hover,
.btn-default[disabled]:hover,
fieldset[disabled] .btn-default:hover,
.btn-default.disabled:focus,
.btn-default[disabled]:focus,
fieldset[disabled] .btn-default:focus,
.btn-default.disabled.focus,
.btn-default[disabled].focus,
fieldset[disabled] .btn-default.focus {
  background-color: #fff;
  border-color: #ccc;
}
.btn-default .badge {
  color: #fff;
  background-color: #333;
}
.btn-primary {
  color: #fff;
  background-color: #337ab7;
  border-color: #2e6da4;
}
.btn-primary:focus,
.btn-primary.focus {
  color: #fff;
  background-color: #286090;
  border-color: #122b40;
}
.btn-primary:hover {
  color: #fff;
  background-color: #286090;
  border-color: #204d74;
}
.btn-primary:active,
.btn-primary.active,
.open > .dropdown-toggle.btn-primary {
  color: #fff;
  background-color: #286090;
  border-color: #204d74;
}
.btn-primary:active:hover,
.btn-primary.active:hover,
.open > .dropdown-toggle.btn-primary:hover,
.btn-primary:active:focus,
.btn-primary.active:focus,
.open > .dropdown-toggle.btn-primary:focus,
.btn-primary:active.focus,
.btn-primary.active.focus,
.open > .dropdown-toggle.btn-primary.focus {
  color: #fff;
  background-color: #204d74;
  border-color: #122b40;
}
.btn-primary:active,
.btn-primary.active,
.open > .dropdown-toggle.btn-primary {
  background-image: none;
}
.btn-primary.disabled:hover,
.btn-primary[disabled]:hover,
fieldset[disabled] .btn-primary:hover,
.btn-primary.disabled:focus,
.btn-primary[disabled]:focus,
fieldset[disabled] .btn-primary:focus,
.btn-primary.disabled.focus,
.btn-primary[disabled].focus,
fieldset[disabled] .btn-primary.focus {
  background-color: #337ab7;
  border-color: #2e6da4;
}
.btn-primary .badge {
  color: #337ab7;
  background-color: #fff;
}
.btn-success {
  color: #fff;
  background-color: #5cb85c;
  border-color: #4cae4c;
}
.btn-success:focus,
.btn-success.focus {
  color: #fff;
  background-color: #449d44;
  border-color: #255625;
}
.btn-success:hover {
  color: #fff;
  background-color: #449d44;
  border-color: #398439;
}
.btn-success:active,
.btn-success.active,
.open > .dropdown-toggle.btn-success {
  color: #fff;
  background-color: #449d44;
  border-color: #398439;
}
.btn-success:active:hover,
.btn-success.active:hover,
.open > .dropdown-toggle.btn-success:hover,
.btn-success:active:focus,
.btn-success.active:focus,
.open > .dropdown-toggle.btn-success:focus,
.btn-success:active.focus,
.btn-success.active.focus,
.open > .dropdown-toggle.btn-success.focus {
  color: #fff;
  background-color: #398439;
  border-color: #255625;
}
.btn-success:active,
.btn-success.active,
.open > .dropdown-toggle.btn-success {
  background-image: none;
}
.btn-success.disabled:hover,
.btn-success[disabled]:hover,
fieldset[disabled] .btn-success:hover,
.btn-success.disabled:focus,
.btn-success[disabled]:focus,
fieldset[disabled] .btn-success:focus,
.btn-success.disabled.focus,
.btn-success[disabled].focus,
fieldset[disabled] .btn-success.focus {
  background-color: #5cb85c;
  border-color: #4cae4c;
}
.btn-success .badge {
  color: #5cb85c;
  background-color: #fff;
}
.btn-info {
  color: #fff;
  background-color: #5bc0de;
  border-color: #46b8da;
}
.btn-info:focus,
.btn-info.focus {
  color: #fff;
  background-color: #31b0d5;
  border-color: #1b6d85;
}
.btn-info:hover {
  color: #fff;
  background-color: #31b0d5;
  border-color: #269abc;
}
.btn-info:active,
.btn-info.active,
.open > .dropdown-toggle.btn-info {
  color: #fff;
  background-color: #31b0d5;
  border-color: #269abc;
}
.btn-info:active:hover,
.btn-info.active:hover,
.open > .dropdown-toggle.btn-info:hover,
.btn-info:active:focus,
.btn-info.active:focus,
.open > .dropdown-toggle.btn-info:focus,
.btn-info:active.focus,
.btn-info.active.focus,
.open > .dropdown-toggle.btn-info.focus {
  color: #fff;
  background-color: #269abc;
  border-color: #1b6d85;
}
.btn-info:active,
.btn-info.active,
.open > .dropdown-toggle.btn-info {
  background-image: none;
}
.btn-info.disabled:hover,
.btn-info[disabled]:hover,
fieldset[disabled] .btn-info:hover,
.btn-info.disabled:focus,
.btn-info[disabled]:focus,
fieldset[disabled] .btn-info:focus,
.btn-info.disabled.focus,
.btn-info[disabled].focus,
fieldset[disabled] .btn-info.focus {
  background-color: #5bc0de;
  border-color: #46b8da;
}
.btn-info .badge {
  color: #5bc0de;
  background-color: #fff;
}
.btn-warning {
  color: #fff;
  background-color: #f0ad4e;
  border-color: #eea236;
}
.btn-warning:focus,
.btn-warning.focus {
  color: #fff;
  background-color: #ec971f;
  border-color: #985f0d;
}
.btn-warning:hover {
  color: #fff;
  background-color: #ec971f;
  border-color: #d58512;
}
.btn-warning:active,
.btn-warning.active,
.open > .dropdown-toggle.btn-warning {
  color: #fff;
  background-color: #ec971f;
  border-color: #d58512;
}
.btn-warning:active:hover,
.btn-warning.active:hover,
.open > .dropdown-toggle.btn-warning:hover,
.btn-warning:active:focus,
.btn-warning.active:focus,
.open > .dropdown-toggle.btn-warning:focus,
.btn-warning:active.focus,
.btn-warning.active.focus,
.open > .dropdown-toggle.btn-warning.focus {
  color: #fff;
  background-color: #d58512;
  border-color: #985f0d;
}
.btn-warning:active,
.btn-warning.active,
.open > .dropdown-toggle.btn-warning {
  background-image: none;
}
.btn-warning.disabled:hover,
.btn-warning[disabled]:hover,
fieldset[disabled] .btn-warning:hover,
.btn-warning.disabled:focus,
.btn-warning[disabled]:focus,
fieldset[disabled] .btn-warning:focus,
.btn-warning.disabled.focus,
.btn-warning[disabled].focus,
fieldset[disabled] .btn-warning.focus {
  background-color: #f0ad4e;
  border-color: #eea236;
}
.btn-warning .badge {
  color: #f0ad4e;
  background-color: #fff;
}
.btn-danger {
  color: #fff;
  background-color: #d9534f;
  border-color: #d43f3a;
}
.btn-danger:focus,
.btn-danger.focus {
  color: #fff;
  background-color: #c9302c;
  border-color: #761c19;
}
.btn-danger:hover {
  color: #fff;
  background-color: #c9302c;
  border-color: #ac2925;
}
.btn-danger:active,
.btn-danger.active,
.open > .dropdown-toggle.btn-danger {
  color: #fff;
  background-color: #c9302c;
  border-color: #ac2925;
}
.btn-danger:active:hover,
.btn-danger.active:hover,
.open > .dropdown-toggle.btn-danger:hover,
.btn-danger:active:focus,
.btn-danger.active:focus,
.open > .dropdown-toggle.btn-danger:focus,
.btn-danger:active.focus,
.btn-danger.active.focus,
.open > .dropdown-toggle.btn-danger.focus {
  color: #fff;
  background-color: #ac2925;
  border-color: #761c19;
}
.btn-danger:active,
.btn-danger.active,
.open > .dropdown-toggle.btn-danger {
  background-image: none;
}
.btn-danger.disabled:hover,
.btn-danger[disabled]:hover,
fieldset[disabled] .btn-danger:hover,
.btn-danger.disabled:focus,
.btn-danger[disabled]:focus,
fieldset[disabled] .btn-danger:focus,
.btn-danger.disabled.focus,
.btn-danger[disabled].focus,
fieldset[disabled] .btn-danger.focus {
  background-color: #d9534f;
  border-color: #d43f3a;
}
.btn-danger .badge {
  color: #d9534f;
  background-color: #fff;
}
.btn-link {
  color: #337ab7;
  font-weight: normal;
  border-radius: 0;
}
.btn-link,
.btn-link:active,
.btn-link.active,
.btn-link[disabled],
fieldset[disabled] .btn-link {
  background-color: transparent;
  -webkit-box-shadow: none;
  box-shadow: none;
}
.btn-link,
.btn-link:hover,
.btn-link:focus,
.btn-link:active {
  border-color: transparent;
}
.btn-link:hover,
.btn-link:focus {
  color: #23527c;
  text-decoration: underline;
  background-color: transparent;
}
.btn-link[disabled]:hover,
fieldset[disabled] .btn-link:hover,
.btn-link[disabled]:focus,
fieldset[disabled] .btn-link:focus {
  color: #777777;
  text-decoration: none;
}
.btn-lg,
.btn-group-lg > .btn {
  padding: 10px 16px;
  font-size: 17px;
  line-height: 1.3333333;
  border-radius: 3px;
}
.btn-sm,
.btn-group-sm > .btn {
  padding: 5px 10px;
  font-size: 12px;
  line-height: 1.5;
  border-radius: 1px;
}
.btn-xs,
.btn-group-xs > .btn {
  padding: 1px 5px;
  font-size: 12px;
  line-height: 1.5;
  border-radius: 1px;
}
.btn-block {
  display: block;
  width: 100%;
}
.btn-block + .btn-block {
  margin-top: 5px;
}
input[type="submit"].btn-block,
input[type="reset"].btn-block,
input[type="button"].btn-block {
  width: 100%;
}
.fade {
  opacity: 0;
  -webkit-transition: opacity 0.15s linear;
  -o-transition: opacity 0.15s linear;
  transition: opacity 0.15s linear;
}
.fade.in {
  opacity: 1;
}
.collapse {
  display: none;
}
.collapse.in {
  display: block;
}
tr.collapse.in {
  display: table-row;
}
tbody.collapse.in {
  display: table-row-group;
}
.collapsing {
  position: relative;
  height: 0;
  overflow: hidden;
  -webkit-transition-property: height, visibility;
  transition-property: height, visibility;
  -webkit-transition-duration: 0.35s;
  transition-duration: 0.35s;
  -webkit-transition-timing-function: ease;
  transition-timing-function: ease;
}
.caret {
  display: inline-block;
  width: 0;
  height: 0;
  margin-left: 2px;
  vertical-align: middle;
  border-top: 4px dashed;
  border-top: 4px solid \9;
  border-right: 4px solid transparent;
  border-left: 4px solid transparent;
}
.dropup,
.dropdown {
  position: relative;
}
.dropdown-toggle:focus {
  outline: 0;
}
.dropdown-menu {
  position: absolute;
  top: 100%;
  left: 0;
  z-index: 1000;
  display: none;
  float: left;
  min-width: 160px;
  padding: 5px 0;
  margin: 2px 0 0;
  list-style: none;
  font-size: 13px;
  text-align: left;
  background-color: #fff;
  border: 1px solid #ccc;
  border: 1px solid rgba(0, 0, 0, 0.15);
  border-radius: 2px;
  -webkit-box-shadow: 0 6px 12px rgba(0, 0, 0, 0.175);
  box-shadow: 0 6px 12px rgba(0, 0, 0, 0.175);
  background-clip: padding-box;
}
.dropdown-menu.pull-right {
  right: 0;
  left: auto;
}
.dropdown-menu .divider {
  height: 1px;
  margin: 8px 0;
  overflow: hidden;
  background-color: #e5e5e5;
}
.dropdown-menu > li > a {
  display: block;
  padding: 3px 20px;
  clear: both;
  font-weight: normal;
  line-height: 1.42857143;
  color: #333333;
  white-space: nowrap;
}
.dropdown-menu > li > a:hover,
.dropdown-menu > li > a:focus {
  text-decoration: none;
  color: #262626;
  background-color: #f5f5f5;
}
.dropdown-menu > .active > a,
.dropdown-menu > .active > a:hover,
.dropdown-menu > .active > a:focus {
  color: #fff;
  text-decoration: none;
  outline: 0;
  background-color: #337ab7;
}
.dropdown-menu > .disabled > a,
.dropdown-menu > .disabled > a:hover,
.dropdown-menu > .disabled > a:focus {
  color: #777777;
}
.dropdown-menu > .disabled > a:hover,
.dropdown-menu > .disabled > a:focus {
  text-decoration: none;
  background-color: transparent;
  background-image: none;
  filter: progid:DXImageTransform.Microsoft.gradient(enabled = false);
  cursor: not-allowed;
}
.open > .dropdown-menu {
  display: block;
}
.open > a {
  outline: 0;
}
.dropdown-menu-right {
  left: auto;
  right: 0;
}
.dropdown-menu-left {
  left: 0;
  right: auto;
}
.dropdown-header {
  display: block;
  padding: 3px 20px;
  font-size: 12px;
  line-height: 1.42857143;
  color: #777777;
  white-space: nowrap;
}
.dropdown-backdrop {
  position: fixed;
  left: 0;
  right: 0;
  bottom: 0;
  top: 0;
  z-index: 990;
}
.pull-right > .dropdown-menu {
  right: 0;
  left: auto;
}
.dropup .caret,
.navbar-fixed-bottom .dropdown .caret {
  border-top: 0;
  border-bottom: 4px dashed;
  border-bottom: 4px solid \9;
  content: "";
}
.dropup .dropdown-menu,
.navbar-fixed-bottom .dropdown .dropdown-menu {
  top: auto;
  bottom: 100%;
  margin-bottom: 2px;
}
@media (min-width: 541px) {
  .navbar-right .dropdown-menu {
    left: auto;
    right: 0;
  }
  .navbar-right .dropdown-menu-left {
    left: 0;
    right: auto;
  }
}
.btn-group,
.btn-group-vertical {
  position: relative;
  display: inline-block;
  vertical-align: middle;
}
.btn-group > .btn,
.btn-group-vertical > .btn {
  position: relative;
  float: left;
}
.btn-group > .btn:hover,
.btn-group-vertical > .btn:hover,
.btn-group > .btn:focus,
.btn-group-vertical > .btn:focus,
.btn-group > .btn:active,
.btn-group-vertical > .btn:active,
.btn-group > .btn.active,
.btn-group-vertical > .btn.active {
  z-index: 2;
}
.btn-group .btn + .btn,
.btn-group .btn + .btn-group,
.btn-group .btn-group + .btn,
.btn-group .btn-group + .btn-group {
  margin-left: -1px;
}
.btn-toolbar {
  margin-left: -5px;
}
.btn-toolbar .btn,
.btn-toolbar .btn-group,
.btn-toolbar .input-group {
  float: left;
}
.btn-toolbar > .btn,
.btn-toolbar > .btn-group,
.btn-toolbar > .input-group {
  margin-left: 5px;
}
.btn-group > .btn:not(:first-child):not(:last-child):not(.dropdown-toggle) {
  border-radius: 0;
}
.btn-group > .btn:first-child {
  margin-left: 0;
}
.btn-group > .btn:first-child:not(:last-child):not(.dropdown-toggle) {
  border-bottom-right-radius: 0;
  border-top-right-radius: 0;
}
.btn-group > .btn:last-child:not(:first-child),
.btn-group > .dropdown-toggle:not(:first-child) {
  border-bottom-left-radius: 0;
  border-top-left-radius: 0;
}
.btn-group > .btn-group {
  float: left;
}
.btn-group > .btn-group:not(:first-child):not(:last-child) > .btn {
  border-radius: 0;
}
.btn-group > .btn-group:first-child:not(:last-child) > .btn:last-child,
.btn-group > .btn-group:first-child:not(:last-child) > .dropdown-toggle {
  border-bottom-right-radius: 0;
  border-top-right-radius: 0;
}
.btn-group > .btn-group:last-child:not(:first-child) > .btn:first-child {
  border-bottom-left-radius: 0;
  border-top-left-radius: 0;
}
.btn-group .dropdown-toggle:active,
.btn-group.open .dropdown-toggle {
  outline: 0;
}
.btn-group > .btn + .dropdown-toggle {
  padding-left: 8px;
  padding-right: 8px;
}
.btn-group > .btn-lg + .dropdown-toggle {
  padding-left: 12px;
  padding-right: 12px;
}
.btn-group.open .dropdown-toggle {
  -webkit-box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
  box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125);
}
.btn-group.open .dropdown-toggle.btn-link {
  -webkit-box-shadow: none;
  box-shadow: none;
}
.btn .caret {
  margin-left: 0;
}
.btn-lg .caret {
  border-width: 5px 5px 0;
  border-bottom-width: 0;
}
.dropup .btn-lg .caret {
  border-width: 0 5px 5px;
}
.btn-group-vertical > .btn,
.btn-group-vertical > .btn-group,
.btn-group-vertical > .btn-group > .btn {
  display: block;
  float: none;
  width: 100%;
  max-width: 100%;
}
.btn-group-vertical > .btn-group > .btn {
  float: none;
}
.btn-group-vertical > .btn + .btn,
.btn-group-vertical > .btn + .btn-group,
.btn-group-vertical > .btn-group + .btn,
.btn-group-vertical > .btn-group + .btn-group {
  margin-top: -1px;
  margin-left: 0;
}
.btn-group-vertical > .btn:not(:first-child):not(:last-child) {
  border-radius: 0;
}
.btn-group-vertical > .btn:first-child:not(:last-child) {
  border-top-right-radius: 2px;
  border-top-left-radius: 2px;
  border-bottom-right-radius: 0;
  border-bottom-left-radius: 0;
}
.btn-group-vertical > .btn:last-child:not(:first-child) {
  border-top-right-radius: 0;
  border-top-left-radius: 0;
  border-bottom-right-radius: 2px;
  border-bottom-left-radius: 2px;
}
.btn-group-vertical > .btn-group:not(:first-child):not(:last-child) > .btn {
  border-radius: 0;
}
.btn-group-vertical > .btn-group:first-child:not(:last-child) > .btn:last-child,
.btn-group-vertical > .btn-group:first-child:not(:last-child) > .dropdown-toggle {
  border-bottom-right-radius: 0;
  border-bottom-left-radius: 0;
}
.btn-group-vertical > .btn-group:last-child:not(:first-child) > .btn:first-child {
  border-top-right-radius: 0;
  border-top-left-radius: 0;
}
.btn-group-justified {
  display: table;
  width: 100%;
  table-layout: fixed;
  border-collapse: separate;
}
.btn-group-justified > .btn,
.btn-group-justified > .btn-group {
  float: none;
  display: table-cell;
  width: 1%;
}
.btn-group-justified > .btn-group .btn {
  width: 100%;
}
.btn-group-justified > .btn-group .dropdown-menu {
  left: auto;
}
[data-toggle="buttons"] > .btn input[type="radio"],
[data-toggle="buttons"] > .btn-group > .btn input[type="radio"],
[data-toggle="buttons"] > .btn input[type="checkbox"],
[data-toggle="buttons"] > .btn-group > .btn input[type="checkbox"] {
  position: absolute;
  clip: rect(0, 0, 0, 0);
  pointer-events: none;
}
.input-group {
  position: relative;
  display: table;
  border-collapse: separate;
}
.input-group[class*="col-"] {
  float: none;
  padding-left: 0;
  padding-right: 0;
}
.input-group .form-control {
  position: relative;
  z-index: 2;
  float: left;
  width: 100%;
  margin-bottom: 0;
}
.input-group .form-control:focus {
  z-index: 3;
}
.input-group-lg > .form-control,
.input-group-lg > .input-group-addon,
.input-group-lg > .input-group-btn > .btn {
  height: 45px;
  padding: 10px 16px;
  font-size: 17px;
  line-height: 1.3333333;
  border-radius: 3px;
}
select.input-group-lg > .form-control,
select.input-group-lg > .input-group-addon,
select.input-group-lg > .input-group-btn > .btn {
  height: 45px;
  line-height: 45px;
}
textarea.input-group-lg > .form-control,
textarea.input-group-lg > .input-group-addon,
textarea.input-group-lg > .input-group-btn > .btn,
select[multiple].input-group-lg > .form-control,
select[multiple].input-group-lg > .input-group-addon,
select[multiple].input-group-lg > .input-group-btn > .btn {
  height: auto;
}
.input-group-sm > .form-control,
.input-group-sm > .input-group-addon,
.input-group-sm > .input-group-btn > .btn {
  height: 30px;
  padding: 5px 10px;
  font-size: 12px;
  line-height: 1.5;
  border-radius: 1px;
}
select.input-group-sm > .form-control,
select.input-group-sm > .input-group-addon,
select.input-group-sm > .input-group-btn > .btn {
  height: 30px;
  line-height: 30px;
}
textarea.input-group-sm > .form-control,
textarea.input-group-sm > .input-group-addon,
textarea.input-group-sm > .input-group-btn > .btn,
select[multiple].input-group-sm > .form-control,
select[multiple].input-group-sm > .input-group-addon,
select[multiple].input-group-sm > .input-group-btn > .btn {
  height: auto;
}
.input-group-addon,
.input-group-btn,
.input-group .form-control {
  display: table-cell;
}
.input-group-addon:not(:first-child):not(:last-child),
.input-group-btn:not(:first-child):not(:last-child),
.input-group .form-control:not(:first-child):not(:last-child) {
  border-radius: 0;
}
.input-group-addon,
.input-group-btn {
  width: 1%;
  white-space: nowrap;
  vertical-align: middle;
}
.input-group-addon {
  padding: 6px 12px;
  font-size: 13px;
  font-weight: normal;
  line-height: 1;
  color: #555555;
  text-align: center;
  background-color: #eeeeee;
  border: 1px solid #ccc;
  border-radius: 2px;
}
.input-group-addon.input-sm {
  padding: 5px 10px;
  font-size: 12px;
  border-radius: 1px;
}
.input-group-addon.input-lg {
  padding: 10px 16px;
  font-size: 17px;
  border-radius: 3px;
}
.input-group-addon input[type="radio"],
.input-group-addon input[type="checkbox"] {
  margin-top: 0;
}
.input-group .form-control:first-child,
.input-group-addon:first-child,
.input-group-btn:first-child > .btn,
.input-group-btn:first-child > .btn-group > .btn,
.input-group-btn:first-child > .dropdown-toggle,
.input-group-btn:last-child > .btn:not(:last-child):not(.dropdown-toggle),
.input-group-btn:last-child > .btn-group:not(:last-child) > .btn {
  border-bottom-right-radius: 0;
  border-top-right-radius: 0;
}
.input-group-addon:first-child {
  border-right: 0;
}
.input-group .form-control:last-child,
.input-group-addon:last-child,
.input-group-btn:last-child > .btn,
.input-group-btn:last-child > .btn-group > .btn,
.input-group-btn:last-child > .dropdown-toggle,
.input-group-btn:first-child > .btn:not(:first-child),
.input-group-btn:first-child > .btn-group:not(:first-child) > .btn {
  border-bottom-left-radius: 0;
  border-top-left-radius: 0;
}
.input-group-addon:last-child {
  border-left: 0;
}
.input-group-btn {
  position: relative;
  font-size: 0;
  white-space: nowrap;
}
.input-group-btn > .btn {
  position: relative;
}
.input-group-btn > .btn + .btn {
  margin-left: -1px;
}
.input-group-btn > .btn:hover,
.input-group-btn > .btn:focus,
.input-group-btn > .btn:active {
  z-index: 2;
}
.input-group-btn:first-child > .btn,
.input-group-btn:first-child > .btn-group {
  margin-right: -1px;
}
.input-group-btn:last-child > .btn,
.input-group-btn:last-child > .btn-group {
  z-index: 2;
  margin-left: -1px;
}
.nav {
  margin-bottom: 0;
  padding-left: 0;
  list-style: none;
}
.nav > li {
  position: relative;
  display: block;
}
.nav > li > a {
  position: relative;
  display: block;
  padding: 10px 15px;
}
.nav > li > a:hover,
.nav > li > a:focus {
  text-decoration: none;
  background-color: #eeeeee;
}
.nav > li.disabled > a {
  color: #777777;
}
.nav > li.disabled > a:hover,
.nav > li.disabled > a:focus {
  color: #777777;
  text-decoration: none;
  background-color: transparent;
  cursor: not-allowed;
}
.nav .open > a,
.nav .open > a:hover,
.nav .open > a:focus {
  background-color: #eeeeee;
  border-color: #337ab7;
}
.nav .nav-divider {
  height: 1px;
  margin: 8px 0;
  overflow: hidden;
  background-color: #e5e5e5;
}
.nav > li > a > img {
  max-width: none;
}
.nav-tabs {
  border-bottom: 1px solid #ddd;
}
.nav-tabs > li {
  float: left;
  margin-bottom: -1px;
}
.nav-tabs > li > a {
  margin-right: 2px;
  line-height: 1.42857143;
  border: 1px solid transparent;
  border-radius: 2px 2px 0 0;
}
.nav-tabs > li > a:hover {
  border-color: #eeeeee #eeeeee #ddd;
}
.nav-tabs > li.active > a,
.nav-tabs > li.active > a:hover,
.nav-tabs > li.active > a:focus {
  color: #555555;
  background-color: #fff;
  border: 1px solid #ddd;
  border-bottom-color: transparent;
  cursor: default;
}
.nav-tabs.nav-justified {
  width: 100%;
  border-bottom: 0;
}
.nav-tabs.nav-justified > li {
  float: none;
}
.nav-tabs.nav-justified > li > a {
  text-align: center;
  margin-bottom: 5px;
}
.nav-tabs.nav-justified > .dropdown .dropdown-menu {
  top: auto;
  left: auto;
}
@media (min-width: 768px) {
  .nav-tabs.nav-justified > li {
    display: table-cell;
    width: 1%;
  }
  .nav-tabs.nav-justified > li > a {
    margin-bottom: 0;
  }
}
.nav-tabs.nav-justified > li > a {
  margin-right: 0;
  border-radius: 2px;
}
.nav-tabs.nav-justified > .active > a,
.nav-tabs.nav-justified > .active > a:hover,
.nav-tabs.nav-justified > .active > a:focus {
  border: 1px solid #ddd;
}
@media (min-width: 768px) {
  .nav-tabs.nav-justified > li > a {
    border-bottom: 1px solid #ddd;
    border-radius: 2px 2px 0 0;
  }
  .nav-tabs.nav-justified > .active > a,
  .nav-tabs.nav-justified > .active > a:hover,
  .nav-tabs.nav-justified > .active > a:focus {
    border-bottom-color: #fff;
  }
}
.nav-pills > li {
  float: left;
}
.nav-pills > li > a {
  border-radius: 2px;
}
.nav-pills > li + li {
  margin-left: 2px;
}
.nav-pills > li.active > a,
.nav-pills > li.active > a:hover,
.nav-pills > li.active > a:focus {
  color: #fff;
  background-color: #337ab7;
}
.nav-stacked > li {
  float: none;
}
.nav-stacked > li + li {
  margin-top: 2px;
  margin-left: 0;
}
.nav-justified {
  width: 100%;
}
.nav-justified > li {
  float: none;
}
.nav-justified > li > a {
  text-align: center;
  margin-bottom: 5px;
}
.nav-justified > .dropdown .dropdown-menu {
  top: auto;
  left: auto;
}
@media (min-width: 768px) {
  .nav-justified > li {
    display: table-cell;
    width: 1%;
  }
  .nav-justified > li > a {
    margin-bottom: 0;
  }
}
.nav-tabs-justified {
  border-bottom: 0;
}
.nav-tabs-justified > li > a {
  margin-right: 0;
  border-radius: 2px;
}
.nav-tabs-justified > .active > a,
.nav-tabs-justified > .active > a:hover,
.nav-tabs-justified > .active > a:focus {
  border: 1px solid #ddd;
}
@media (min-width: 768px) {
  .nav-tabs-justified > li > a {
    border-bottom: 1px solid #ddd;
    border-radius: 2px 2px 0 0;
  }
  .nav-tabs-justified > .active > a,
  .nav-tabs-justified > .active > a:hover,
  .nav-tabs-justified > .active > a:focus {
    border-bottom-color: #fff;
  }
}
.tab-content > .tab-pane {
  display: none;
}
.tab-content > .active {
  display: block;
}
.nav-tabs .dropdown-menu {
  margin-top: -1px;
  border-top-right-radius: 0;
  border-top-left-radius: 0;
}
.navbar {
  position: relative;
  min-height: 30px;
  margin-bottom: 18px;
  border: 1px solid transparent;
}
@media (min-width: 541px) {
  .navbar {
    border-radius: 2px;
  }
}
@media (min-width: 541px) {
  .navbar-header {
    float: left;
  }
}
.navbar-collapse {
  overflow-x: visible;
  padding-right: 0px;
  padding-left: 0px;
  border-top: 1px solid transparent;
  box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1);
  -webkit-overflow-scrolling: touch;
}
.navbar-collapse.in {
  overflow-y: auto;
}
@media (min-width: 541px) {
  .navbar-collapse {
    width: auto;
    border-top: 0;
    box-shadow: none;
  }
  .navbar-collapse.collapse {
    display: block !important;
    height: auto !important;
    padding-bottom: 0;
    overflow: visible !important;
  }
  .navbar-collapse.in {
    overflow-y: visible;
  }
  .navbar-fixed-top .navbar-collapse,
  .navbar-static-top .navbar-collapse,
  .navbar-fixed-bottom .navbar-collapse {
    padding-left: 0;
    padding-right: 0;
  }
}
.navbar-fixed-top .navbar-collapse,
.navbar-fixed-bottom .navbar-collapse {
  max-height: 340px;
}
@media (max-device-width: 540px) and (orientation: landscape) {
  .navbar-fixed-top .navbar-collapse,
  .navbar-fixed-bottom .navbar-collapse {
    max-height: 200px;
  }
}
.container > .navbar-header,
.container-fluid > .navbar-header,
.container > .navbar-collapse,
.container-fluid > .navbar-collapse {
  margin-right: 0px;
  margin-left: 0px;
}
@media (min-width: 541px) {
  .container > .navbar-header,
  .container-fluid > .navbar-header,
  .container > .navbar-collapse,
  .container-fluid > .navbar-collapse {
    margin-right: 0;
    margin-left: 0;
  }
}
.navbar-static-top {
  z-index: 1000;
  border-width: 0 0 1px;
}
@media (min-width: 541px) {
  .navbar-static-top {
    border-radius: 0;
  }
}
.navbar-fixed-top,
.navbar-fixed-bottom {
  position: fixed;
  right: 0;
  left: 0;
  z-index: 1030;
}
@media (min-width: 541px) {
  .navbar-fixed-top,
  .navbar-fixed-bottom {
    border-radius: 0;
  }
}
.navbar-fixed-top {
  top: 0;
  border-width: 0 0 1px;
}
.navbar-fixed-bottom {
  bottom: 0;
  margin-bottom: 0;
  border-width: 1px 0 0;
}
.navbar-brand {
  float: left;
  padding: 6px 0px;
  font-size: 17px;
  line-height: 18px;
  height: 30px;
}
.navbar-brand:hover,
.navbar-brand:focus {
  text-decoration: none;
}
.navbar-brand > img {
  display: block;
}
@media (min-width: 541px) {
  .navbar > .container .navbar-brand,
  .navbar > .container-fluid .navbar-brand {
    margin-left: 0px;
  }
}
.navbar-toggle {
  position: relative;
  float: right;
  margin-right: 0px;
  padding: 9px 10px;
  margin-top: -2px;
  margin-bottom: -2px;
  background-color: transparent;
  background-image: none;
  border: 1px solid transparent;
  border-radius: 2px;
}
.navbar-toggle:focus {
  outline: 0;
}
.navbar-toggle .icon-bar {
  display: block;
  width: 22px;
  height: 2px;
  border-radius: 1px;
}
.navbar-toggle .icon-bar + .icon-bar {
  margin-top: 4px;
}
@media (min-width: 541px) {
  .navbar-toggle {
    display: none;
  }
}
.navbar-nav {
  margin: 3px 0px;
}
.navbar-nav > li > a {
  padding-top: 10px;
  padding-bottom: 10px;
  line-height: 18px;
}
@media (max-width: 540px) {
  .navbar-nav .open .dropdown-menu {
    position: static;
    float: none;
    width: auto;
    margin-top: 0;
    background-color: transparent;
    border: 0;
    box-shadow: none;
  }
  .navbar-nav .open .dropdown-menu > li > a,
  .navbar-nav .open .dropdown-menu .dropdown-header {
    padding: 5px 15px 5px 25px;
  }
  .navbar-nav .open .dropdown-menu > li > a {
    line-height: 18px;
  }
  .navbar-nav .open .dropdown-menu > li > a:hover,
  .navbar-nav .open .dropdown-menu > li > a:focus {
    background-image: none;
  }
}
@media (min-width: 541px) {
  .navbar-nav {
    float: left;
    margin: 0;
  }
  .navbar-nav > li {
    float: left;
  }
  .navbar-nav > li > a {
    padding-top: 6px;
    padding-bottom: 6px;
  }
}
.navbar-form {
  margin-left: 0px;
  margin-right: 0px;
  padding: 10px 0px;
  border-top: 1px solid transparent;
  border-bottom: 1px solid transparent;
  -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1);
  box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1);
  margin-top: -1px;
  margin-bottom: -1px;
}
@media (min-width: 768px) {
  .navbar-form .form-group {
    display: inline-block;
    margin-bottom: 0;
    vertical-align: middle;
  }
  .navbar-form .form-control {
    display: inline-block;
    width: auto;
    vertical-align: middle;
  }
  .navbar-form .form-control-static {
    display: inline-block;
  }
  .navbar-form .input-group {
    display: inline-table;
    vertical-align: middle;
  }
  .navbar-form .input-group .input-group-addon,
  .navbar-form .input-group .input-group-btn,
  .navbar-form .input-group .form-control {
    width: auto;
  }
  .navbar-form .input-group > .form-control {
    width: 100%;
  }
  .navbar-form .control-label {
    margin-bottom: 0;
    vertical-align: middle;
  }
  .navbar-form .radio,
  .navbar-form .checkbox {
    display: inline-block;
    margin-top: 0;
    margin-bottom: 0;
    vertical-align: middle;
  }
  .navbar-form .radio label,
  .navbar-form .checkbox label {
    padding-left: 0;
  }
  .navbar-form .radio input[type="radio"],
  .navbar-form .checkbox input[type="checkbox"] {
    position: relative;
    margin-left: 0;
  }
  .navbar-form .has-feedback .form-control-feedback {
    top: 0;
  }
}
@media (max-width: 540px) {
  .navbar-form .form-group {
    margin-bottom: 5px;
  }
  .navbar-form .form-group:last-child {
    margin-bottom: 0;
  }
}
@media (min-width: 541px) {
  .navbar-form {
    width: auto;
    border: 0;
    margin-left: 0;
    margin-right: 0;
    padding-top: 0;
    padding-bottom: 0;
    -webkit-box-shadow: none;
    box-shadow: none;
  }
}
.navbar-nav > li > .dropdown-menu {
  margin-top: 0;
  border-top-right-radius: 0;
  border-top-left-radius: 0;
}
.navbar-fixed-bottom .navbar-nav > li > .dropdown-menu {
  margin-bottom: 0;
  border-top-right-radius: 2px;
  border-top-left-radius: 2px;
  border-bottom-right-radius: 0;
  border-bottom-left-radius: 0;
}
.navbar-btn {
  margin-top: -1px;
  margin-bottom: -1px;
}
.navbar-btn.btn-sm {
  margin-top: 0px;
  margin-bottom: 0px;
}
.navbar-btn.btn-xs {
  margin-top: 4px;
  margin-bottom: 4px;
}
.navbar-text {
  margin-top: 6px;
  margin-bottom: 6px;
}
@media (min-width: 541px) {
  .navbar-text {
    float: left;
    margin-left: 0px;
    margin-right: 0px;
  }
}
@media (min-width: 541px) {
  .navbar-left {
    float: left !important;
    float: left;
  }
  .navbar-right {
    float: right !important;
    float: right;
    margin-right: 0px;
  }
  .navbar-right ~ .navbar-right {
    margin-right: 0;
  }
}
.navbar-default {
  background-color: #f8f8f8;
  border-color: #e7e7e7;
}
.navbar-default .navbar-brand {
  color: #777;
}
.navbar-default .navbar-brand:hover,
.navbar-default .navbar-brand:focus {
  color: #5e5e5e;
  background-color: transparent;
}
.navbar-default .navbar-text {
  color: #777;
}
.navbar-default .navbar-nav > li > a {
  color: #777;
}
.navbar-default .navbar-nav > li > a:hover,
.navbar-default .navbar-nav > li > a:focus {
  color: #333;
  background-color: transparent;
}
.navbar-default .navbar-nav > .active > a,
.navbar-default .navbar-nav > .active > a:hover,
.navbar-default .navbar-nav > .active > a:focus {
  color: #555;
  background-color: #e7e7e7;
}
.navbar-default .navbar-nav > .disabled > a,
.navbar-default .navbar-nav > .disabled > a:hover,
.navbar-default .navbar-nav > .disabled > a:focus {
  color: #ccc;
  background-color: transparent;
}
.navbar-default .navbar-toggle {
  border-color: #ddd;
}
.navbar-default .navbar-toggle:hover,
.navbar-default .navbar-toggle:focus {
  background-color: #ddd;
}
.navbar-default .navbar-toggle .icon-bar {
  background-color: #888;
}
.navbar-default .navbar-collapse,
.navbar-default .navbar-form {
  border-color: #e7e7e7;
}
.navbar-default .navbar-nav > .open > a,
.navbar-default .navbar-nav > .open > a:hover,
.navbar-default .navbar-nav > .open > a:focus {
  background-color: #e7e7e7;
  color: #555;
}
@media (max-width: 540px) {
  .navbar-default .navbar-nav .open .dropdown-menu > li > a {
    color: #777;
  }
  .navbar-default .navbar-nav .open .dropdown-menu > li > a:hover,
  .navbar-default .navbar-nav .open .dropdown-menu > li > a:focus {
    color: #333;
    background-color: transparent;
  }
  .navbar-default .navbar-nav .open .dropdown-menu > .active > a,
  .navbar-default .navbar-nav .open .dropdown-menu > .active > a:hover,
  .navbar-default .navbar-nav .open .dropdown-menu > .active > a:focus {
    color: #555;
    background-color: #e7e7e7;
  }
  .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a,
  .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a:hover,
  .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a:focus {
    color: #ccc;
    background-color: transparent;
  }
}
.navbar-default .navbar-link {
  color: #777;
}
.navbar-default .navbar-link:hover {
  color: #333;
}
.navbar-default .btn-link {
  color: #777;
}
.navbar-default .btn-link:hover,
.navbar-default .btn-link:focus {
  color: #333;
}
.navbar-default .btn-link[disabled]:hover,
fieldset[disabled] .navbar-default .btn-link:hover,
.navbar-default .btn-link[disabled]:focus,
fieldset[disabled] .navbar-default .btn-link:focus {
  color: #ccc;
}
.navbar-inverse {
  background-color: #222;
  border-color: #080808;
}
.navbar-inverse .navbar-brand {
  color: #9d9d9d;
}
.navbar-inverse .navbar-brand:hover,
.navbar-inverse .navbar-brand:focus {
  color: #fff;
  background-color: transparent;
}
.navbar-inverse .navbar-text {
  color: #9d9d9d;
}
.navbar-inverse .navbar-nav > li > a {
  color: #9d9d9d;
}
.navbar-inverse .navbar-nav > li > a:hover,
.navbar-inverse .navbar-nav > li > a:focus {
  color: #fff;
  background-color: transparent;
}
.navbar-inverse .navbar-nav > .active > a,
.navbar-inverse .navbar-nav > .active > a:hover,
.navbar-inverse .navbar-nav > .active > a:focus {
  color: #fff;
  background-color: #080808;
}
.navbar-inverse .navbar-nav > .disabled > a,
.navbar-inverse .navbar-nav > .disabled > a:hover,
.navbar-inverse .navbar-nav > .disabled > a:focus {
  color: #444;
  background-color: transparent;
}
.navbar-inverse .navbar-toggle {
  border-color: #333;
}
.navbar-inverse .navbar-toggle:hover,
.navbar-inverse .navbar-toggle:focus {
  background-color: #333;
}
.navbar-inverse .navbar-toggle .icon-bar {
  background-color: #fff;
}
.navbar-inverse .navbar-collapse,
.navbar-inverse .navbar-form {
  border-color: #101010;
}
.navbar-inverse .navbar-nav > .open > a,
.navbar-inverse .navbar-nav > .open > a:hover,
.navbar-inverse .navbar-nav > .open > a:focus {
  background-color: #080808;
  color: #fff;
}
@media (max-width: 540px) {
  .navbar-inverse .navbar-nav .open .dropdown-menu > .dropdown-header {
    border-color: #080808;
  }
  .navbar-inverse .navbar-nav .open .dropdown-menu .divider {
    background-color: #080808;
  }
  .navbar-inverse .navbar-nav .open .dropdown-menu > li > a {
    color: #9d9d9d;
  }
  .navbar-inverse .navbar-nav .open .dropdown-menu > li > a:hover,
  .navbar-inverse .navbar-nav .open .dropdown-menu > li > a:focus {
    color: #fff;
    background-color: transparent;
  }
  .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a,
  .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a:hover,
  .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a:focus {
    color: #fff;
    background-color: #080808;
  }
  .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a,
  .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a:hover,
  .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a:focus {
    color: #444;
    background-color: transparent;
  }
}
.navbar-inverse .navbar-link {
  color: #9d9d9d;
}
.navbar-inverse .navbar-link:hover {
  color: #fff;
}
.navbar-inverse .btn-link {
  color: #9d9d9d;
}
.navbar-inverse .btn-link:hover,
.navbar-inverse .btn-link:focus {
  color: #fff;
}
.navbar-inverse .btn-link[disabled]:hover,
fieldset[disabled] .navbar-inverse .btn-link:hover,
.navbar-inverse .btn-link[disabled]:focus,
fieldset[disabled] .navbar-inverse .btn-link:focus {
  color: #444;
}
.breadcrumb {
  padding: 8px 15px;
  margin-bottom: 18px;
  list-style: none;
  background-color: #f5f5f5;
  border-radius: 2px;
}
.breadcrumb > li {
  display: inline-block;
}
.breadcrumb > li + li:before {
  content: "/\00a0";
  padding: 0 5px;
  color: #5e5e5e;
}
.breadcrumb > .active {
  color: #777777;
}
.pagination {
  display: inline-block;
  padding-left: 0;
  margin: 18px 0;
  border-radius: 2px;
}
.pagination > li {
  display: inline;
}
.pagination > li > a,
.pagination > li > span {
  position: relative;
  float: left;
  padding: 6px 12px;
  line-height: 1.42857143;
  text-decoration: none;
  color: #337ab7;
  background-color: #fff;
  border: 1px solid #ddd;
  margin-left: -1px;
}
.pagination > li:first-child > a,
.pagination > li:first-child > span {
  margin-left: 0;
  border-bottom-left-radius: 2px;
  border-top-left-radius: 2px;
}
.pagination > li:last-child > a,
.pagination > li:last-child > span {
  border-bottom-right-radius: 2px;
  border-top-right-radius: 2px;
}
.pagination > li > a:hover,
.pagination > li > span:hover,
.pagination > li > a:focus,
.pagination > li > span:focus {
  z-index: 2;
  color: #23527c;
  background-color: #eeeeee;
  border-color: #ddd;
}
.pagination > .active > a,
.pagination > .active > span,
.pagination > .active > a:hover,
.pagination > .active > span:hover,
.pagination > .active > a:focus,
.pagination > .active > span:focus {
  z-index: 3;
  color: #fff;
  background-color: #337ab7;
  border-color: #337ab7;
  cursor: default;
}
.pagination > .disabled > span,
.pagination > .disabled > span:hover,
.pagination > .disabled > span:focus,
.pagination > .disabled > a,
.pagination > .disabled > a:hover,
.pagination > .disabled > a:focus {
  color: #777777;
  background-color: #fff;
  border-color: #ddd;
  cursor: not-allowed;
}
.pagination-lg > li > a,
.pagination-lg > li > span {
  padding: 10px 16px;
  font-size: 17px;
  line-height: 1.3333333;
}
.pagination-lg > li:first-child > a,
.pagination-lg > li:first-child > span {
  border-bottom-left-radius: 3px;
  border-top-left-radius: 3px;
}
.pagination-lg > li:last-child > a,
.pagination-lg > li:last-child > span {
  border-bottom-right-radius: 3px;
  border-top-right-radius: 3px;
}
.pagination-sm > li > a,
.pagination-sm > li > span {
  padding: 5px 10px;
  font-size: 12px;
  line-height: 1.5;
}
.pagination-sm > li:first-child > a,
.pagination-sm > li:first-child > span {
  border-bottom-left-radius: 1px;
  border-top-left-radius: 1px;
}
.pagination-sm > li:last-child > a,
.pagination-sm > li:last-child > span {
  border-bottom-right-radius: 1px;
  border-top-right-radius: 1px;
}
.pager {
  padding-left: 0;
  margin: 18px 0;
  list-style: none;
  text-align: center;
}
.pager li {
  display: inline;
}
.pager li > a,
.pager li > span {
  display: inline-block;
  padding: 5px 14px;
  background-color: #fff;
  border: 1px solid #ddd;
  border-radius: 15px;
}
.pager li > a:hover,
.pager li > a:focus {
  text-decoration: none;
  background-color: #eeeeee;
}
.pager .next > a,
.pager .next > span {
  float: right;
}
.pager .previous > a,
.pager .previous > span {
  float: left;
}
.pager .disabled > a,
.pager .disabled > a:hover,
.pager .disabled > a:focus,
.pager .disabled > span {
  color: #777777;
  background-color: #fff;
  cursor: not-allowed;
}
.label {
  display: inline;
  padding: .2em .6em .3em;
  font-size: 75%;
  font-weight: bold;
  line-height: 1;
  color: #fff;
  text-align: center;
  white-space: nowrap;
  vertical-align: baseline;
  border-radius: .25em;
}
a.label:hover,
a.label:focus {
  color: #fff;
  text-decoration: none;
  cursor: pointer;
}
.label:empty {
  display: none;
}
.btn .label {
  position: relative;
  top: -1px;
}
.label-default {
  background-color: #777777;
}
.label-default[href]:hover,
.label-default[href]:focus {
  background-color: #5e5e5e;
}
.label-primary {
  background-color: #337ab7;
}
.label-primary[href]:hover,
.label-primary[href]:focus {
  background-color: #286090;
}
.label-success {
  background-color: #5cb85c;
}
.label-success[href]:hover,
.label-success[href]:focus {
  background-color: #449d44;
}
.label-info {
  background-color: #5bc0de;
}
.label-info[href]:hover,
.label-info[href]:focus {
  background-color: #31b0d5;
}
.label-warning {
  background-color: #f0ad4e;
}
.label-warning[href]:hover,
.label-warning[href]:focus {
  background-color: #ec971f;
}
.label-danger {
  background-color: #d9534f;
}
.label-danger[href]:hover,
.label-danger[href]:focus {
  background-color: #c9302c;
}
.badge {
  display: inline-block;
  min-width: 10px;
  padding: 3px 7px;
  font-size: 12px;
  font-weight: bold;
  color: #fff;
  line-height: 1;
  vertical-align: middle;
  white-space: nowrap;
  text-align: center;
  background-color: #777777;
  border-radius: 10px;
}
.badge:empty {
  display: none;
}
.btn .badge {
  position: relative;
  top: -1px;
}
.btn-xs .badge,
.btn-group-xs > .btn .badge {
  top: 0;
  padding: 1px 5px;
}
a.badge:hover,
a.badge:focus {
  color: #fff;
  text-decoration: none;
  cursor: pointer;
}
.list-group-item.active > .badge,
.nav-pills > .active > a > .badge {
  color: #337ab7;
  background-color: #fff;
}
.list-group-item > .badge {
  float: right;
}
.list-group-item > .badge + .badge {
  margin-right: 5px;
}
.nav-pills > li > a > .badge {
  margin-left: 3px;
}
.jumbotron {
  padding-top: 30px;
  padding-bottom: 30px;
  margin-bottom: 30px;
  color: inherit;
  background-color: #eeeeee;
}
.jumbotron h1,
.jumbotron .h1 {
  color: inherit;
}
.jumbotron p {
  margin-bottom: 15px;
  font-size: 20px;
  font-weight: 200;
}
.jumbotron > hr {
  border-top-color: #d5d5d5;
}
.container .jumbotron,
.container-fluid .jumbotron {
  border-radius: 3px;
  padding-left: 0px;
  padding-right: 0px;
}
.jumbotron .container {
  max-width: 100%;
}
@media screen and (min-width: 768px) {
  .jumbotron {
    padding-top: 48px;
    padding-bottom: 48px;
  }
  .container .jumbotron,
  .container-fluid .jumbotron {
    padding-left: 60px;
    padding-right: 60px;
  }
  .jumbotron h1,
  .jumbotron .h1 {
    font-size: 59px;
  }
}
.thumbnail {
  display: block;
  padding: 4px;
  margin-bottom: 18px;
  line-height: 1.42857143;
  background-color: #fff;
  border: 1px solid #ddd;
  border-radius: 2px;
  -webkit-transition: border 0.2s ease-in-out;
  -o-transition: border 0.2s ease-in-out;
  transition: border 0.2s ease-in-out;
}
.thumbnail > img,
.thumbnail a > img {
  margin-left: auto;
  margin-right: auto;
}
a.thumbnail:hover,
a.thumbnail:focus,
a.thumbnail.active {
  border-color: #337ab7;
}
.thumbnail .caption {
  padding: 9px;
  color: #000;
}
.alert {
  padding: 15px;
  margin-bottom: 18px;
  border: 1px solid transparent;
  border-radius: 2px;
}
.alert h4 {
  margin-top: 0;
  color: inherit;
}
.alert .alert-link {
  font-weight: bold;
}
.alert > p,
.alert > ul {
  margin-bottom: 0;
}
.alert > p + p {
  margin-top: 5px;
}
.alert-dismissable,
.alert-dismissible {
  padding-right: 35px;
}
.alert-dismissable .close,
.alert-dismissible .close {
  position: relative;
  top: -2px;
  right: -21px;
  color: inherit;
}
.alert-success {
  background-color: #dff0d8;
  border-color: #d6e9c6;
  color: #3c763d;
}
.alert-success hr {
  border-top-color: #c9e2b3;
}
.alert-success .alert-link {
  color: #2b542c;
}
.alert-info {
  background-color: #d9edf7;
  border-color: #bce8f1;
  color: #31708f;
}
.alert-info hr {
  border-top-color: #a6e1ec;
}
.alert-info .alert-link {
  color: #245269;
}
.alert-warning {
  background-color: #fcf8e3;
  border-color: #faebcc;
  color: #8a6d3b;
}
.alert-warning hr {
  border-top-color: #f7e1b5;
}
.alert-warning .alert-link {
  color: #66512c;
}
.alert-danger {
  background-color: #f2dede;
  border-color: #ebccd1;
  color: #a94442;
}
.alert-danger hr {
  border-top-color: #e4b9c0;
}
.alert-danger .alert-link {
  color: #843534;
}
@-webkit-keyframes progress-bar-stripes {
  from {
    background-position: 40px 0;
  }
  to {
    background-position: 0 0;
  }
}
@keyframes progress-bar-stripes {
  from {
    background-position: 40px 0;
  }
  to {
    background-position: 0 0;
  }
}
.progress {
  overflow: hidden;
  height: 18px;
  margin-bottom: 18px;
  background-color: #f5f5f5;
  border-radius: 2px;
  -webkit-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1);
  box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1);
}
.progress-bar {
  float: left;
  width: 0%;
  height: 100%;
  font-size: 12px;
  line-height: 18px;
  color: #fff;
  text-align: center;
  background-color: #337ab7;
  -webkit-box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15);
  box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15);
  -webkit-transition: width 0.6s ease;
  -o-transition: width 0.6s ease;
  transition: width 0.6s ease;
}
.progress-striped .progress-bar,
.progress-bar-striped {
  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
  background-size: 40px 40px;
}
.progress.active .progress-bar,
.progress-bar.active {
  -webkit-animation: progress-bar-stripes 2s linear infinite;
  -o-animation: progress-bar-stripes 2s linear infinite;
  animation: progress-bar-stripes 2s linear infinite;
}
.progress-bar-success {
  background-color: #5cb85c;
}
.progress-striped .progress-bar-success {
  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
}
.progress-bar-info {
  background-color: #5bc0de;
}
.progress-striped .progress-bar-info {
  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
}
.progress-bar-warning {
  background-color: #f0ad4e;
}
.progress-striped .progress-bar-warning {
  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
}
.progress-bar-danger {
  background-color: #d9534f;
}
.progress-striped .progress-bar-danger {
  background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
  background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
  background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent);
}
.media {
  margin-top: 15px;
}
.media:first-child {
  margin-top: 0;
}
.media,
.media-body {
  zoom: 1;
  overflow: hidden;
}
.media-body {
  width: 10000px;
}
.media-object {
  display: block;
}
.media-object.img-thumbnail {
  max-width: none;
}
.media-right,
.media > .pull-right {
  padding-left: 10px;
}
.media-left,
.media > .pull-left {
  padding-right: 10px;
}
.media-left,
.media-right,
.media-body {
  display: table-cell;
  vertical-align: top;
}
.media-middle {
  vertical-align: middle;
}
.media-bottom {
  vertical-align: bottom;
}
.media-heading {
  margin-top: 0;
  margin-bottom: 5px;
}
.media-list {
  padding-left: 0;
  list-style: none;
}
.list-group {
  margin-bottom: 20px;
  padding-left: 0;
}
.list-group-item {
  position: relative;
  display: block;
  padding: 10px 15px;
  margin-bottom: -1px;
  background-color: #fff;
  border: 1px solid #ddd;
}
.list-group-item:first-child {
  border-top-right-radius: 2px;
  border-top-left-radius: 2px;
}
.list-group-item:last-child {
  margin-bottom: 0;
  border-bottom-right-radius: 2px;
  border-bottom-left-radius: 2px;
}
a.list-group-item,
button.list-group-item {
  color: #555;
}
a.list-group-item .list-group-item-heading,
button.list-group-item .list-group-item-heading {
  color: #333;
}
a.list-group-item:hover,
button.list-group-item:hover,
a.list-group-item:focus,
button.list-group-item:focus {
  text-decoration: none;
  color: #555;
  background-color: #f5f5f5;
}
button.list-group-item {
  width: 100%;
  text-align: left;
}
.list-group-item.disabled,
.list-group-item.disabled:hover,
.list-group-item.disabled:focus {
  background-color: #eeeeee;
  color: #777777;
  cursor: not-allowed;
}
.list-group-item.disabled .list-group-item-heading,
.list-group-item.disabled:hover .list-group-item-heading,
.list-group-item.disabled:focus .list-group-item-heading {
  color: inherit;
}
.list-group-item.disabled .list-group-item-text,
.list-group-item.disabled:hover .list-group-item-text,
.list-group-item.disabled:focus .list-group-item-text {
  color: #777777;
}
.list-group-item.active,
.list-group-item.active:hover,
.list-group-item.active:focus {
  z-index: 2;
  color: #fff;
  background-color: #337ab7;
  border-color: #337ab7;
}
.list-group-item.active .list-group-item-heading,
.list-group-item.active:hover .list-group-item-heading,
.list-group-item.active:focus .list-group-item-heading,
.list-group-item.active .list-group-item-heading > small,
.list-group-item.active:hover .list-group-item-heading > small,
.list-group-item.active:focus .list-group-item-heading > small,
.list-group-item.active .list-group-item-heading > .small,
.list-group-item.active:hover .list-group-item-heading > .small,
.list-group-item.active:focus .list-group-item-heading > .small {
  color: inherit;
}
.list-group-item.active .list-group-item-text,
.list-group-item.active:hover .list-group-item-text,
.list-group-item.active:focus .list-group-item-text {
  color: #c7ddef;
}
.list-group-item-success {
  color: #3c763d;
  background-color: #dff0d8;
}
a.list-group-item-success,
button.list-group-item-success {
  color: #3c763d;
}
a.list-group-item-success .list-group-item-heading,
button.list-group-item-success .list-group-item-heading {
  color: inherit;
}
a.list-group-item-success:hover,
button.list-group-item-success:hover,
a.list-group-item-success:focus,
button.list-group-item-success:focus {
  color: #3c763d;
  background-color: #d0e9c6;
}
a.list-group-item-success.active,
button.list-group-item-success.active,
a.list-group-item-success.active:hover,
button.list-group-item-success.active:hover,
a.list-group-item-success.active:focus,
button.list-group-item-success.active:focus {
  color: #fff;
  background-color: #3c763d;
  border-color: #3c763d;
}
.list-group-item-info {
  color: #31708f;
  background-color: #d9edf7;
}
a.list-group-item-info,
button.list-group-item-info {
  color: #31708f;
}
a.list-group-item-info .list-group-item-heading,
button.list-group-item-info .list-group-item-heading {
  color: inherit;
}
a.list-group-item-info:hover,
button.list-group-item-info:hover,
a.list-group-item-info:focus,
button.list-group-item-info:focus {
  color: #31708f;
  background-color: #c4e3f3;
}
a.list-group-item-info.active,
button.list-group-item-info.active,
a.list-group-item-info.active:hover,
button.list-group-item-info.active:hover,
a.list-group-item-info.active:focus,
button.list-group-item-info.active:focus {
  color: #fff;
  background-color: #31708f;
  border-color: #31708f;
}
.list-group-item-warning {
  color: #8a6d3b;
  background-color: #fcf8e3;
}
a.list-group-item-warning,
button.list-group-item-warning {
  color: #8a6d3b;
}
a.list-group-item-warning .list-group-item-heading,
button.list-group-item-warning .list-group-item-heading {
  color: inherit;
}
a.list-group-item-warning:hover,
button.list-group-item-warning:hover,
a.list-group-item-warning:focus,
button.list-group-item-warning:focus {
  color: #8a6d3b;
  background-color: #faf2cc;
}
a.list-group-item-warning.active,
button.list-group-item-warning.active,
a.list-group-item-warning.active:hover,
button.list-group-item-warning.active:hover,
a.list-group-item-warning.active:focus,
button.list-group-item-warning.active:focus {
  color: #fff;
  background-color: #8a6d3b;
  border-color: #8a6d3b;
}
.list-group-item-danger {
  color: #a94442;
  background-color: #f2dede;
}
a.list-group-item-danger,
button.list-group-item-danger {
  color: #a94442;
}
a.list-group-item-danger .list-group-item-heading,
button.list-group-item-danger .list-group-item-heading {
  color: inherit;
}
a.list-group-item-danger:hover,
button.list-group-item-danger:hover,
a.list-group-item-danger:focus,
button.list-group-item-danger:focus {
  color: #a94442;
  background-color: #ebcccc;
}
a.list-group-item-danger.active,
button.list-group-item-danger.active,
a.list-group-item-danger.active:hover,
button.list-group-item-danger.active:hover,
a.list-group-item-danger.active:focus,
button.list-group-item-danger.active:focus {
  color: #fff;
  background-color: #a94442;
  border-color: #a94442;
}
.list-group-item-heading {
  margin-top: 0;
  margin-bottom: 5px;
}
.list-group-item-text {
  margin-bottom: 0;
  line-height: 1.3;
}
.panel {
  margin-bottom: 18px;
  background-color: #fff;
  border: 1px solid transparent;
  border-radius: 2px;
  -webkit-box-shadow: 0 1px 1px rgba(0, 0, 0, 0.05);
  box-shadow: 0 1px 1px rgba(0, 0, 0, 0.05);
}
.panel-body {
  padding: 15px;
}
.panel-heading {
  padding: 10px 15px;
  border-bottom: 1px solid transparent;
  border-top-right-radius: 1px;
  border-top-left-radius: 1px;
}
.panel-heading > .dropdown .dropdown-toggle {
  color: inherit;
}
.panel-title {
  margin-top: 0;
  margin-bottom: 0;
  font-size: 15px;
  color: inherit;
}
.panel-title > a,
.panel-title > small,
.panel-title > .small,
.panel-title > small > a,
.panel-title > .small > a {
  color: inherit;
}
.panel-footer {
  padding: 10px 15px;
  background-color: #f5f5f5;
  border-top: 1px solid #ddd;
  border-bottom-right-radius: 1px;
  border-bottom-left-radius: 1px;
}
.panel > .list-group,
.panel > .panel-collapse > .list-group {
  margin-bottom: 0;
}
.panel > .list-group .list-group-item,
.panel > .panel-collapse > .list-group .list-group-item {
  border-width: 1px 0;
  border-radius: 0;
}
.panel > .list-group:first-child .list-group-item:first-child,
.panel > .panel-collapse > .list-group:first-child .list-group-item:first-child {
  border-top: 0;
  border-top-right-radius: 1px;
  border-top-left-radius: 1px;
}
.panel > .list-group:last-child .list-group-item:last-child,
.panel > .panel-collapse > .list-group:last-child .list-group-item:last-child {
  border-bottom: 0;
  border-bottom-right-radius: 1px;
  border-bottom-left-radius: 1px;
}
.panel > .panel-heading + .panel-collapse > .list-group .list-group-item:first-child {
  border-top-right-radius: 0;
  border-top-left-radius: 0;
}
.panel-heading + .list-group .list-group-item:first-child {
  border-top-width: 0;
}
.list-group + .panel-footer {
  border-top-width: 0;
}
.panel > .table,
.panel > .table-responsive > .table,
.panel > .panel-collapse > .table {
  margin-bottom: 0;
}
.panel > .table caption,
.panel > .table-responsive > .table caption,
.panel > .panel-collapse > .table caption {
  padding-left: 15px;
  padding-right: 15px;
}
.panel > .table:first-child,
.panel > .table-responsive:first-child > .table:first-child {
  border-top-right-radius: 1px;
  border-top-left-radius: 1px;
}
.panel > .table:first-child > thead:first-child > tr:first-child,
.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child,
.panel > .table:first-child > tbody:first-child > tr:first-child,
.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child {
  border-top-left-radius: 1px;
  border-top-right-radius: 1px;
}
.panel > .table:first-child > thead:first-child > tr:first-child td:first-child,
.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child td:first-child,
.panel > .table:first-child > tbody:first-child > tr:first-child td:first-child,
.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child td:first-child,
.panel > .table:first-child > thead:first-child > tr:first-child th:first-child,
.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child th:first-child,
.panel > .table:first-child > tbody:first-child > tr:first-child th:first-child,
.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child th:first-child {
  border-top-left-radius: 1px;
}
.panel > .table:first-child > thead:first-child > tr:first-child td:last-child,
.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child td:last-child,
.panel > .table:first-child > tbody:first-child > tr:first-child td:last-child,
.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child td:last-child,
.panel > .table:first-child > thead:first-child > tr:first-child th:last-child,
.panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child th:last-child,
.panel > .table:first-child > tbody:first-child > tr:first-child th:last-child,
.panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child th:last-child {
  border-top-right-radius: 1px;
}
.panel > .table:last-child,
.panel > .table-responsive:last-child > .table:last-child {
  border-bottom-right-radius: 1px;
  border-bottom-left-radius: 1px;
}
.panel > .table:last-child > tbody:last-child > tr:last-child,
.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child,
.panel > .table:last-child > tfoot:last-child > tr:last-child,
.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child {
  border-bottom-left-radius: 1px;
  border-bottom-right-radius: 1px;
}
.panel > .table:last-child > tbody:last-child > tr:last-child td:first-child,
.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child td:first-child,
.panel > .table:last-child > tfoot:last-child > tr:last-child td:first-child,
.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child td:first-child,
.panel > .table:last-child > tbody:last-child > tr:last-child th:first-child,
.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child th:first-child,
.panel > .table:last-child > tfoot:last-child > tr:last-child th:first-child,
.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child th:first-child {
  border-bottom-left-radius: 1px;
}
.panel > .table:last-child > tbody:last-child > tr:last-child td:last-child,
.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child td:last-child,
.panel > .table:last-child > tfoot:last-child > tr:last-child td:last-child,
.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child td:last-child,
.panel > .table:last-child > tbody:last-child > tr:last-child th:last-child,
.panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child th:last-child,
.panel > .table:last-child > tfoot:last-child > tr:last-child th:last-child,
.panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child th:last-child {
  border-bottom-right-radius: 1px;
}
.panel > .panel-body + .table,
.panel > .panel-body + .table-responsive,
.panel > .table + .panel-body,
.panel > .table-responsive + .panel-body {
  border-top: 1px solid #ddd;
}
.panel > .table > tbody:first-child > tr:first-child th,
.panel > .table > tbody:first-child > tr:first-child td {
  border-top: 0;
}
.panel > .table-bordered,
.panel > .table-responsive > .table-bordered {
  border: 0;
}
.panel > .table-bordered > thead > tr > th:first-child,
.panel > .table-responsive > .table-bordered > thead > tr > th:first-child,
.panel > .table-bordered > tbody > tr > th:first-child,
.panel > .table-responsive > .table-bordered > tbody > tr > th:first-child,
.panel > .table-bordered > tfoot > tr > th:first-child,
.panel > .table-responsive > .table-bordered > tfoot > tr > th:first-child,
.panel > .table-bordered > thead > tr > td:first-child,
.panel > .table-responsive > .table-bordered > thead > tr > td:first-child,
.panel > .table-bordered > tbody > tr > td:first-child,
.panel > .table-responsive > .table-bordered > tbody > tr > td:first-child,
.panel > .table-bordered > tfoot > tr > td:first-child,
.panel > .table-responsive > .table-bordered > tfoot > tr > td:first-child {
  border-left: 0;
}
.panel > .table-bordered > thead > tr > th:last-child,
.panel > .table-responsive > .table-bordered > thead > tr > th:last-child,
.panel > .table-bordered > tbody > tr > th:last-child,
.panel > .table-responsive > .table-bordered > tbody > tr > th:last-child,
.panel > .table-bordered > tfoot > tr > th:last-child,
.panel > .table-responsive > .table-bordered > tfoot > tr > th:last-child,
.panel > .table-bordered > thead > tr > td:last-child,
.panel > .table-responsive > .table-bordered > thead > tr > td:last-child,
.panel > .table-bordered > tbody > tr > td:last-child,
.panel > .table-responsive > .table-bordered > tbody > tr > td:last-child,
.panel > .table-bordered > tfoot > tr > td:last-child,
.panel > .table-responsive > .table-bordered > tfoot > tr > td:last-child {
  border-right: 0;
}
.panel > .table-bordered > thead > tr:first-child > td,
.panel > .table-responsive > .table-bordered > thead > tr:first-child > td,
.panel > .table-bordered > tbody > tr:first-child > td,
.panel > .table-responsive > .table-bordered > tbody > tr:first-child > td,
.panel > .table-bordered > thead > tr:first-child > th,
.panel > .table-responsive > .table-bordered > thead > tr:first-child > th,
.panel > .table-bordered > tbody > tr:first-child > th,
.panel > .table-responsive > .table-bordered > tbody > tr:first-child > th {
  border-bottom: 0;
}
.panel > .table-bordered > tbody > tr:last-child > td,
.panel > .table-responsive > .table-bordered > tbody > tr:last-child > td,
.panel > .table-bordered > tfoot > tr:last-child > td,
.panel > .table-responsive > .table-bordered > tfoot > tr:last-child > td,
.panel > .table-bordered > tbody > tr:last-child > th,
.panel > .table-responsive > .table-bordered > tbody > tr:last-child > th,
.panel > .table-bordered > tfoot > tr:last-child > th,
.panel > .table-responsive > .table-bordered > tfoot > tr:last-child > th {
  border-bottom: 0;
}
.panel > .table-responsive {
  border: 0;
  margin-bottom: 0;
}
.panel-group {
  margin-bottom: 18px;
}
.panel-group .panel {
  margin-bottom: 0;
  border-radius: 2px;
}
.panel-group .panel + .panel {
  margin-top: 5px;
}
.panel-group .panel-heading {
  border-bottom: 0;
}
.panel-group .panel-heading + .panel-collapse > .panel-body,
.panel-group .panel-heading + .panel-collapse > .list-group {
  border-top: 1px solid #ddd;
}
.panel-group .panel-footer {
  border-top: 0;
}
.panel-group .panel-footer + .panel-collapse .panel-body {
  border-bottom: 1px solid #ddd;
}
.panel-default {
  border-color: #ddd;
}
.panel-default > .panel-heading {
  color: #333333;
  background-color: #f5f5f5;
  border-color: #ddd;
}
.panel-default > .panel-heading + .panel-collapse > .panel-body {
  border-top-color: #ddd;
}
.panel-default > .panel-heading .badge {
  color: #f5f5f5;
  background-color: #333333;
}
.panel-default > .panel-footer + .panel-collapse > .panel-body {
  border-bottom-color: #ddd;
}
.panel-primary {
  border-color: #337ab7;
}
.panel-primary > .panel-heading {
  color: #fff;
  background-color: #337ab7;
  border-color: #337ab7;
}
.panel-primary > .panel-heading + .panel-collapse > .panel-body {
  border-top-color: #337ab7;
}
.panel-primary > .panel-heading .badge {
  color: #337ab7;
  background-color: #fff;
}
.panel-primary > .panel-footer + .panel-collapse > .panel-body {
  border-bottom-color: #337ab7;
}
.panel-success {
  border-color: #d6e9c6;
}
.panel-success > .panel-heading {
  color: #3c763d;
  background-color: #dff0d8;
  border-color: #d6e9c6;
}
.panel-success > .panel-heading + .panel-collapse > .panel-body {
  border-top-color: #d6e9c6;
}
.panel-success > .panel-heading .badge {
  color: #dff0d8;
  background-color: #3c763d;
}
.panel-success > .panel-footer + .panel-collapse > .panel-body {
  border-bottom-color: #d6e9c6;
}
.panel-info {
  border-color: #bce8f1;
}
.panel-info > .panel-heading {
  color: #31708f;
  background-color: #d9edf7;
  border-color: #bce8f1;
}
.panel-info > .panel-heading + .panel-collapse > .panel-body {
  border-top-color: #bce8f1;
}
.panel-info > .panel-heading .badge {
  color: #d9edf7;
  background-color: #31708f;
}
.panel-info > .panel-footer + .panel-collapse > .panel-body {
  border-bottom-color: #bce8f1;
}
.panel-warning {
  border-color: #faebcc;
}
.panel-warning > .panel-heading {
  color: #8a6d3b;
  background-color: #fcf8e3;
  border-color: #faebcc;
}
.panel-warning > .panel-heading + .panel-collapse > .panel-body {
  border-top-color: #faebcc;
}
.panel-warning > .panel-heading .badge {
  color: #fcf8e3;
  background-color: #8a6d3b;
}
.panel-warning > .panel-footer + .panel-collapse > .panel-body {
  border-bottom-color: #faebcc;
}
.panel-danger {
  border-color: #ebccd1;
}
.panel-danger > .panel-heading {
  color: #a94442;
  background-color: #f2dede;
  border-color: #ebccd1;
}
.panel-danger > .panel-heading + .panel-collapse > .panel-body {
  border-top-color: #ebccd1;
}
.panel-danger > .panel-heading .badge {
  color: #f2dede;
  background-color: #a94442;
}
.panel-danger > .panel-footer + .panel-collapse > .panel-body {
  border-bottom-color: #ebccd1;
}
.embed-responsive {
  position: relative;
  display: block;
  height: 0;
  padding: 0;
  overflow: hidden;
}
.embed-responsive .embed-responsive-item,
.embed-responsive iframe,
.embed-responsive embed,
.embed-responsive object,
.embed-responsive video {
  position: absolute;
  top: 0;
  left: 0;
  bottom: 0;
  height: 100%;
  width: 100%;
  border: 0;
}
.embed-responsive-16by9 {
  padding-bottom: 56.25%;
}
.embed-responsive-4by3 {
  padding-bottom: 75%;
}
.well {
  min-height: 20px;
  padding: 19px;
  margin-bottom: 20px;
  background-color: #f5f5f5;
  border: 1px solid #e3e3e3;
  border-radius: 2px;
  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05);
  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05);
}
.well blockquote {
  border-color: #ddd;
  border-color: rgba(0, 0, 0, 0.15);
}
.well-lg {
  padding: 24px;
  border-radius: 3px;
}
.well-sm {
  padding: 9px;
  border-radius: 1px;
}
.close {
  float: right;
  font-size: 19.5px;
  font-weight: bold;
  line-height: 1;
  color: #000;
  text-shadow: 0 1px 0 #fff;
  opacity: 0.2;
  filter: alpha(opacity=20);
}
.close:hover,
.close:focus {
  color: #000;
  text-decoration: none;
  cursor: pointer;
  opacity: 0.5;
  filter: alpha(opacity=50);
}
button.close {
  padding: 0;
  cursor: pointer;
  background: transparent;
  border: 0;
  -webkit-appearance: none;
}
.modal-open {
  overflow: hidden;
}
.modal {
  display: none;
  overflow: hidden;
  position: fixed;
  top: 0;
  right: 0;
  bottom: 0;
  left: 0;
  z-index: 1050;
  -webkit-overflow-scrolling: touch;
  outline: 0;
}
.modal.fade .modal-dialog {
  -webkit-transform: translate(0, -25%);
  -ms-transform: translate(0, -25%);
  -o-transform: translate(0, -25%);
  transform: translate(0, -25%);
  -webkit-transition: -webkit-transform 0.3s ease-out;
  -moz-transition: -moz-transform 0.3s ease-out;
  -o-transition: -o-transform 0.3s ease-out;
  transition: transform 0.3s ease-out;
}
.modal.in .modal-dialog {
  -webkit-transform: translate(0, 0);
  -ms-transform: translate(0, 0);
  -o-transform: translate(0, 0);
  transform: translate(0, 0);
}
.modal-open .modal {
  overflow-x: hidden;
  overflow-y: auto;
}
.modal-dialog {
  position: relative;
  width: auto;
  margin: 10px;
}
.modal-content {
  position: relative;
  background-color: #fff;
  border: 1px solid #999;
  border: 1px solid rgba(0, 0, 0, 0.2);
  border-radius: 3px;
  -webkit-box-shadow: 0 3px 9px rgba(0, 0, 0, 0.5);
  box-shadow: 0 3px 9px rgba(0, 0, 0, 0.5);
  background-clip: padding-box;
  outline: 0;
}
.modal-backdrop {
  position: fixed;
  top: 0;
  right: 0;
  bottom: 0;
  left: 0;
  z-index: 1040;
  background-color: #000;
}
.modal-backdrop.fade {
  opacity: 0;
  filter: alpha(opacity=0);
}
.modal-backdrop.in {
  opacity: 0.5;
  filter: alpha(opacity=50);
}
.modal-header {
  padding: 15px;
  border-bottom: 1px solid #e5e5e5;
}
.modal-header .close {
  margin-top: -2px;
}
.modal-title {
  margin: 0;
  line-height: 1.42857143;
}
.modal-body {
  position: relative;
  padding: 15px;
}
.modal-footer {
  padding: 15px;
  text-align: right;
  border-top: 1px solid #e5e5e5;
}
.modal-footer .btn + .btn {
  margin-left: 5px;
  margin-bottom: 0;
}
.modal-footer .btn-group .btn + .btn {
  margin-left: -1px;
}
.modal-footer .btn-block + .btn-block {
  margin-left: 0;
}
.modal-scrollbar-measure {
  position: absolute;
  top: -9999px;
  width: 50px;
  height: 50px;
  overflow: scroll;
}
@media (min-width: 768px) {
  .modal-dialog {
    width: 600px;
    margin: 30px auto;
  }
  .modal-content {
    -webkit-box-shadow: 0 5px 15px rgba(0, 0, 0, 0.5);
    box-shadow: 0 5px 15px rgba(0, 0, 0, 0.5);
  }
  .modal-sm {
    width: 300px;
  }
}
@media (min-width: 992px) {
  .modal-lg {
    width: 900px;
  }
}
.tooltip {
  position: absolute;
  z-index: 1070;
  display: block;
  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
  font-style: normal;
  font-weight: normal;
  letter-spacing: normal;
  line-break: auto;
  line-height: 1.42857143;
  text-align: left;
  text-align: start;
  text-decoration: none;
  text-shadow: none;
  text-transform: none;
  white-space: normal;
  word-break: normal;
  word-spacing: normal;
  word-wrap: normal;
  font-size: 12px;
  opacity: 0;
  filter: alpha(opacity=0);
}
.tooltip.in {
  opacity: 0.9;
  filter: alpha(opacity=90);
}
.tooltip.top {
  margin-top: -3px;
  padding: 5px 0;
}
.tooltip.right {
  margin-left: 3px;
  padding: 0 5px;
}
.tooltip.bottom {
  margin-top: 3px;
  padding: 5px 0;
}
.tooltip.left {
  margin-left: -3px;
  padding: 0 5px;
}
.tooltip-inner {
  max-width: 200px;
  padding: 3px 8px;
  color: #fff;
  text-align: center;
  background-color: #000;
  border-radius: 2px;
}
.tooltip-arrow {
  position: absolute;
  width: 0;
  height: 0;
  border-color: transparent;
  border-style: solid;
}
.tooltip.top .tooltip-arrow {
  bottom: 0;
  left: 50%;
  margin-left: -5px;
  border-width: 5px 5px 0;
  border-top-color: #000;
}
.tooltip.top-left .tooltip-arrow {
  bottom: 0;
  right: 5px;
  margin-bottom: -5px;
  border-width: 5px 5px 0;
  border-top-color: #000;
}
.tooltip.top-right .tooltip-arrow {
  bottom: 0;
  left: 5px;
  margin-bottom: -5px;
  border-width: 5px 5px 0;
  border-top-color: #000;
}
.tooltip.right .tooltip-arrow {
  top: 50%;
  left: 0;
  margin-top: -5px;
  border-width: 5px 5px 5px 0;
  border-right-color: #000;
}
.tooltip.left .tooltip-arrow {
  top: 50%;
  right: 0;
  margin-top: -5px;
  border-width: 5px 0 5px 5px;
  border-left-color: #000;
}
.tooltip.bottom .tooltip-arrow {
  top: 0;
  left: 50%;
  margin-left: -5px;
  border-width: 0 5px 5px;
  border-bottom-color: #000;
}
.tooltip.bottom-left .tooltip-arrow {
  top: 0;
  right: 5px;
  margin-top: -5px;
  border-width: 0 5px 5px;
  border-bottom-color: #000;
}
.tooltip.bottom-right .tooltip-arrow {
  top: 0;
  left: 5px;
  margin-top: -5px;
  border-width: 0 5px 5px;
  border-bottom-color: #000;
}
.popover {
  position: absolute;
  top: 0;
  left: 0;
  z-index: 1060;
  display: none;
  max-width: 276px;
  padding: 1px;
  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
  font-style: normal;
  font-weight: normal;
  letter-spacing: normal;
  line-break: auto;
  line-height: 1.42857143;
  text-align: left;
  text-align: start;
  text-decoration: none;
  text-shadow: none;
  text-transform: none;
  white-space: normal;
  word-break: normal;
  word-spacing: normal;
  word-wrap: normal;
  font-size: 13px;
  background-color: #fff;
  background-clip: padding-box;
  border: 1px solid #ccc;
  border: 1px solid rgba(0, 0, 0, 0.2);
  border-radius: 3px;
  -webkit-box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);
  box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);
}
.popover.top {
  margin-top: -10px;
}
.popover.right {
  margin-left: 10px;
}
.popover.bottom {
  margin-top: 10px;
}
.popover.left {
  margin-left: -10px;
}
.popover-title {
  margin: 0;
  padding: 8px 14px;
  font-size: 13px;
  background-color: #f7f7f7;
  border-bottom: 1px solid #ebebeb;
  border-radius: 2px 2px 0 0;
}
.popover-content {
  padding: 9px 14px;
}
.popover > .arrow,
.popover > .arrow:after {
  position: absolute;
  display: block;
  width: 0;
  height: 0;
  border-color: transparent;
  border-style: solid;
}
.popover > .arrow {
  border-width: 11px;
}
.popover > .arrow:after {
  border-width: 10px;
  content: "";
}
.popover.top > .arrow {
  left: 50%;
  margin-left: -11px;
  border-bottom-width: 0;
  border-top-color: #999999;
  border-top-color: rgba(0, 0, 0, 0.25);
  bottom: -11px;
}
.popover.top > .arrow:after {
  content: " ";
  bottom: 1px;
  margin-left: -10px;
  border-bottom-width: 0;
  border-top-color: #fff;
}
.popover.right > .arrow {
  top: 50%;
  left: -11px;
  margin-top: -11px;
  border-left-width: 0;
  border-right-color: #999999;
  border-right-color: rgba(0, 0, 0, 0.25);
}
.popover.right > .arrow:after {
  content: " ";
  left: 1px;
  bottom: -10px;
  border-left-width: 0;
  border-right-color: #fff;
}
.popover.bottom > .arrow {
  left: 50%;
  margin-left: -11px;
  border-top-width: 0;
  border-bottom-color: #999999;
  border-bottom-color: rgba(0, 0, 0, 0.25);
  top: -11px;
}
.popover.bottom > .arrow:after {
  content: " ";
  top: 1px;
  margin-left: -10px;
  border-top-width: 0;
  border-bottom-color: #fff;
}
.popover.left > .arrow {
  top: 50%;
  right: -11px;
  margin-top: -11px;
  border-right-width: 0;
  border-left-color: #999999;
  border-left-color: rgba(0, 0, 0, 0.25);
}
.popover.left > .arrow:after {
  content: " ";
  right: 1px;
  border-right-width: 0;
  border-left-color: #fff;
  bottom: -10px;
}
.carousel {
  position: relative;
}
.carousel-inner {
  position: relative;
  overflow: hidden;
  width: 100%;
}
.carousel-inner > .item {
  display: none;
  position: relative;
  -webkit-transition: 0.6s ease-in-out left;
  -o-transition: 0.6s ease-in-out left;
  transition: 0.6s ease-in-out left;
}
.carousel-inner > .item > img,
.carousel-inner > .item > a > img {
  line-height: 1;
}
@media all and (transform-3d), (-webkit-transform-3d) {
  .carousel-inner > .item {
    -webkit-transition: -webkit-transform 0.6s ease-in-out;
    -moz-transition: -moz-transform 0.6s ease-in-out;
    -o-transition: -o-transform 0.6s ease-in-out;
    transition: transform 0.6s ease-in-out;
    -webkit-backface-visibility: hidden;
    -moz-backface-visibility: hidden;
    backface-visibility: hidden;
    -webkit-perspective: 1000px;
    -moz-perspective: 1000px;
    perspective: 1000px;
  }
  .carousel-inner > .item.next,
  .carousel-inner > .item.active.right {
    -webkit-transform: translate3d(100%, 0, 0);
    transform: translate3d(100%, 0, 0);
    left: 0;
  }
  .carousel-inner > .item.prev,
  .carousel-inner > .item.active.left {
    -webkit-transform: translate3d(-100%, 0, 0);
    transform: translate3d(-100%, 0, 0);
    left: 0;
  }
  .carousel-inner > .item.next.left,
  .carousel-inner > .item.prev.right,
  .carousel-inner > .item.active {
    -webkit-transform: translate3d(0, 0, 0);
    transform: translate3d(0, 0, 0);
    left: 0;
  }
}
.carousel-inner > .active,
.carousel-inner > .next,
.carousel-inner > .prev {
  display: block;
}
.carousel-inner > .active {
  left: 0;
}
.carousel-inner > .next,
.carousel-inner > .prev {
  position: absolute;
  top: 0;
  width: 100%;
}
.carousel-inner > .next {
  left: 100%;
}
.carousel-inner > .prev {
  left: -100%;
}
.carousel-inner > .next.left,
.carousel-inner > .prev.right {
  left: 0;
}
.carousel-inner > .active.left {
  left: -100%;
}
.carousel-inner > .active.right {
  left: 100%;
}
.carousel-control {
  position: absolute;
  top: 0;
  left: 0;
  bottom: 0;
  width: 15%;
  opacity: 0.5;
  filter: alpha(opacity=50);
  font-size: 20px;
  color: #fff;
  text-align: center;
  text-shadow: 0 1px 2px rgba(0, 0, 0, 0.6);
  background-color: rgba(0, 0, 0, 0);
}
.carousel-control.left {
  background-image: -webkit-linear-gradient(left, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%);
  background-image: -o-linear-gradient(left, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%);
  background-image: linear-gradient(to right, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%);
  background-repeat: repeat-x;
  filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#80000000', endColorstr='#00000000', GradientType=1);
}
.carousel-control.right {
  left: auto;
  right: 0;
  background-image: -webkit-linear-gradient(left, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%);
  background-image: -o-linear-gradient(left, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%);
  background-image: linear-gradient(to right, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%);
  background-repeat: repeat-x;
  filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#00000000', endColorstr='#80000000', GradientType=1);
}
.carousel-control:hover,
.carousel-control:focus {
  outline: 0;
  color: #fff;
  text-decoration: none;
  opacity: 0.9;
  filter: alpha(opacity=90);
}
.carousel-control .icon-prev,
.carousel-control .icon-next,
.carousel-control .glyphicon-chevron-left,
.carousel-control .glyphicon-chevron-right {
  position: absolute;
  top: 50%;
  margin-top: -10px;
  z-index: 5;
  display: inline-block;
}
.carousel-control .icon-prev,
.carousel-control .glyphicon-chevron-left {
  left: 50%;
  margin-left: -10px;
}
.carousel-control .icon-next,
.carousel-control .glyphicon-chevron-right {
  right: 50%;
  margin-right: -10px;
}
.carousel-control .icon-prev,
.carousel-control .icon-next {
  width: 20px;
  height: 20px;
  line-height: 1;
  font-family: serif;
}
.carousel-control .icon-prev:before {
  content: '\2039';
}
.carousel-control .icon-next:before {
  content: '\203a';
}
.carousel-indicators {
  position: absolute;
  bottom: 10px;
  left: 50%;
  z-index: 15;
  width: 60%;
  margin-left: -30%;
  padding-left: 0;
  list-style: none;
  text-align: center;
}
.carousel-indicators li {
  display: inline-block;
  width: 10px;
  height: 10px;
  margin: 1px;
  text-indent: -999px;
  border: 1px solid #fff;
  border-radius: 10px;
  cursor: pointer;
  background-color: #000 \9;
  background-color: rgba(0, 0, 0, 0);
}
.carousel-indicators .active {
  margin: 0;
  width: 12px;
  height: 12px;
  background-color: #fff;
}
.carousel-caption {
  position: absolute;
  left: 15%;
  right: 15%;
  bottom: 20px;
  z-index: 10;
  padding-top: 20px;
  padding-bottom: 20px;
  color: #fff;
  text-align: center;
  text-shadow: 0 1px 2px rgba(0, 0, 0, 0.6);
}
.carousel-caption .btn {
  text-shadow: none;
}
@media screen and (min-width: 768px) {
  .carousel-control .glyphicon-chevron-left,
  .carousel-control .glyphicon-chevron-right,
  .carousel-control .icon-prev,
  .carousel-control .icon-next {
    width: 30px;
    height: 30px;
    margin-top: -10px;
    font-size: 30px;
  }
  .carousel-control .glyphicon-chevron-left,
  .carousel-control .icon-prev {
    margin-left: -10px;
  }
  .carousel-control .glyphicon-chevron-right,
  .carousel-control .icon-next {
    margin-right: -10px;
  }
  .carousel-caption {
    left: 20%;
    right: 20%;
    padding-bottom: 30px;
  }
  .carousel-indicators {
    bottom: 20px;
  }
}
.clearfix:before,
.clearfix:after,
.dl-horizontal dd:before,
.dl-horizontal dd:after,
.container:before,
.container:after,
.container-fluid:before,
.container-fluid:after,
.row:before,
.row:after,
.form-horizontal .form-group:before,
.form-horizontal .form-group:after,
.btn-toolbar:before,
.btn-toolbar:after,
.btn-group-vertical > .btn-group:before,
.btn-group-vertical > .btn-group:after,
.nav:before,
.nav:after,
.navbar:before,
.navbar:after,
.navbar-header:before,
.navbar-header:after,
.navbar-collapse:before,
.navbar-collapse:after,
.pager:before,
.pager:after,
.panel-body:before,
.panel-body:after,
.modal-header:before,
.modal-header:after,
.modal-footer:before,
.modal-footer:after,
.item_buttons:before,
.item_buttons:after {
  content: " ";
  display: table;
}
.clearfix:after,
.dl-horizontal dd:after,
.container:after,
.container-fluid:after,
.row:after,
.form-horizontal .form-group:after,
.btn-toolbar:after,
.btn-group-vertical > .btn-group:after,
.nav:after,
.navbar:after,
.navbar-header:after,
.navbar-collapse:after,
.pager:after,
.panel-body:after,
.modal-header:after,
.modal-footer:after,
.item_buttons:after {
  clear: both;
}
.center-block {
  display: block;
  margin-left: auto;
  margin-right: auto;
}
.pull-right {
  float: right !important;
}
.pull-left {
  float: left !important;
}
.hide {
  display: none !important;
}
.show {
  display: block !important;
}
.invisible {
  visibility: hidden;
}
.text-hide {
  font: 0/0 a;
  color: transparent;
  text-shadow: none;
  background-color: transparent;
  border: 0;
}
.hidden {
  display: none !important;
}
.affix {
  position: fixed;
}
@-ms-viewport {
  width: device-width;
}
.visible-xs,
.visible-sm,
.visible-md,
.visible-lg {
  display: none !important;
}
.visible-xs-block,
.visible-xs-inline,
.visible-xs-inline-block,
.visible-sm-block,
.visible-sm-inline,
.visible-sm-inline-block,
.visible-md-block,
.visible-md-inline,
.visible-md-inline-block,
.visible-lg-block,
.visible-lg-inline,
.visible-lg-inline-block {
  display: none !important;
}
@media (max-width: 767px) {
  .visible-xs {
    display: block !important;
  }
  table.visible-xs {
    display: table !important;
  }
  tr.visible-xs {
    display: table-row !important;
  }
  th.visible-xs,
  td.visible-xs {
    display: table-cell !important;
  }
}
@media (max-width: 767px) {
  .visible-xs-block {
    display: block !important;
  }
}
@media (max-width: 767px) {
  .visible-xs-inline {
    display: inline !important;
  }
}
@media (max-width: 767px) {
  .visible-xs-inline-block {
    display: inline-block !important;
  }
}
@media (min-width: 768px) and (max-width: 991px) {
  .visible-sm {
    display: block !important;
  }
  table.visible-sm {
    display: table !important;
  }
  tr.visible-sm {
    display: table-row !important;
  }
  th.visible-sm,
  td.visible-sm {
    display: table-cell !important;
  }
}
@media (min-width: 768px) and (max-width: 991px) {
  .visible-sm-block {
    display: block !important;
  }
}
@media (min-width: 768px) and (max-width: 991px) {
  .visible-sm-inline {
    display: inline !important;
  }
}
@media (min-width: 768px) and (max-width: 991px) {
  .visible-sm-inline-block {
    display: inline-block !important;
  }
}
@media (min-width: 992px) and (max-width: 1199px) {
  .visible-md {
    display: block !important;
  }
  table.visible-md {
    display: table !important;
  }
  tr.visible-md {
    display: table-row !important;
  }
  th.visible-md,
  td.visible-md {
    display: table-cell !important;
  }
}
@media (min-width: 992px) and (max-width: 1199px) {
  .visible-md-block {
    display: block !important;
  }
}
@media (min-width: 992px) and (max-width: 1199px) {
  .visible-md-inline {
    display: inline !important;
  }
}
@media (min-width: 992px) and (max-width: 1199px) {
  .visible-md-inline-block {
    display: inline-block !important;
  }
}
@media (min-width: 1200px) {
  .visible-lg {
    display: block !important;
  }
  table.visible-lg {
    display: table !important;
  }
  tr.visible-lg {
    display: table-row !important;
  }
  th.visible-lg,
  td.visible-lg {
    display: table-cell !important;
  }
}
@media (min-width: 1200px) {
  .visible-lg-block {
    display: block !important;
  }
}
@media (min-width: 1200px) {
  .visible-lg-inline {
    display: inline !important;
  }
}
@media (min-width: 1200px) {
  .visible-lg-inline-block {
    display: inline-block !important;
  }
}
@media (max-width: 767px) {
  .hidden-xs {
    display: none !important;
  }
}
@media (min-width: 768px) and (max-width: 991px) {
  .hidden-sm {
    display: none !important;
  }
}
@media (min-width: 992px) and (max-width: 1199px) {
  .hidden-md {
    display: none !important;
  }
}
@media (min-width: 1200px) {
  .hidden-lg {
    display: none !important;
  }
}
.visible-print {
  display: none !important;
}
@media print {
  .visible-print {
    display: block !important;
  }
  table.visible-print {
    display: table !important;
  }
  tr.visible-print {
    display: table-row !important;
  }
  th.visible-print,
  td.visible-print {
    display: table-cell !important;
  }
}
.visible-print-block {
  display: none !important;
}
@media print {
  .visible-print-block {
    display: block !important;
  }
}
.visible-print-inline {
  display: none !important;
}
@media print {
  .visible-print-inline {
    display: inline !important;
  }
}
.visible-print-inline-block {
  display: none !important;
}
@media print {
  .visible-print-inline-block {
    display: inline-block !important;
  }
}
@media print {
  .hidden-print {
    display: none !important;
  }
}
/*!
*
* Font Awesome
*
*/
/*!
 *  Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome
 *  License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License)
 */
/* FONT PATH
 * -------------------------- */
@font-face {
  font-family: 'FontAwesome';
  src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?v=4.7.0');
  src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?#iefix&v=4.7.0') format('embedded-opentype'), url('../components/font-awesome/fonts/fontawesome-webfont.woff2?v=4.7.0') format('woff2'), url('../components/font-awesome/fonts/fontawesome-webfont.woff?v=4.7.0') format('woff'), url('../components/font-awesome/fonts/fontawesome-webfont.ttf?v=4.7.0') format('truetype'), url('../components/font-awesome/fonts/fontawesome-webfont.svg?v=4.7.0#fontawesomeregular') format('svg');
  font-weight: normal;
  font-style: normal;
}
.fa {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
}
/* makes the font 33% larger relative to the icon container */
.fa-lg {
  font-size: 1.33333333em;
  line-height: 0.75em;
  vertical-align: -15%;
}
.fa-2x {
  font-size: 2em;
}
.fa-3x {
  font-size: 3em;
}
.fa-4x {
  font-size: 4em;
}
.fa-5x {
  font-size: 5em;
}
.fa-fw {
  width: 1.28571429em;
  text-align: center;
}
.fa-ul {
  padding-left: 0;
  margin-left: 2.14285714em;
  list-style-type: none;
}
.fa-ul > li {
  position: relative;
}
.fa-li {
  position: absolute;
  left: -2.14285714em;
  width: 2.14285714em;
  top: 0.14285714em;
  text-align: center;
}
.fa-li.fa-lg {
  left: -1.85714286em;
}
.fa-border {
  padding: .2em .25em .15em;
  border: solid 0.08em #eee;
  border-radius: .1em;
}
.fa-pull-left {
  float: left;
}
.fa-pull-right {
  float: right;
}
.fa.fa-pull-left {
  margin-right: .3em;
}
.fa.fa-pull-right {
  margin-left: .3em;
}
/* Deprecated as of 4.4.0 */
.pull-right {
  float: right;
}
.pull-left {
  float: left;
}
.fa.pull-left {
  margin-right: .3em;
}
.fa.pull-right {
  margin-left: .3em;
}
.fa-spin {
  -webkit-animation: fa-spin 2s infinite linear;
  animation: fa-spin 2s infinite linear;
}
.fa-pulse {
  -webkit-animation: fa-spin 1s infinite steps(8);
  animation: fa-spin 1s infinite steps(8);
}
@-webkit-keyframes fa-spin {
  0% {
    -webkit-transform: rotate(0deg);
    transform: rotate(0deg);
  }
  100% {
    -webkit-transform: rotate(359deg);
    transform: rotate(359deg);
  }
}
@keyframes fa-spin {
  0% {
    -webkit-transform: rotate(0deg);
    transform: rotate(0deg);
  }
  100% {
    -webkit-transform: rotate(359deg);
    transform: rotate(359deg);
  }
}
.fa-rotate-90 {
  -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";
  -webkit-transform: rotate(90deg);
  -ms-transform: rotate(90deg);
  transform: rotate(90deg);
}
.fa-rotate-180 {
  -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";
  -webkit-transform: rotate(180deg);
  -ms-transform: rotate(180deg);
  transform: rotate(180deg);
}
.fa-rotate-270 {
  -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";
  -webkit-transform: rotate(270deg);
  -ms-transform: rotate(270deg);
  transform: rotate(270deg);
}
.fa-flip-horizontal {
  -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";
  -webkit-transform: scale(-1, 1);
  -ms-transform: scale(-1, 1);
  transform: scale(-1, 1);
}
.fa-flip-vertical {
  -ms-filter: "progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";
  -webkit-transform: scale(1, -1);
  -ms-transform: scale(1, -1);
  transform: scale(1, -1);
}
:root .fa-rotate-90,
:root .fa-rotate-180,
:root .fa-rotate-270,
:root .fa-flip-horizontal,
:root .fa-flip-vertical {
  filter: none;
}
.fa-stack {
  position: relative;
  display: inline-block;
  width: 2em;
  height: 2em;
  line-height: 2em;
  vertical-align: middle;
}
.fa-stack-1x,
.fa-stack-2x {
  position: absolute;
  left: 0;
  width: 100%;
  text-align: center;
}
.fa-stack-1x {
  line-height: inherit;
}
.fa-stack-2x {
  font-size: 2em;
}
.fa-inverse {
  color: #fff;
}
/* Font Awesome uses the Unicode Private Use Area (PUA) to ensure screen
   readers do not read off random characters that represent icons */
.fa-glass:before {
  content: "\f000";
}
.fa-music:before {
  content: "\f001";
}
.fa-search:before {
  content: "\f002";
}
.fa-envelope-o:before {
  content: "\f003";
}
.fa-heart:before {
  content: "\f004";
}
.fa-star:before {
  content: "\f005";
}
.fa-star-o:before {
  content: "\f006";
}
.fa-user:before {
  content: "\f007";
}
.fa-film:before {
  content: "\f008";
}
.fa-th-large:before {
  content: "\f009";
}
.fa-th:before {
  content: "\f00a";
}
.fa-th-list:before {
  content: "\f00b";
}
.fa-check:before {
  content: "\f00c";
}
.fa-remove:before,
.fa-close:before,
.fa-times:before {
  content: "\f00d";
}
.fa-search-plus:before {
  content: "\f00e";
}
.fa-search-minus:before {
  content: "\f010";
}
.fa-power-off:before {
  content: "\f011";
}
.fa-signal:before {
  content: "\f012";
}
.fa-gear:before,
.fa-cog:before {
  content: "\f013";
}
.fa-trash-o:before {
  content: "\f014";
}
.fa-home:before {
  content: "\f015";
}
.fa-file-o:before {
  content: "\f016";
}
.fa-clock-o:before {
  content: "\f017";
}
.fa-road:before {
  content: "\f018";
}
.fa-download:before {
  content: "\f019";
}
.fa-arrow-circle-o-down:before {
  content: "\f01a";
}
.fa-arrow-circle-o-up:before {
  content: "\f01b";
}
.fa-inbox:before {
  content: "\f01c";
}
.fa-play-circle-o:before {
  content: "\f01d";
}
.fa-rotate-right:before,
.fa-repeat:before {
  content: "\f01e";
}
.fa-refresh:before {
  content: "\f021";
}
.fa-list-alt:before {
  content: "\f022";
}
.fa-lock:before {
  content: "\f023";
}
.fa-flag:before {
  content: "\f024";
}
.fa-headphones:before {
  content: "\f025";
}
.fa-volume-off:before {
  content: "\f026";
}
.fa-volume-down:before {
  content: "\f027";
}
.fa-volume-up:before {
  content: "\f028";
}
.fa-qrcode:before {
  content: "\f029";
}
.fa-barcode:before {
  content: "\f02a";
}
.fa-tag:before {
  content: "\f02b";
}
.fa-tags:before {
  content: "\f02c";
}
.fa-book:before {
  content: "\f02d";
}
.fa-bookmark:before {
  content: "\f02e";
}
.fa-print:before {
  content: "\f02f";
}
.fa-camera:before {
  content: "\f030";
}
.fa-font:before {
  content: "\f031";
}
.fa-bold:before {
  content: "\f032";
}
.fa-italic:before {
  content: "\f033";
}
.fa-text-height:before {
  content: "\f034";
}
.fa-text-width:before {
  content: "\f035";
}
.fa-align-left:before {
  content: "\f036";
}
.fa-align-center:before {
  content: "\f037";
}
.fa-align-right:before {
  content: "\f038";
}
.fa-align-justify:before {
  content: "\f039";
}
.fa-list:before {
  content: "\f03a";
}
.fa-dedent:before,
.fa-outdent:before {
  content: "\f03b";
}
.fa-indent:before {
  content: "\f03c";
}
.fa-video-camera:before {
  content: "\f03d";
}
.fa-photo:before,
.fa-image:before,
.fa-picture-o:before {
  content: "\f03e";
}
.fa-pencil:before {
  content: "\f040";
}
.fa-map-marker:before {
  content: "\f041";
}
.fa-adjust:before {
  content: "\f042";
}
.fa-tint:before {
  content: "\f043";
}
.fa-edit:before,
.fa-pencil-square-o:before {
  content: "\f044";
}
.fa-share-square-o:before {
  content: "\f045";
}
.fa-check-square-o:before {
  content: "\f046";
}
.fa-arrows:before {
  content: "\f047";
}
.fa-step-backward:before {
  content: "\f048";
}
.fa-fast-backward:before {
  content: "\f049";
}
.fa-backward:before {
  content: "\f04a";
}
.fa-play:before {
  content: "\f04b";
}
.fa-pause:before {
  content: "\f04c";
}
.fa-stop:before {
  content: "\f04d";
}
.fa-forward:before {
  content: "\f04e";
}
.fa-fast-forward:before {
  content: "\f050";
}
.fa-step-forward:before {
  content: "\f051";
}
.fa-eject:before {
  content: "\f052";
}
.fa-chevron-left:before {
  content: "\f053";
}
.fa-chevron-right:before {
  content: "\f054";
}
.fa-plus-circle:before {
  content: "\f055";
}
.fa-minus-circle:before {
  content: "\f056";
}
.fa-times-circle:before {
  content: "\f057";
}
.fa-check-circle:before {
  content: "\f058";
}
.fa-question-circle:before {
  content: "\f059";
}
.fa-info-circle:before {
  content: "\f05a";
}
.fa-crosshairs:before {
  content: "\f05b";
}
.fa-times-circle-o:before {
  content: "\f05c";
}
.fa-check-circle-o:before {
  content: "\f05d";
}
.fa-ban:before {
  content: "\f05e";
}
.fa-arrow-left:before {
  content: "\f060";
}
.fa-arrow-right:before {
  content: "\f061";
}
.fa-arrow-up:before {
  content: "\f062";
}
.fa-arrow-down:before {
  content: "\f063";
}
.fa-mail-forward:before,
.fa-share:before {
  content: "\f064";
}
.fa-expand:before {
  content: "\f065";
}
.fa-compress:before {
  content: "\f066";
}
.fa-plus:before {
  content: "\f067";
}
.fa-minus:before {
  content: "\f068";
}
.fa-asterisk:before {
  content: "\f069";
}
.fa-exclamation-circle:before {
  content: "\f06a";
}
.fa-gift:before {
  content: "\f06b";
}
.fa-leaf:before {
  content: "\f06c";
}
.fa-fire:before {
  content: "\f06d";
}
.fa-eye:before {
  content: "\f06e";
}
.fa-eye-slash:before {
  content: "\f070";
}
.fa-warning:before,
.fa-exclamation-triangle:before {
  content: "\f071";
}
.fa-plane:before {
  content: "\f072";
}
.fa-calendar:before {
  content: "\f073";
}
.fa-random:before {
  content: "\f074";
}
.fa-comment:before {
  content: "\f075";
}
.fa-magnet:before {
  content: "\f076";
}
.fa-chevron-up:before {
  content: "\f077";
}
.fa-chevron-down:before {
  content: "\f078";
}
.fa-retweet:before {
  content: "\f079";
}
.fa-shopping-cart:before {
  content: "\f07a";
}
.fa-folder:before {
  content: "\f07b";
}
.fa-folder-open:before {
  content: "\f07c";
}
.fa-arrows-v:before {
  content: "\f07d";
}
.fa-arrows-h:before {
  content: "\f07e";
}
.fa-bar-chart-o:before,
.fa-bar-chart:before {
  content: "\f080";
}
.fa-twitter-square:before {
  content: "\f081";
}
.fa-facebook-square:before {
  content: "\f082";
}
.fa-camera-retro:before {
  content: "\f083";
}
.fa-key:before {
  content: "\f084";
}
.fa-gears:before,
.fa-cogs:before {
  content: "\f085";
}
.fa-comments:before {
  content: "\f086";
}
.fa-thumbs-o-up:before {
  content: "\f087";
}
.fa-thumbs-o-down:before {
  content: "\f088";
}
.fa-star-half:before {
  content: "\f089";
}
.fa-heart-o:before {
  content: "\f08a";
}
.fa-sign-out:before {
  content: "\f08b";
}
.fa-linkedin-square:before {
  content: "\f08c";
}
.fa-thumb-tack:before {
  content: "\f08d";
}
.fa-external-link:before {
  content: "\f08e";
}
.fa-sign-in:before {
  content: "\f090";
}
.fa-trophy:before {
  content: "\f091";
}
.fa-github-square:before {
  content: "\f092";
}
.fa-upload:before {
  content: "\f093";
}
.fa-lemon-o:before {
  content: "\f094";
}
.fa-phone:before {
  content: "\f095";
}
.fa-square-o:before {
  content: "\f096";
}
.fa-bookmark-o:before {
  content: "\f097";
}
.fa-phone-square:before {
  content: "\f098";
}
.fa-twitter:before {
  content: "\f099";
}
.fa-facebook-f:before,
.fa-facebook:before {
  content: "\f09a";
}
.fa-github:before {
  content: "\f09b";
}
.fa-unlock:before {
  content: "\f09c";
}
.fa-credit-card:before {
  content: "\f09d";
}
.fa-feed:before,
.fa-rss:before {
  content: "\f09e";
}
.fa-hdd-o:before {
  content: "\f0a0";
}
.fa-bullhorn:before {
  content: "\f0a1";
}
.fa-bell:before {
  content: "\f0f3";
}
.fa-certificate:before {
  content: "\f0a3";
}
.fa-hand-o-right:before {
  content: "\f0a4";
}
.fa-hand-o-left:before {
  content: "\f0a5";
}
.fa-hand-o-up:before {
  content: "\f0a6";
}
.fa-hand-o-down:before {
  content: "\f0a7";
}
.fa-arrow-circle-left:before {
  content: "\f0a8";
}
.fa-arrow-circle-right:before {
  content: "\f0a9";
}
.fa-arrow-circle-up:before {
  content: "\f0aa";
}
.fa-arrow-circle-down:before {
  content: "\f0ab";
}
.fa-globe:before {
  content: "\f0ac";
}
.fa-wrench:before {
  content: "\f0ad";
}
.fa-tasks:before {
  content: "\f0ae";
}
.fa-filter:before {
  content: "\f0b0";
}
.fa-briefcase:before {
  content: "\f0b1";
}
.fa-arrows-alt:before {
  content: "\f0b2";
}
.fa-group:before,
.fa-users:before {
  content: "\f0c0";
}
.fa-chain:before,
.fa-link:before {
  content: "\f0c1";
}
.fa-cloud:before {
  content: "\f0c2";
}
.fa-flask:before {
  content: "\f0c3";
}
.fa-cut:before,
.fa-scissors:before {
  content: "\f0c4";
}
.fa-copy:before,
.fa-files-o:before {
  content: "\f0c5";
}
.fa-paperclip:before {
  content: "\f0c6";
}
.fa-save:before,
.fa-floppy-o:before {
  content: "\f0c7";
}
.fa-square:before {
  content: "\f0c8";
}
.fa-navicon:before,
.fa-reorder:before,
.fa-bars:before {
  content: "\f0c9";
}
.fa-list-ul:before {
  content: "\f0ca";
}
.fa-list-ol:before {
  content: "\f0cb";
}
.fa-strikethrough:before {
  content: "\f0cc";
}
.fa-underline:before {
  content: "\f0cd";
}
.fa-table:before {
  content: "\f0ce";
}
.fa-magic:before {
  content: "\f0d0";
}
.fa-truck:before {
  content: "\f0d1";
}
.fa-pinterest:before {
  content: "\f0d2";
}
.fa-pinterest-square:before {
  content: "\f0d3";
}
.fa-google-plus-square:before {
  content: "\f0d4";
}
.fa-google-plus:before {
  content: "\f0d5";
}
.fa-money:before {
  content: "\f0d6";
}
.fa-caret-down:before {
  content: "\f0d7";
}
.fa-caret-up:before {
  content: "\f0d8";
}
.fa-caret-left:before {
  content: "\f0d9";
}
.fa-caret-right:before {
  content: "\f0da";
}
.fa-columns:before {
  content: "\f0db";
}
.fa-unsorted:before,
.fa-sort:before {
  content: "\f0dc";
}
.fa-sort-down:before,
.fa-sort-desc:before {
  content: "\f0dd";
}
.fa-sort-up:before,
.fa-sort-asc:before {
  content: "\f0de";
}
.fa-envelope:before {
  content: "\f0e0";
}
.fa-linkedin:before {
  content: "\f0e1";
}
.fa-rotate-left:before,
.fa-undo:before {
  content: "\f0e2";
}
.fa-legal:before,
.fa-gavel:before {
  content: "\f0e3";
}
.fa-dashboard:before,
.fa-tachometer:before {
  content: "\f0e4";
}
.fa-comment-o:before {
  content: "\f0e5";
}
.fa-comments-o:before {
  content: "\f0e6";
}
.fa-flash:before,
.fa-bolt:before {
  content: "\f0e7";
}
.fa-sitemap:before {
  content: "\f0e8";
}
.fa-umbrella:before {
  content: "\f0e9";
}
.fa-paste:before,
.fa-clipboard:before {
  content: "\f0ea";
}
.fa-lightbulb-o:before {
  content: "\f0eb";
}
.fa-exchange:before {
  content: "\f0ec";
}
.fa-cloud-download:before {
  content: "\f0ed";
}
.fa-cloud-upload:before {
  content: "\f0ee";
}
.fa-user-md:before {
  content: "\f0f0";
}
.fa-stethoscope:before {
  content: "\f0f1";
}
.fa-suitcase:before {
  content: "\f0f2";
}
.fa-bell-o:before {
  content: "\f0a2";
}
.fa-coffee:before {
  content: "\f0f4";
}
.fa-cutlery:before {
  content: "\f0f5";
}
.fa-file-text-o:before {
  content: "\f0f6";
}
.fa-building-o:before {
  content: "\f0f7";
}
.fa-hospital-o:before {
  content: "\f0f8";
}
.fa-ambulance:before {
  content: "\f0f9";
}
.fa-medkit:before {
  content: "\f0fa";
}
.fa-fighter-jet:before {
  content: "\f0fb";
}
.fa-beer:before {
  content: "\f0fc";
}
.fa-h-square:before {
  content: "\f0fd";
}
.fa-plus-square:before {
  content: "\f0fe";
}
.fa-angle-double-left:before {
  content: "\f100";
}
.fa-angle-double-right:before {
  content: "\f101";
}
.fa-angle-double-up:before {
  content: "\f102";
}
.fa-angle-double-down:before {
  content: "\f103";
}
.fa-angle-left:before {
  content: "\f104";
}
.fa-angle-right:before {
  content: "\f105";
}
.fa-angle-up:before {
  content: "\f106";
}
.fa-angle-down:before {
  content: "\f107";
}
.fa-desktop:before {
  content: "\f108";
}
.fa-laptop:before {
  content: "\f109";
}
.fa-tablet:before {
  content: "\f10a";
}
.fa-mobile-phone:before,
.fa-mobile:before {
  content: "\f10b";
}
.fa-circle-o:before {
  content: "\f10c";
}
.fa-quote-left:before {
  content: "\f10d";
}
.fa-quote-right:before {
  content: "\f10e";
}
.fa-spinner:before {
  content: "\f110";
}
.fa-circle:before {
  content: "\f111";
}
.fa-mail-reply:before,
.fa-reply:before {
  content: "\f112";
}
.fa-github-alt:before {
  content: "\f113";
}
.fa-folder-o:before {
  content: "\f114";
}
.fa-folder-open-o:before {
  content: "\f115";
}
.fa-smile-o:before {
  content: "\f118";
}
.fa-frown-o:before {
  content: "\f119";
}
.fa-meh-o:before {
  content: "\f11a";
}
.fa-gamepad:before {
  content: "\f11b";
}
.fa-keyboard-o:before {
  content: "\f11c";
}
.fa-flag-o:before {
  content: "\f11d";
}
.fa-flag-checkered:before {
  content: "\f11e";
}
.fa-terminal:before {
  content: "\f120";
}
.fa-code:before {
  content: "\f121";
}
.fa-mail-reply-all:before,
.fa-reply-all:before {
  content: "\f122";
}
.fa-star-half-empty:before,
.fa-star-half-full:before,
.fa-star-half-o:before {
  content: "\f123";
}
.fa-location-arrow:before {
  content: "\f124";
}
.fa-crop:before {
  content: "\f125";
}
.fa-code-fork:before {
  content: "\f126";
}
.fa-unlink:before,
.fa-chain-broken:before {
  content: "\f127";
}
.fa-question:before {
  content: "\f128";
}
.fa-info:before {
  content: "\f129";
}
.fa-exclamation:before {
  content: "\f12a";
}
.fa-superscript:before {
  content: "\f12b";
}
.fa-subscript:before {
  content: "\f12c";
}
.fa-eraser:before {
  content: "\f12d";
}
.fa-puzzle-piece:before {
  content: "\f12e";
}
.fa-microphone:before {
  content: "\f130";
}
.fa-microphone-slash:before {
  content: "\f131";
}
.fa-shield:before {
  content: "\f132";
}
.fa-calendar-o:before {
  content: "\f133";
}
.fa-fire-extinguisher:before {
  content: "\f134";
}
.fa-rocket:before {
  content: "\f135";
}
.fa-maxcdn:before {
  content: "\f136";
}
.fa-chevron-circle-left:before {
  content: "\f137";
}
.fa-chevron-circle-right:before {
  content: "\f138";
}
.fa-chevron-circle-up:before {
  content: "\f139";
}
.fa-chevron-circle-down:before {
  content: "\f13a";
}
.fa-html5:before {
  content: "\f13b";
}
.fa-css3:before {
  content: "\f13c";
}
.fa-anchor:before {
  content: "\f13d";
}
.fa-unlock-alt:before {
  content: "\f13e";
}
.fa-bullseye:before {
  content: "\f140";
}
.fa-ellipsis-h:before {
  content: "\f141";
}
.fa-ellipsis-v:before {
  content: "\f142";
}
.fa-rss-square:before {
  content: "\f143";
}
.fa-play-circle:before {
  content: "\f144";
}
.fa-ticket:before {
  content: "\f145";
}
.fa-minus-square:before {
  content: "\f146";
}
.fa-minus-square-o:before {
  content: "\f147";
}
.fa-level-up:before {
  content: "\f148";
}
.fa-level-down:before {
  content: "\f149";
}
.fa-check-square:before {
  content: "\f14a";
}
.fa-pencil-square:before {
  content: "\f14b";
}
.fa-external-link-square:before {
  content: "\f14c";
}
.fa-share-square:before {
  content: "\f14d";
}
.fa-compass:before {
  content: "\f14e";
}
.fa-toggle-down:before,
.fa-caret-square-o-down:before {
  content: "\f150";
}
.fa-toggle-up:before,
.fa-caret-square-o-up:before {
  content: "\f151";
}
.fa-toggle-right:before,
.fa-caret-square-o-right:before {
  content: "\f152";
}
.fa-euro:before,
.fa-eur:before {
  content: "\f153";
}
.fa-gbp:before {
  content: "\f154";
}
.fa-dollar:before,
.fa-usd:before {
  content: "\f155";
}
.fa-rupee:before,
.fa-inr:before {
  content: "\f156";
}
.fa-cny:before,
.fa-rmb:before,
.fa-yen:before,
.fa-jpy:before {
  content: "\f157";
}
.fa-ruble:before,
.fa-rouble:before,
.fa-rub:before {
  content: "\f158";
}
.fa-won:before,
.fa-krw:before {
  content: "\f159";
}
.fa-bitcoin:before,
.fa-btc:before {
  content: "\f15a";
}
.fa-file:before {
  content: "\f15b";
}
.fa-file-text:before {
  content: "\f15c";
}
.fa-sort-alpha-asc:before {
  content: "\f15d";
}
.fa-sort-alpha-desc:before {
  content: "\f15e";
}
.fa-sort-amount-asc:before {
  content: "\f160";
}
.fa-sort-amount-desc:before {
  content: "\f161";
}
.fa-sort-numeric-asc:before {
  content: "\f162";
}
.fa-sort-numeric-desc:before {
  content: "\f163";
}
.fa-thumbs-up:before {
  content: "\f164";
}
.fa-thumbs-down:before {
  content: "\f165";
}
.fa-youtube-square:before {
  content: "\f166";
}
.fa-youtube:before {
  content: "\f167";
}
.fa-xing:before {
  content: "\f168";
}
.fa-xing-square:before {
  content: "\f169";
}
.fa-youtube-play:before {
  content: "\f16a";
}
.fa-dropbox:before {
  content: "\f16b";
}
.fa-stack-overflow:before {
  content: "\f16c";
}
.fa-instagram:before {
  content: "\f16d";
}
.fa-flickr:before {
  content: "\f16e";
}
.fa-adn:before {
  content: "\f170";
}
.fa-bitbucket:before {
  content: "\f171";
}
.fa-bitbucket-square:before {
  content: "\f172";
}
.fa-tumblr:before {
  content: "\f173";
}
.fa-tumblr-square:before {
  content: "\f174";
}
.fa-long-arrow-down:before {
  content: "\f175";
}
.fa-long-arrow-up:before {
  content: "\f176";
}
.fa-long-arrow-left:before {
  content: "\f177";
}
.fa-long-arrow-right:before {
  content: "\f178";
}
.fa-apple:before {
  content: "\f179";
}
.fa-windows:before {
  content: "\f17a";
}
.fa-android:before {
  content: "\f17b";
}
.fa-linux:before {
  content: "\f17c";
}
.fa-dribbble:before {
  content: "\f17d";
}
.fa-skype:before {
  content: "\f17e";
}
.fa-foursquare:before {
  content: "\f180";
}
.fa-trello:before {
  content: "\f181";
}
.fa-female:before {
  content: "\f182";
}
.fa-male:before {
  content: "\f183";
}
.fa-gittip:before,
.fa-gratipay:before {
  content: "\f184";
}
.fa-sun-o:before {
  content: "\f185";
}
.fa-moon-o:before {
  content: "\f186";
}
.fa-archive:before {
  content: "\f187";
}
.fa-bug:before {
  content: "\f188";
}
.fa-vk:before {
  content: "\f189";
}
.fa-weibo:before {
  content: "\f18a";
}
.fa-renren:before {
  content: "\f18b";
}
.fa-pagelines:before {
  content: "\f18c";
}
.fa-stack-exchange:before {
  content: "\f18d";
}
.fa-arrow-circle-o-right:before {
  content: "\f18e";
}
.fa-arrow-circle-o-left:before {
  content: "\f190";
}
.fa-toggle-left:before,
.fa-caret-square-o-left:before {
  content: "\f191";
}
.fa-dot-circle-o:before {
  content: "\f192";
}
.fa-wheelchair:before {
  content: "\f193";
}
.fa-vimeo-square:before {
  content: "\f194";
}
.fa-turkish-lira:before,
.fa-try:before {
  content: "\f195";
}
.fa-plus-square-o:before {
  content: "\f196";
}
.fa-space-shuttle:before {
  content: "\f197";
}
.fa-slack:before {
  content: "\f198";
}
.fa-envelope-square:before {
  content: "\f199";
}
.fa-wordpress:before {
  content: "\f19a";
}
.fa-openid:before {
  content: "\f19b";
}
.fa-institution:before,
.fa-bank:before,
.fa-university:before {
  content: "\f19c";
}
.fa-mortar-board:before,
.fa-graduation-cap:before {
  content: "\f19d";
}
.fa-yahoo:before {
  content: "\f19e";
}
.fa-google:before {
  content: "\f1a0";
}
.fa-reddit:before {
  content: "\f1a1";
}
.fa-reddit-square:before {
  content: "\f1a2";
}
.fa-stumbleupon-circle:before {
  content: "\f1a3";
}
.fa-stumbleupon:before {
  content: "\f1a4";
}
.fa-delicious:before {
  content: "\f1a5";
}
.fa-digg:before {
  content: "\f1a6";
}
.fa-pied-piper-pp:before {
  content: "\f1a7";
}
.fa-pied-piper-alt:before {
  content: "\f1a8";
}
.fa-drupal:before {
  content: "\f1a9";
}
.fa-joomla:before {
  content: "\f1aa";
}
.fa-language:before {
  content: "\f1ab";
}
.fa-fax:before {
  content: "\f1ac";
}
.fa-building:before {
  content: "\f1ad";
}
.fa-child:before {
  content: "\f1ae";
}
.fa-paw:before {
  content: "\f1b0";
}
.fa-spoon:before {
  content: "\f1b1";
}
.fa-cube:before {
  content: "\f1b2";
}
.fa-cubes:before {
  content: "\f1b3";
}
.fa-behance:before {
  content: "\f1b4";
}
.fa-behance-square:before {
  content: "\f1b5";
}
.fa-steam:before {
  content: "\f1b6";
}
.fa-steam-square:before {
  content: "\f1b7";
}
.fa-recycle:before {
  content: "\f1b8";
}
.fa-automobile:before,
.fa-car:before {
  content: "\f1b9";
}
.fa-cab:before,
.fa-taxi:before {
  content: "\f1ba";
}
.fa-tree:before {
  content: "\f1bb";
}
.fa-spotify:before {
  content: "\f1bc";
}
.fa-deviantart:before {
  content: "\f1bd";
}
.fa-soundcloud:before {
  content: "\f1be";
}
.fa-database:before {
  content: "\f1c0";
}
.fa-file-pdf-o:before {
  content: "\f1c1";
}
.fa-file-word-o:before {
  content: "\f1c2";
}
.fa-file-excel-o:before {
  content: "\f1c3";
}
.fa-file-powerpoint-o:before {
  content: "\f1c4";
}
.fa-file-photo-o:before,
.fa-file-picture-o:before,
.fa-file-image-o:before {
  content: "\f1c5";
}
.fa-file-zip-o:before,
.fa-file-archive-o:before {
  content: "\f1c6";
}
.fa-file-sound-o:before,
.fa-file-audio-o:before {
  content: "\f1c7";
}
.fa-file-movie-o:before,
.fa-file-video-o:before {
  content: "\f1c8";
}
.fa-file-code-o:before {
  content: "\f1c9";
}
.fa-vine:before {
  content: "\f1ca";
}
.fa-codepen:before {
  content: "\f1cb";
}
.fa-jsfiddle:before {
  content: "\f1cc";
}
.fa-life-bouy:before,
.fa-life-buoy:before,
.fa-life-saver:before,
.fa-support:before,
.fa-life-ring:before {
  content: "\f1cd";
}
.fa-circle-o-notch:before {
  content: "\f1ce";
}
.fa-ra:before,
.fa-resistance:before,
.fa-rebel:before {
  content: "\f1d0";
}
.fa-ge:before,
.fa-empire:before {
  content: "\f1d1";
}
.fa-git-square:before {
  content: "\f1d2";
}
.fa-git:before {
  content: "\f1d3";
}
.fa-y-combinator-square:before,
.fa-yc-square:before,
.fa-hacker-news:before {
  content: "\f1d4";
}
.fa-tencent-weibo:before {
  content: "\f1d5";
}
.fa-qq:before {
  content: "\f1d6";
}
.fa-wechat:before,
.fa-weixin:before {
  content: "\f1d7";
}
.fa-send:before,
.fa-paper-plane:before {
  content: "\f1d8";
}
.fa-send-o:before,
.fa-paper-plane-o:before {
  content: "\f1d9";
}
.fa-history:before {
  content: "\f1da";
}
.fa-circle-thin:before {
  content: "\f1db";
}
.fa-header:before {
  content: "\f1dc";
}
.fa-paragraph:before {
  content: "\f1dd";
}
.fa-sliders:before {
  content: "\f1de";
}
.fa-share-alt:before {
  content: "\f1e0";
}
.fa-share-alt-square:before {
  content: "\f1e1";
}
.fa-bomb:before {
  content: "\f1e2";
}
.fa-soccer-ball-o:before,
.fa-futbol-o:before {
  content: "\f1e3";
}
.fa-tty:before {
  content: "\f1e4";
}
.fa-binoculars:before {
  content: "\f1e5";
}
.fa-plug:before {
  content: "\f1e6";
}
.fa-slideshare:before {
  content: "\f1e7";
}
.fa-twitch:before {
  content: "\f1e8";
}
.fa-yelp:before {
  content: "\f1e9";
}
.fa-newspaper-o:before {
  content: "\f1ea";
}
.fa-wifi:before {
  content: "\f1eb";
}
.fa-calculator:before {
  content: "\f1ec";
}
.fa-paypal:before {
  content: "\f1ed";
}
.fa-google-wallet:before {
  content: "\f1ee";
}
.fa-cc-visa:before {
  content: "\f1f0";
}
.fa-cc-mastercard:before {
  content: "\f1f1";
}
.fa-cc-discover:before {
  content: "\f1f2";
}
.fa-cc-amex:before {
  content: "\f1f3";
}
.fa-cc-paypal:before {
  content: "\f1f4";
}
.fa-cc-stripe:before {
  content: "\f1f5";
}
.fa-bell-slash:before {
  content: "\f1f6";
}
.fa-bell-slash-o:before {
  content: "\f1f7";
}
.fa-trash:before {
  content: "\f1f8";
}
.fa-copyright:before {
  content: "\f1f9";
}
.fa-at:before {
  content: "\f1fa";
}
.fa-eyedropper:before {
  content: "\f1fb";
}
.fa-paint-brush:before {
  content: "\f1fc";
}
.fa-birthday-cake:before {
  content: "\f1fd";
}
.fa-area-chart:before {
  content: "\f1fe";
}
.fa-pie-chart:before {
  content: "\f200";
}
.fa-line-chart:before {
  content: "\f201";
}
.fa-lastfm:before {
  content: "\f202";
}
.fa-lastfm-square:before {
  content: "\f203";
}
.fa-toggle-off:before {
  content: "\f204";
}
.fa-toggle-on:before {
  content: "\f205";
}
.fa-bicycle:before {
  content: "\f206";
}
.fa-bus:before {
  content: "\f207";
}
.fa-ioxhost:before {
  content: "\f208";
}
.fa-angellist:before {
  content: "\f209";
}
.fa-cc:before {
  content: "\f20a";
}
.fa-shekel:before,
.fa-sheqel:before,
.fa-ils:before {
  content: "\f20b";
}
.fa-meanpath:before {
  content: "\f20c";
}
.fa-buysellads:before {
  content: "\f20d";
}
.fa-connectdevelop:before {
  content: "\f20e";
}
.fa-dashcube:before {
  content: "\f210";
}
.fa-forumbee:before {
  content: "\f211";
}
.fa-leanpub:before {
  content: "\f212";
}
.fa-sellsy:before {
  content: "\f213";
}
.fa-shirtsinbulk:before {
  content: "\f214";
}
.fa-simplybuilt:before {
  content: "\f215";
}
.fa-skyatlas:before {
  content: "\f216";
}
.fa-cart-plus:before {
  content: "\f217";
}
.fa-cart-arrow-down:before {
  content: "\f218";
}
.fa-diamond:before {
  content: "\f219";
}
.fa-ship:before {
  content: "\f21a";
}
.fa-user-secret:before {
  content: "\f21b";
}
.fa-motorcycle:before {
  content: "\f21c";
}
.fa-street-view:before {
  content: "\f21d";
}
.fa-heartbeat:before {
  content: "\f21e";
}
.fa-venus:before {
  content: "\f221";
}
.fa-mars:before {
  content: "\f222";
}
.fa-mercury:before {
  content: "\f223";
}
.fa-intersex:before,
.fa-transgender:before {
  content: "\f224";
}
.fa-transgender-alt:before {
  content: "\f225";
}
.fa-venus-double:before {
  content: "\f226";
}
.fa-mars-double:before {
  content: "\f227";
}
.fa-venus-mars:before {
  content: "\f228";
}
.fa-mars-stroke:before {
  content: "\f229";
}
.fa-mars-stroke-v:before {
  content: "\f22a";
}
.fa-mars-stroke-h:before {
  content: "\f22b";
}
.fa-neuter:before {
  content: "\f22c";
}
.fa-genderless:before {
  content: "\f22d";
}
.fa-facebook-official:before {
  content: "\f230";
}
.fa-pinterest-p:before {
  content: "\f231";
}
.fa-whatsapp:before {
  content: "\f232";
}
.fa-server:before {
  content: "\f233";
}
.fa-user-plus:before {
  content: "\f234";
}
.fa-user-times:before {
  content: "\f235";
}
.fa-hotel:before,
.fa-bed:before {
  content: "\f236";
}
.fa-viacoin:before {
  content: "\f237";
}
.fa-train:before {
  content: "\f238";
}
.fa-subway:before {
  content: "\f239";
}
.fa-medium:before {
  content: "\f23a";
}
.fa-yc:before,
.fa-y-combinator:before {
  content: "\f23b";
}
.fa-optin-monster:before {
  content: "\f23c";
}
.fa-opencart:before {
  content: "\f23d";
}
.fa-expeditedssl:before {
  content: "\f23e";
}
.fa-battery-4:before,
.fa-battery:before,
.fa-battery-full:before {
  content: "\f240";
}
.fa-battery-3:before,
.fa-battery-three-quarters:before {
  content: "\f241";
}
.fa-battery-2:before,
.fa-battery-half:before {
  content: "\f242";
}
.fa-battery-1:before,
.fa-battery-quarter:before {
  content: "\f243";
}
.fa-battery-0:before,
.fa-battery-empty:before {
  content: "\f244";
}
.fa-mouse-pointer:before {
  content: "\f245";
}
.fa-i-cursor:before {
  content: "\f246";
}
.fa-object-group:before {
  content: "\f247";
}
.fa-object-ungroup:before {
  content: "\f248";
}
.fa-sticky-note:before {
  content: "\f249";
}
.fa-sticky-note-o:before {
  content: "\f24a";
}
.fa-cc-jcb:before {
  content: "\f24b";
}
.fa-cc-diners-club:before {
  content: "\f24c";
}
.fa-clone:before {
  content: "\f24d";
}
.fa-balance-scale:before {
  content: "\f24e";
}
.fa-hourglass-o:before {
  content: "\f250";
}
.fa-hourglass-1:before,
.fa-hourglass-start:before {
  content: "\f251";
}
.fa-hourglass-2:before,
.fa-hourglass-half:before {
  content: "\f252";
}
.fa-hourglass-3:before,
.fa-hourglass-end:before {
  content: "\f253";
}
.fa-hourglass:before {
  content: "\f254";
}
.fa-hand-grab-o:before,
.fa-hand-rock-o:before {
  content: "\f255";
}
.fa-hand-stop-o:before,
.fa-hand-paper-o:before {
  content: "\f256";
}
.fa-hand-scissors-o:before {
  content: "\f257";
}
.fa-hand-lizard-o:before {
  content: "\f258";
}
.fa-hand-spock-o:before {
  content: "\f259";
}
.fa-hand-pointer-o:before {
  content: "\f25a";
}
.fa-hand-peace-o:before {
  content: "\f25b";
}
.fa-trademark:before {
  content: "\f25c";
}
.fa-registered:before {
  content: "\f25d";
}
.fa-creative-commons:before {
  content: "\f25e";
}
.fa-gg:before {
  content: "\f260";
}
.fa-gg-circle:before {
  content: "\f261";
}
.fa-tripadvisor:before {
  content: "\f262";
}
.fa-odnoklassniki:before {
  content: "\f263";
}
.fa-odnoklassniki-square:before {
  content: "\f264";
}
.fa-get-pocket:before {
  content: "\f265";
}
.fa-wikipedia-w:before {
  content: "\f266";
}
.fa-safari:before {
  content: "\f267";
}
.fa-chrome:before {
  content: "\f268";
}
.fa-firefox:before {
  content: "\f269";
}
.fa-opera:before {
  content: "\f26a";
}
.fa-internet-explorer:before {
  content: "\f26b";
}
.fa-tv:before,
.fa-television:before {
  content: "\f26c";
}
.fa-contao:before {
  content: "\f26d";
}
.fa-500px:before {
  content: "\f26e";
}
.fa-amazon:before {
  content: "\f270";
}
.fa-calendar-plus-o:before {
  content: "\f271";
}
.fa-calendar-minus-o:before {
  content: "\f272";
}
.fa-calendar-times-o:before {
  content: "\f273";
}
.fa-calendar-check-o:before {
  content: "\f274";
}
.fa-industry:before {
  content: "\f275";
}
.fa-map-pin:before {
  content: "\f276";
}
.fa-map-signs:before {
  content: "\f277";
}
.fa-map-o:before {
  content: "\f278";
}
.fa-map:before {
  content: "\f279";
}
.fa-commenting:before {
  content: "\f27a";
}
.fa-commenting-o:before {
  content: "\f27b";
}
.fa-houzz:before {
  content: "\f27c";
}
.fa-vimeo:before {
  content: "\f27d";
}
.fa-black-tie:before {
  content: "\f27e";
}
.fa-fonticons:before {
  content: "\f280";
}
.fa-reddit-alien:before {
  content: "\f281";
}
.fa-edge:before {
  content: "\f282";
}
.fa-credit-card-alt:before {
  content: "\f283";
}
.fa-codiepie:before {
  content: "\f284";
}
.fa-modx:before {
  content: "\f285";
}
.fa-fort-awesome:before {
  content: "\f286";
}
.fa-usb:before {
  content: "\f287";
}
.fa-product-hunt:before {
  content: "\f288";
}
.fa-mixcloud:before {
  content: "\f289";
}
.fa-scribd:before {
  content: "\f28a";
}
.fa-pause-circle:before {
  content: "\f28b";
}
.fa-pause-circle-o:before {
  content: "\f28c";
}
.fa-stop-circle:before {
  content: "\f28d";
}
.fa-stop-circle-o:before {
  content: "\f28e";
}
.fa-shopping-bag:before {
  content: "\f290";
}
.fa-shopping-basket:before {
  content: "\f291";
}
.fa-hashtag:before {
  content: "\f292";
}
.fa-bluetooth:before {
  content: "\f293";
}
.fa-bluetooth-b:before {
  content: "\f294";
}
.fa-percent:before {
  content: "\f295";
}
.fa-gitlab:before {
  content: "\f296";
}
.fa-wpbeginner:before {
  content: "\f297";
}
.fa-wpforms:before {
  content: "\f298";
}
.fa-envira:before {
  content: "\f299";
}
.fa-universal-access:before {
  content: "\f29a";
}
.fa-wheelchair-alt:before {
  content: "\f29b";
}
.fa-question-circle-o:before {
  content: "\f29c";
}
.fa-blind:before {
  content: "\f29d";
}
.fa-audio-description:before {
  content: "\f29e";
}
.fa-volume-control-phone:before {
  content: "\f2a0";
}
.fa-braille:before {
  content: "\f2a1";
}
.fa-assistive-listening-systems:before {
  content: "\f2a2";
}
.fa-asl-interpreting:before,
.fa-american-sign-language-interpreting:before {
  content: "\f2a3";
}
.fa-deafness:before,
.fa-hard-of-hearing:before,
.fa-deaf:before {
  content: "\f2a4";
}
.fa-glide:before {
  content: "\f2a5";
}
.fa-glide-g:before {
  content: "\f2a6";
}
.fa-signing:before,
.fa-sign-language:before {
  content: "\f2a7";
}
.fa-low-vision:before {
  content: "\f2a8";
}
.fa-viadeo:before {
  content: "\f2a9";
}
.fa-viadeo-square:before {
  content: "\f2aa";
}
.fa-snapchat:before {
  content: "\f2ab";
}
.fa-snapchat-ghost:before {
  content: "\f2ac";
}
.fa-snapchat-square:before {
  content: "\f2ad";
}
.fa-pied-piper:before {
  content: "\f2ae";
}
.fa-first-order:before {
  content: "\f2b0";
}
.fa-yoast:before {
  content: "\f2b1";
}
.fa-themeisle:before {
  content: "\f2b2";
}
.fa-google-plus-circle:before,
.fa-google-plus-official:before {
  content: "\f2b3";
}
.fa-fa:before,
.fa-font-awesome:before {
  content: "\f2b4";
}
.fa-handshake-o:before {
  content: "\f2b5";
}
.fa-envelope-open:before {
  content: "\f2b6";
}
.fa-envelope-open-o:before {
  content: "\f2b7";
}
.fa-linode:before {
  content: "\f2b8";
}
.fa-address-book:before {
  content: "\f2b9";
}
.fa-address-book-o:before {
  content: "\f2ba";
}
.fa-vcard:before,
.fa-address-card:before {
  content: "\f2bb";
}
.fa-vcard-o:before,
.fa-address-card-o:before {
  content: "\f2bc";
}
.fa-user-circle:before {
  content: "\f2bd";
}
.fa-user-circle-o:before {
  content: "\f2be";
}
.fa-user-o:before {
  content: "\f2c0";
}
.fa-id-badge:before {
  content: "\f2c1";
}
.fa-drivers-license:before,
.fa-id-card:before {
  content: "\f2c2";
}
.fa-drivers-license-o:before,
.fa-id-card-o:before {
  content: "\f2c3";
}
.fa-quora:before {
  content: "\f2c4";
}
.fa-free-code-camp:before {
  content: "\f2c5";
}
.fa-telegram:before {
  content: "\f2c6";
}
.fa-thermometer-4:before,
.fa-thermometer:before,
.fa-thermometer-full:before {
  content: "\f2c7";
}
.fa-thermometer-3:before,
.fa-thermometer-three-quarters:before {
  content: "\f2c8";
}
.fa-thermometer-2:before,
.fa-thermometer-half:before {
  content: "\f2c9";
}
.fa-thermometer-1:before,
.fa-thermometer-quarter:before {
  content: "\f2ca";
}
.fa-thermometer-0:before,
.fa-thermometer-empty:before {
  content: "\f2cb";
}
.fa-shower:before {
  content: "\f2cc";
}
.fa-bathtub:before,
.fa-s15:before,
.fa-bath:before {
  content: "\f2cd";
}
.fa-podcast:before {
  content: "\f2ce";
}
.fa-window-maximize:before {
  content: "\f2d0";
}
.fa-window-minimize:before {
  content: "\f2d1";
}
.fa-window-restore:before {
  content: "\f2d2";
}
.fa-times-rectangle:before,
.fa-window-close:before {
  content: "\f2d3";
}
.fa-times-rectangle-o:before,
.fa-window-close-o:before {
  content: "\f2d4";
}
.fa-bandcamp:before {
  content: "\f2d5";
}
.fa-grav:before {
  content: "\f2d6";
}
.fa-etsy:before {
  content: "\f2d7";
}
.fa-imdb:before {
  content: "\f2d8";
}
.fa-ravelry:before {
  content: "\f2d9";
}
.fa-eercast:before {
  content: "\f2da";
}
.fa-microchip:before {
  content: "\f2db";
}
.fa-snowflake-o:before {
  content: "\f2dc";
}
.fa-superpowers:before {
  content: "\f2dd";
}
.fa-wpexplorer:before {
  content: "\f2de";
}
.fa-meetup:before {
  content: "\f2e0";
}
.sr-only {
  position: absolute;
  width: 1px;
  height: 1px;
  padding: 0;
  margin: -1px;
  overflow: hidden;
  clip: rect(0, 0, 0, 0);
  border: 0;
}
.sr-only-focusable:active,
.sr-only-focusable:focus {
  position: static;
  width: auto;
  height: auto;
  margin: 0;
  overflow: visible;
  clip: auto;
}
.sr-only-focusable:active,
.sr-only-focusable:focus {
  position: static;
  width: auto;
  height: auto;
  margin: 0;
  overflow: visible;
  clip: auto;
}
/*!
*
* IPython base
*
*/
.modal.fade .modal-dialog {
  -webkit-transform: translate(0, 0);
  -ms-transform: translate(0, 0);
  -o-transform: translate(0, 0);
  transform: translate(0, 0);
}
code {
  color: #000;
}
pre {
  font-size: inherit;
  line-height: inherit;
}
label {
  font-weight: normal;
}
/* Make the page background atleast 100% the height of the view port */
/* Make the page itself atleast 70% the height of the view port */
.border-box-sizing {
  box-sizing: border-box;
  -moz-box-sizing: border-box;
  -webkit-box-sizing: border-box;
}
.corner-all {
  border-radius: 2px;
}
.no-padding {
  padding: 0px;
}
/* Flexible box model classes */
/* Taken from Alex Russell http://infrequently.org/2009/08/css-3-progress/ */
/* This file is a compatability layer.  It allows the usage of flexible box 
model layouts accross multiple browsers, including older browsers.  The newest,
universal implementation of the flexible box model is used when available (see
`Modern browsers` comments below).  Browsers that are known to implement this 
new spec completely include:

    Firefox 28.0+
    Chrome 29.0+
    Internet Explorer 11+ 
    Opera 17.0+

Browsers not listed, including Safari, are supported via the styling under the
`Old browsers` comments below.
*/
.hbox {
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: horizontal;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: horizontal;
  -moz-box-align: stretch;
  display: box;
  box-orient: horizontal;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: row;
  align-items: stretch;
}
.hbox > * {
  /* Old browsers */
  -webkit-box-flex: 0;
  -moz-box-flex: 0;
  box-flex: 0;
  /* Modern browsers */
  flex: none;
}
.vbox {
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: vertical;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: vertical;
  -moz-box-align: stretch;
  display: box;
  box-orient: vertical;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: column;
  align-items: stretch;
}
.vbox > * {
  /* Old browsers */
  -webkit-box-flex: 0;
  -moz-box-flex: 0;
  box-flex: 0;
  /* Modern browsers */
  flex: none;
}
.hbox.reverse,
.vbox.reverse,
.reverse {
  /* Old browsers */
  -webkit-box-direction: reverse;
  -moz-box-direction: reverse;
  box-direction: reverse;
  /* Modern browsers */
  flex-direction: row-reverse;
}
.hbox.box-flex0,
.vbox.box-flex0,
.box-flex0 {
  /* Old browsers */
  -webkit-box-flex: 0;
  -moz-box-flex: 0;
  box-flex: 0;
  /* Modern browsers */
  flex: none;
  width: auto;
}
.hbox.box-flex1,
.vbox.box-flex1,
.box-flex1 {
  /* Old browsers */
  -webkit-box-flex: 1;
  -moz-box-flex: 1;
  box-flex: 1;
  /* Modern browsers */
  flex: 1;
}
.hbox.box-flex,
.vbox.box-flex,
.box-flex {
  /* Old browsers */
  /* Old browsers */
  -webkit-box-flex: 1;
  -moz-box-flex: 1;
  box-flex: 1;
  /* Modern browsers */
  flex: 1;
}
.hbox.box-flex2,
.vbox.box-flex2,
.box-flex2 {
  /* Old browsers */
  -webkit-box-flex: 2;
  -moz-box-flex: 2;
  box-flex: 2;
  /* Modern browsers */
  flex: 2;
}
.box-group1 {
  /*  Deprecated */
  -webkit-box-flex-group: 1;
  -moz-box-flex-group: 1;
  box-flex-group: 1;
}
.box-group2 {
  /* Deprecated */
  -webkit-box-flex-group: 2;
  -moz-box-flex-group: 2;
  box-flex-group: 2;
}
.hbox.start,
.vbox.start,
.start {
  /* Old browsers */
  -webkit-box-pack: start;
  -moz-box-pack: start;
  box-pack: start;
  /* Modern browsers */
  justify-content: flex-start;
}
.hbox.end,
.vbox.end,
.end {
  /* Old browsers */
  -webkit-box-pack: end;
  -moz-box-pack: end;
  box-pack: end;
  /* Modern browsers */
  justify-content: flex-end;
}
.hbox.center,
.vbox.center,
.center {
  /* Old browsers */
  -webkit-box-pack: center;
  -moz-box-pack: center;
  box-pack: center;
  /* Modern browsers */
  justify-content: center;
}
.hbox.baseline,
.vbox.baseline,
.baseline {
  /* Old browsers */
  -webkit-box-pack: baseline;
  -moz-box-pack: baseline;
  box-pack: baseline;
  /* Modern browsers */
  justify-content: baseline;
}
.hbox.stretch,
.vbox.stretch,
.stretch {
  /* Old browsers */
  -webkit-box-pack: stretch;
  -moz-box-pack: stretch;
  box-pack: stretch;
  /* Modern browsers */
  justify-content: stretch;
}
.hbox.align-start,
.vbox.align-start,
.align-start {
  /* Old browsers */
  -webkit-box-align: start;
  -moz-box-align: start;
  box-align: start;
  /* Modern browsers */
  align-items: flex-start;
}
.hbox.align-end,
.vbox.align-end,
.align-end {
  /* Old browsers */
  -webkit-box-align: end;
  -moz-box-align: end;
  box-align: end;
  /* Modern browsers */
  align-items: flex-end;
}
.hbox.align-center,
.vbox.align-center,
.align-center {
  /* Old browsers */
  -webkit-box-align: center;
  -moz-box-align: center;
  box-align: center;
  /* Modern browsers */
  align-items: center;
}
.hbox.align-baseline,
.vbox.align-baseline,
.align-baseline {
  /* Old browsers */
  -webkit-box-align: baseline;
  -moz-box-align: baseline;
  box-align: baseline;
  /* Modern browsers */
  align-items: baseline;
}
.hbox.align-stretch,
.vbox.align-stretch,
.align-stretch {
  /* Old browsers */
  -webkit-box-align: stretch;
  -moz-box-align: stretch;
  box-align: stretch;
  /* Modern browsers */
  align-items: stretch;
}
div.error {
  margin: 2em;
  text-align: center;
}
div.error > h1 {
  font-size: 500%;
  line-height: normal;
}
div.error > p {
  font-size: 200%;
  line-height: normal;
}
div.traceback-wrapper {
  text-align: left;
  max-width: 800px;
  margin: auto;
}
div.traceback-wrapper pre.traceback {
  max-height: 600px;
  overflow: auto;
}
/**
 * Primary styles
 *
 * Author: Jupyter Development Team
 */
body {
  background-color: #fff;
  /* This makes sure that the body covers the entire window and needs to
       be in a different element than the display: box in wrapper below */
  position: absolute;
  left: 0px;
  right: 0px;
  top: 0px;
  bottom: 0px;
  overflow: visible;
}
body > #header {
  /* Initially hidden to prevent FLOUC */
  display: none;
  background-color: #fff;
  /* Display over codemirror */
  position: relative;
  z-index: 100;
}
body > #header #header-container {
  display: flex;
  flex-direction: row;
  justify-content: space-between;
  padding: 5px;
  padding-bottom: 5px;
  padding-top: 5px;
  box-sizing: border-box;
  -moz-box-sizing: border-box;
  -webkit-box-sizing: border-box;
}
body > #header .header-bar {
  width: 100%;
  height: 1px;
  background: #e7e7e7;
  margin-bottom: -1px;
}
@media print {
  body > #header {
    display: none !important;
  }
}
#header-spacer {
  width: 100%;
  visibility: hidden;
}
@media print {
  #header-spacer {
    display: none;
  }
}
#ipython_notebook {
  padding-left: 0px;
  padding-top: 1px;
  padding-bottom: 1px;
}
[dir="rtl"] #ipython_notebook {
  margin-right: 10px;
  margin-left: 0;
}
[dir="rtl"] #ipython_notebook.pull-left {
  float: right !important;
  float: right;
}
.flex-spacer {
  flex: 1;
}
#noscript {
  width: auto;
  padding-top: 16px;
  padding-bottom: 16px;
  text-align: center;
  font-size: 22px;
  color: red;
  font-weight: bold;
}
#ipython_notebook img {
  height: 28px;
}
#site {
  width: 100%;
  display: none;
  box-sizing: border-box;
  -moz-box-sizing: border-box;
  -webkit-box-sizing: border-box;
  overflow: auto;
}
@media print {
  #site {
    height: auto !important;
  }
}
/* Smaller buttons */
.ui-button .ui-button-text {
  padding: 0.2em 0.8em;
  font-size: 77%;
}
input.ui-button {
  padding: 0.3em 0.9em;
}
span#kernel_logo_widget {
  margin: 0 10px;
}
span#login_widget {
  float: right;
}
[dir="rtl"] span#login_widget {
  float: left;
}
span#login_widget > .button,
#logout {
  color: #333;
  background-color: #fff;
  border-color: #ccc;
}
span#login_widget > .button:focus,
#logout:focus,
span#login_widget > .button.focus,
#logout.focus {
  color: #333;
  background-color: #e6e6e6;
  border-color: #8c8c8c;
}
span#login_widget > .button:hover,
#logout:hover {
  color: #333;
  background-color: #e6e6e6;
  border-color: #adadad;
}
span#login_widget > .button:active,
#logout:active,
span#login_widget > .button.active,
#logout.active,
.open > .dropdown-togglespan#login_widget > .button,
.open > .dropdown-toggle#logout {
  color: #333;
  background-color: #e6e6e6;
  border-color: #adadad;
}
span#login_widget > .button:active:hover,
#logout:active:hover,
span#login_widget > .button.active:hover,
#logout.active:hover,
.open > .dropdown-togglespan#login_widget > .button:hover,
.open > .dropdown-toggle#logout:hover,
span#login_widget > .button:active:focus,
#logout:active:focus,
span#login_widget > .button.active:focus,
#logout.active:focus,
.open > .dropdown-togglespan#login_widget > .button:focus,
.open > .dropdown-toggle#logout:focus,
span#login_widget > .button:active.focus,
#logout:active.focus,
span#login_widget > .button.active.focus,
#logout.active.focus,
.open > .dropdown-togglespan#login_widget > .button.focus,
.open > .dropdown-toggle#logout.focus {
  color: #333;
  background-color: #d4d4d4;
  border-color: #8c8c8c;
}
span#login_widget > .button:active,
#logout:active,
span#login_widget > .button.active,
#logout.active,
.open > .dropdown-togglespan#login_widget > .button,
.open > .dropdown-toggle#logout {
  background-image: none;
}
span#login_widget > .button.disabled:hover,
#logout.disabled:hover,
span#login_widget > .button[disabled]:hover,
#logout[disabled]:hover,
fieldset[disabled] span#login_widget > .button:hover,
fieldset[disabled] #logout:hover,
span#login_widget > .button.disabled:focus,
#logout.disabled:focus,
span#login_widget > .button[disabled]:focus,
#logout[disabled]:focus,
fieldset[disabled] span#login_widget > .button:focus,
fieldset[disabled] #logout:focus,
span#login_widget > .button.disabled.focus,
#logout.disabled.focus,
span#login_widget > .button[disabled].focus,
#logout[disabled].focus,
fieldset[disabled] span#login_widget > .button.focus,
fieldset[disabled] #logout.focus {
  background-color: #fff;
  border-color: #ccc;
}
span#login_widget > .button .badge,
#logout .badge {
  color: #fff;
  background-color: #333;
}
.nav-header {
  text-transform: none;
}
#header > span {
  margin-top: 10px;
}
.modal_stretch .modal-dialog {
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: vertical;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: vertical;
  -moz-box-align: stretch;
  display: box;
  box-orient: vertical;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: column;
  align-items: stretch;
  min-height: 80vh;
}
.modal_stretch .modal-dialog .modal-body {
  max-height: calc(100vh - 200px);
  overflow: auto;
  flex: 1;
}
.modal-header {
  cursor: move;
}
@media (min-width: 768px) {
  .modal .modal-dialog {
    width: 700px;
  }
}
@media (min-width: 768px) {
  select.form-control {
    margin-left: 12px;
    margin-right: 12px;
  }
}
/*!
*
* IPython auth
*
*/
.center-nav {
  display: inline-block;
  margin-bottom: -4px;
}
[dir="rtl"] .center-nav form.pull-left {
  float: right !important;
  float: right;
}
[dir="rtl"] .center-nav .navbar-text {
  float: right;
}
[dir="rtl"] .navbar-inner {
  text-align: right;
}
[dir="rtl"] div.text-left {
  text-align: right;
}
/*!
*
* IPython tree view
*
*/
/* We need an invisible input field on top of the sentense*/
/* "Drag file onto the list ..." */
.alternate_upload {
  background-color: none;
  display: inline;
}
.alternate_upload.form {
  padding: 0;
  margin: 0;
}
.alternate_upload input.fileinput {
  position: absolute;
  display: block;
  width: 100%;
  height: 100%;
  overflow: hidden;
  cursor: pointer;
  opacity: 0;
  z-index: 2;
}
.alternate_upload .btn-xs > input.fileinput {
  margin: -1px -5px;
}
.alternate_upload .btn-upload {
  position: relative;
  height: 22px;
}
::-webkit-file-upload-button {
  cursor: pointer;
}
/**
 * Primary styles
 *
 * Author: Jupyter Development Team
 */
ul#tabs {
  margin-bottom: 4px;
}
ul#tabs a {
  padding-top: 6px;
  padding-bottom: 4px;
}
[dir="rtl"] ul#tabs.nav-tabs > li {
  float: right;
}
[dir="rtl"] ul#tabs.nav.nav-tabs {
  padding-right: 0;
}
ul.breadcrumb a:focus,
ul.breadcrumb a:hover {
  text-decoration: none;
}
ul.breadcrumb i.icon-home {
  font-size: 16px;
  margin-right: 4px;
}
ul.breadcrumb span {
  color: #5e5e5e;
}
.list_toolbar {
  padding: 4px 0 4px 0;
  vertical-align: middle;
}
.list_toolbar .tree-buttons {
  padding-top: 1px;
}
[dir="rtl"] .list_toolbar .tree-buttons .pull-right {
  float: left !important;
  float: left;
}
[dir="rtl"] .list_toolbar .col-sm-4,
[dir="rtl"] .list_toolbar .col-sm-8 {
  float: right;
}
.dynamic-buttons {
  padding-top: 3px;
  display: inline-block;
}
.list_toolbar [class*="span"] {
  min-height: 24px;
}
.list_header {
  font-weight: bold;
  background-color: #EEE;
}
.list_placeholder {
  font-weight: bold;
  padding-top: 4px;
  padding-bottom: 4px;
  padding-left: 7px;
  padding-right: 7px;
}
.list_container {
  margin-top: 4px;
  margin-bottom: 20px;
  border: 1px solid #ddd;
  border-radius: 2px;
}
.list_container > div {
  border-bottom: 1px solid #ddd;
}
.list_container > div:hover .list-item {
  background-color: red;
}
.list_container > div:last-child {
  border: none;
}
.list_item:hover .list_item {
  background-color: #ddd;
}
.list_item a {
  text-decoration: none;
}
.list_item:hover {
  background-color: #fafafa;
}
.list_header > div,
.list_item > div {
  padding-top: 4px;
  padding-bottom: 4px;
  padding-left: 7px;
  padding-right: 7px;
  line-height: 22px;
}
.list_header > div input,
.list_item > div input {
  margin-right: 7px;
  margin-left: 14px;
  vertical-align: text-bottom;
  line-height: 22px;
  position: relative;
  top: -1px;
}
.list_header > div .item_link,
.list_item > div .item_link {
  margin-left: -1px;
  vertical-align: baseline;
  line-height: 22px;
}
[dir="rtl"] .list_item > div input {
  margin-right: 0;
}
.new-file input[type=checkbox] {
  visibility: hidden;
}
.item_name {
  line-height: 22px;
  height: 24px;
}
.item_icon {
  font-size: 14px;
  color: #5e5e5e;
  margin-right: 7px;
  margin-left: 7px;
  line-height: 22px;
  vertical-align: baseline;
}
.item_modified {
  margin-right: 7px;
  margin-left: 7px;
}
[dir="rtl"] .item_modified.pull-right {
  float: left !important;
  float: left;
}
.item_buttons {
  line-height: 1em;
  margin-left: -5px;
}
.item_buttons .btn,
.item_buttons .btn-group,
.item_buttons .input-group {
  float: left;
}
.item_buttons > .btn,
.item_buttons > .btn-group,
.item_buttons > .input-group {
  margin-left: 5px;
}
.item_buttons .btn {
  min-width: 13ex;
}
.item_buttons .running-indicator {
  padding-top: 4px;
  color: #5cb85c;
}
.item_buttons .kernel-name {
  padding-top: 4px;
  color: #5bc0de;
  margin-right: 7px;
  float: left;
}
[dir="rtl"] .item_buttons.pull-right {
  float: left !important;
  float: left;
}
[dir="rtl"] .item_buttons .kernel-name {
  margin-left: 7px;
  float: right;
}
.toolbar_info {
  height: 24px;
  line-height: 24px;
}
.list_item input:not([type=checkbox]) {
  padding-top: 3px;
  padding-bottom: 3px;
  height: 22px;
  line-height: 14px;
  margin: 0px;
}
.highlight_text {
  color: blue;
}
#project_name {
  display: inline-block;
  padding-left: 7px;
  margin-left: -2px;
}
#project_name > .breadcrumb {
  padding: 0px;
  margin-bottom: 0px;
  background-color: transparent;
  font-weight: bold;
}
.sort_button {
  display: inline-block;
  padding-left: 7px;
}
[dir="rtl"] .sort_button.pull-right {
  float: left !important;
  float: left;
}
#tree-selector {
  padding-right: 0px;
}
#button-select-all {
  min-width: 50px;
}
[dir="rtl"] #button-select-all.btn {
  float: right ;
}
#select-all {
  margin-left: 7px;
  margin-right: 2px;
  margin-top: 2px;
  height: 16px;
}
[dir="rtl"] #select-all.pull-left {
  float: right !important;
  float: right;
}
.menu_icon {
  margin-right: 2px;
}
.tab-content .row {
  margin-left: 0px;
  margin-right: 0px;
}
.folder_icon:before {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  content: "\f114";
}
.folder_icon:before.fa-pull-left {
  margin-right: .3em;
}
.folder_icon:before.fa-pull-right {
  margin-left: .3em;
}
.folder_icon:before.pull-left {
  margin-right: .3em;
}
.folder_icon:before.pull-right {
  margin-left: .3em;
}
.notebook_icon:before {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  content: "\f02d";
  position: relative;
  top: -1px;
}
.notebook_icon:before.fa-pull-left {
  margin-right: .3em;
}
.notebook_icon:before.fa-pull-right {
  margin-left: .3em;
}
.notebook_icon:before.pull-left {
  margin-right: .3em;
}
.notebook_icon:before.pull-right {
  margin-left: .3em;
}
.running_notebook_icon:before {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  content: "\f02d";
  position: relative;
  top: -1px;
  color: #5cb85c;
}
.running_notebook_icon:before.fa-pull-left {
  margin-right: .3em;
}
.running_notebook_icon:before.fa-pull-right {
  margin-left: .3em;
}
.running_notebook_icon:before.pull-left {
  margin-right: .3em;
}
.running_notebook_icon:before.pull-right {
  margin-left: .3em;
}
.file_icon:before {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  content: "\f016";
  position: relative;
  top: -2px;
}
.file_icon:before.fa-pull-left {
  margin-right: .3em;
}
.file_icon:before.fa-pull-right {
  margin-left: .3em;
}
.file_icon:before.pull-left {
  margin-right: .3em;
}
.file_icon:before.pull-right {
  margin-left: .3em;
}
#notebook_toolbar .pull-right {
  padding-top: 0px;
  margin-right: -1px;
}
ul#new-menu {
  left: auto;
  right: 0;
}
#new-menu .dropdown-header {
  font-size: 10px;
  border-bottom: 1px solid #e5e5e5;
  padding: 0 0 3px;
  margin: -3px 20px 0;
}
.kernel-menu-icon {
  padding-right: 12px;
  width: 24px;
  content: "\f096";
}
.kernel-menu-icon:before {
  content: "\f096";
}
.kernel-menu-icon-current:before {
  content: "\f00c";
}
#tab_content {
  padding-top: 20px;
}
#running .panel-group .panel {
  margin-top: 3px;
  margin-bottom: 1em;
}
#running .panel-group .panel .panel-heading {
  background-color: #EEE;
  padding-top: 4px;
  padding-bottom: 4px;
  padding-left: 7px;
  padding-right: 7px;
  line-height: 22px;
}
#running .panel-group .panel .panel-heading a:focus,
#running .panel-group .panel .panel-heading a:hover {
  text-decoration: none;
}
#running .panel-group .panel .panel-body {
  padding: 0px;
}
#running .panel-group .panel .panel-body .list_container {
  margin-top: 0px;
  margin-bottom: 0px;
  border: 0px;
  border-radius: 0px;
}
#running .panel-group .panel .panel-body .list_container .list_item {
  border-bottom: 1px solid #ddd;
}
#running .panel-group .panel .panel-body .list_container .list_item:last-child {
  border-bottom: 0px;
}
.delete-button {
  display: none;
}
.duplicate-button {
  display: none;
}
.rename-button {
  display: none;
}
.move-button {
  display: none;
}
.download-button {
  display: none;
}
.shutdown-button {
  display: none;
}
.dynamic-instructions {
  display: inline-block;
  padding-top: 4px;
}
/*!
*
* IPython text editor webapp
*
*/
.selected-keymap i.fa {
  padding: 0px 5px;
}
.selected-keymap i.fa:before {
  content: "\f00c";
}
#mode-menu {
  overflow: auto;
  max-height: 20em;
}
.edit_app #header {
  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
}
.edit_app #menubar .navbar {
  /* Use a negative 1 bottom margin, so the border overlaps the border of the
    header */
  margin-bottom: -1px;
}
.dirty-indicator {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  width: 20px;
}
.dirty-indicator.fa-pull-left {
  margin-right: .3em;
}
.dirty-indicator.fa-pull-right {
  margin-left: .3em;
}
.dirty-indicator.pull-left {
  margin-right: .3em;
}
.dirty-indicator.pull-right {
  margin-left: .3em;
}
.dirty-indicator-dirty {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  width: 20px;
}
.dirty-indicator-dirty.fa-pull-left {
  margin-right: .3em;
}
.dirty-indicator-dirty.fa-pull-right {
  margin-left: .3em;
}
.dirty-indicator-dirty.pull-left {
  margin-right: .3em;
}
.dirty-indicator-dirty.pull-right {
  margin-left: .3em;
}
.dirty-indicator-clean {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  width: 20px;
}
.dirty-indicator-clean.fa-pull-left {
  margin-right: .3em;
}
.dirty-indicator-clean.fa-pull-right {
  margin-left: .3em;
}
.dirty-indicator-clean.pull-left {
  margin-right: .3em;
}
.dirty-indicator-clean.pull-right {
  margin-left: .3em;
}
.dirty-indicator-clean:before {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  content: "\f00c";
}
.dirty-indicator-clean:before.fa-pull-left {
  margin-right: .3em;
}
.dirty-indicator-clean:before.fa-pull-right {
  margin-left: .3em;
}
.dirty-indicator-clean:before.pull-left {
  margin-right: .3em;
}
.dirty-indicator-clean:before.pull-right {
  margin-left: .3em;
}
#filename {
  font-size: 16pt;
  display: table;
  padding: 0px 5px;
}
#current-mode {
  padding-left: 5px;
  padding-right: 5px;
}
#texteditor-backdrop {
  padding-top: 20px;
  padding-bottom: 20px;
}
@media not print {
  #texteditor-backdrop {
    background-color: #EEE;
  }
}
@media print {
  #texteditor-backdrop #texteditor-container .CodeMirror-gutter,
  #texteditor-backdrop #texteditor-container .CodeMirror-gutters {
    background-color: #fff;
  }
}
@media not print {
  #texteditor-backdrop #texteditor-container .CodeMirror-gutter,
  #texteditor-backdrop #texteditor-container .CodeMirror-gutters {
    background-color: #fff;
  }
}
@media not print {
  #texteditor-backdrop #texteditor-container {
    padding: 0px;
    background-color: #fff;
    -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
    box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
  }
}
.CodeMirror-dialog {
  background-color: #fff;
}
/*!
*
* IPython notebook
*
*/
/* CSS font colors for translated ANSI escape sequences */
/* The color values are a mix of
   http://www.xcolors.net/dl/baskerville-ivorylight and
   http://www.xcolors.net/dl/euphrasia */
.ansi-black-fg {
  color: #3E424D;
}
.ansi-black-bg {
  background-color: #3E424D;
}
.ansi-black-intense-fg {
  color: #282C36;
}
.ansi-black-intense-bg {
  background-color: #282C36;
}
.ansi-red-fg {
  color: #E75C58;
}
.ansi-red-bg {
  background-color: #E75C58;
}
.ansi-red-intense-fg {
  color: #B22B31;
}
.ansi-red-intense-bg {
  background-color: #B22B31;
}
.ansi-green-fg {
  color: #00A250;
}
.ansi-green-bg {
  background-color: #00A250;
}
.ansi-green-intense-fg {
  color: #007427;
}
.ansi-green-intense-bg {
  background-color: #007427;
}
.ansi-yellow-fg {
  color: #DDB62B;
}
.ansi-yellow-bg {
  background-color: #DDB62B;
}
.ansi-yellow-intense-fg {
  color: #B27D12;
}
.ansi-yellow-intense-bg {
  background-color: #B27D12;
}
.ansi-blue-fg {
  color: #208FFB;
}
.ansi-blue-bg {
  background-color: #208FFB;
}
.ansi-blue-intense-fg {
  color: #0065CA;
}
.ansi-blue-intense-bg {
  background-color: #0065CA;
}
.ansi-magenta-fg {
  color: #D160C4;
}
.ansi-magenta-bg {
  background-color: #D160C4;
}
.ansi-magenta-intense-fg {
  color: #A03196;
}
.ansi-magenta-intense-bg {
  background-color: #A03196;
}
.ansi-cyan-fg {
  color: #60C6C8;
}
.ansi-cyan-bg {
  background-color: #60C6C8;
}
.ansi-cyan-intense-fg {
  color: #258F8F;
}
.ansi-cyan-intense-bg {
  background-color: #258F8F;
}
.ansi-white-fg {
  color: #C5C1B4;
}
.ansi-white-bg {
  background-color: #C5C1B4;
}
.ansi-white-intense-fg {
  color: #A1A6B2;
}
.ansi-white-intense-bg {
  background-color: #A1A6B2;
}
.ansi-default-inverse-fg {
  color: #FFFFFF;
}
.ansi-default-inverse-bg {
  background-color: #000000;
}
.ansi-bold {
  font-weight: bold;
}
.ansi-underline {
  text-decoration: underline;
}
/* The following styles are deprecated an will be removed in a future version */
.ansibold {
  font-weight: bold;
}
.ansi-inverse {
  outline: 0.5px dotted;
}
/* use dark versions for foreground, to improve visibility */
.ansiblack {
  color: black;
}
.ansired {
  color: darkred;
}
.ansigreen {
  color: darkgreen;
}
.ansiyellow {
  color: #c4a000;
}
.ansiblue {
  color: darkblue;
}
.ansipurple {
  color: darkviolet;
}
.ansicyan {
  color: steelblue;
}
.ansigray {
  color: gray;
}
/* and light for background, for the same reason */
.ansibgblack {
  background-color: black;
}
.ansibgred {
  background-color: red;
}
.ansibggreen {
  background-color: green;
}
.ansibgyellow {
  background-color: yellow;
}
.ansibgblue {
  background-color: blue;
}
.ansibgpurple {
  background-color: magenta;
}
.ansibgcyan {
  background-color: cyan;
}
.ansibggray {
  background-color: gray;
}
div.cell {
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: vertical;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: vertical;
  -moz-box-align: stretch;
  display: box;
  box-orient: vertical;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: column;
  align-items: stretch;
  border-radius: 2px;
  box-sizing: border-box;
  -moz-box-sizing: border-box;
  -webkit-box-sizing: border-box;
  border-width: 1px;
  border-style: solid;
  border-color: transparent;
  width: 100%;
  padding: 5px;
  /* This acts as a spacer between cells, that is outside the border */
  margin: 0px;
  outline: none;
  position: relative;
  overflow: visible;
}
div.cell:before {
  position: absolute;
  display: block;
  top: -1px;
  left: -1px;
  width: 5px;
  height: calc(100% +  2px);
  content: '';
  background: transparent;
}
div.cell.jupyter-soft-selected {
  border-left-color: #E3F2FD;
  border-left-width: 1px;
  padding-left: 5px;
  border-right-color: #E3F2FD;
  border-right-width: 1px;
  background: #E3F2FD;
}
@media print {
  div.cell.jupyter-soft-selected {
    border-color: transparent;
  }
}
div.cell.selected,
div.cell.selected.jupyter-soft-selected {
  border-color: #ababab;
}
div.cell.selected:before,
div.cell.selected.jupyter-soft-selected:before {
  position: absolute;
  display: block;
  top: -1px;
  left: -1px;
  width: 5px;
  height: calc(100% +  2px);
  content: '';
  background: #42A5F5;
}
@media print {
  div.cell.selected,
  div.cell.selected.jupyter-soft-selected {
    border-color: transparent;
  }
}
.edit_mode div.cell.selected {
  border-color: #66BB6A;
}
.edit_mode div.cell.selected:before {
  position: absolute;
  display: block;
  top: -1px;
  left: -1px;
  width: 5px;
  height: calc(100% +  2px);
  content: '';
  background: #66BB6A;
}
@media print {
  .edit_mode div.cell.selected {
    border-color: transparent;
  }
}
.prompt {
  /* This needs to be wide enough for 3 digit prompt numbers: In[100]: */
  min-width: 14ex;
  /* This padding is tuned to match the padding on the CodeMirror editor. */
  padding: 0.4em;
  margin: 0px;
  font-family: monospace;
  text-align: right;
  /* This has to match that of the the CodeMirror class line-height below */
  line-height: 1.21429em;
  /* Don't highlight prompt number selection */
  -webkit-touch-callout: none;
  -webkit-user-select: none;
  -khtml-user-select: none;
  -moz-user-select: none;
  -ms-user-select: none;
  user-select: none;
  /* Use default cursor */
  cursor: default;
}
@media (max-width: 540px) {
  .prompt {
    text-align: left;
  }
}
div.inner_cell {
  min-width: 0;
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: vertical;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: vertical;
  -moz-box-align: stretch;
  display: box;
  box-orient: vertical;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: column;
  align-items: stretch;
  /* Old browsers */
  -webkit-box-flex: 1;
  -moz-box-flex: 1;
  box-flex: 1;
  /* Modern browsers */
  flex: 1;
}
/* input_area and input_prompt must match in top border and margin for alignment */
div.input_area {
  border: 1px solid #cfcfcf;
  border-radius: 2px;
  background: #f7f7f7;
  line-height: 1.21429em;
}
/* This is needed so that empty prompt areas can collapse to zero height when there
   is no content in the output_subarea and the prompt. The main purpose of this is
   to make sure that empty JavaScript output_subareas have no height. */
div.prompt:empty {
  padding-top: 0;
  padding-bottom: 0;
}
div.unrecognized_cell {
  padding: 5px 5px 5px 0px;
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: horizontal;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: horizontal;
  -moz-box-align: stretch;
  display: box;
  box-orient: horizontal;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: row;
  align-items: stretch;
}
div.unrecognized_cell .inner_cell {
  border-radius: 2px;
  padding: 5px;
  font-weight: bold;
  color: red;
  border: 1px solid #cfcfcf;
  background: #eaeaea;
}
div.unrecognized_cell .inner_cell a {
  color: inherit;
  text-decoration: none;
}
div.unrecognized_cell .inner_cell a:hover {
  color: inherit;
  text-decoration: none;
}
@media (max-width: 540px) {
  div.unrecognized_cell > div.prompt {
    display: none;
  }
}
div.code_cell {
  /* avoid page breaking on code cells when printing */
}
@media print {
  div.code_cell {
    page-break-inside: avoid;
  }
}
/* any special styling for code cells that are currently running goes here */
div.input {
  page-break-inside: avoid;
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: horizontal;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: horizontal;
  -moz-box-align: stretch;
  display: box;
  box-orient: horizontal;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: row;
  align-items: stretch;
}
@media (max-width: 540px) {
  div.input {
    /* Old browsers */
    display: -webkit-box;
    -webkit-box-orient: vertical;
    -webkit-box-align: stretch;
    display: -moz-box;
    -moz-box-orient: vertical;
    -moz-box-align: stretch;
    display: box;
    box-orient: vertical;
    box-align: stretch;
    /* Modern browsers */
    display: flex;
    flex-direction: column;
    align-items: stretch;
  }
}
/* input_area and input_prompt must match in top border and margin for alignment */
div.input_prompt {
  color: #303F9F;
  border-top: 1px solid transparent;
}
div.input_area > div.highlight {
  margin: 0.4em;
  border: none;
  padding: 0px;
  background-color: transparent;
}
div.input_area > div.highlight > pre {
  margin: 0px;
  border: none;
  padding: 0px;
  background-color: transparent;
}
/* The following gets added to the <head> if it is detected that the user has a
 * monospace font with inconsistent normal/bold/italic height.  See
 * notebookmain.js.  Such fonts will have keywords vertically offset with
 * respect to the rest of the text.  The user should select a better font.
 * See: https://github.com/ipython/ipython/issues/1503
 *
 * .CodeMirror span {
 *      vertical-align: bottom;
 * }
 */
.CodeMirror {
  line-height: 1.21429em;
  /* Changed from 1em to our global default */
  font-size: 14px;
  height: auto;
  /* Changed to auto to autogrow */
  background: none;
  /* Changed from white to allow our bg to show through */
}
.CodeMirror-scroll {
  /*  The CodeMirror docs are a bit fuzzy on if overflow-y should be hidden or visible.*/
  /*  We have found that if it is visible, vertical scrollbars appear with font size changes.*/
  overflow-y: hidden;
  overflow-x: auto;
}
.CodeMirror-lines {
  /* In CM2, this used to be 0.4em, but in CM3 it went to 4px. We need the em value because */
  /* we have set a different line-height and want this to scale with that. */
  /* Note that this should set vertical padding only, since CodeMirror assumes
       that horizontal padding will be set on CodeMirror pre */
  padding: 0.4em 0;
}
.CodeMirror-linenumber {
  padding: 0 8px 0 4px;
}
.CodeMirror-gutters {
  border-bottom-left-radius: 2px;
  border-top-left-radius: 2px;
}
.CodeMirror pre {
  /* In CM3 this went to 4px from 0 in CM2. This sets horizontal padding only,
    use .CodeMirror-lines for vertical */
  padding: 0 0.4em;
  border: 0;
  border-radius: 0;
}
.CodeMirror-cursor {
  border-left: 1.4px solid black;
}
@media screen and (min-width: 2138px) and (max-width: 4319px) {
  .CodeMirror-cursor {
    border-left: 2px solid black;
  }
}
@media screen and (min-width: 4320px) {
  .CodeMirror-cursor {
    border-left: 4px solid black;
  }
}
/*

Original style from softwaremaniacs.org (c) Ivan Sagalaev <Maniac@SoftwareManiacs.Org>
Adapted from GitHub theme

*/
.highlight-base {
  color: #000;
}
.highlight-variable {
  color: #000;
}
.highlight-variable-2 {
  color: #1a1a1a;
}
.highlight-variable-3 {
  color: #333333;
}
.highlight-string {
  color: #BA2121;
}
.highlight-comment {
  color: #408080;
  font-style: italic;
}
.highlight-number {
  color: #080;
}
.highlight-atom {
  color: #88F;
}
.highlight-keyword {
  color: #008000;
  font-weight: bold;
}
.highlight-builtin {
  color: #008000;
}
.highlight-error {
  color: #f00;
}
.highlight-operator {
  color: #AA22FF;
  font-weight: bold;
}
.highlight-meta {
  color: #AA22FF;
}
/* previously not defined, copying from default codemirror */
.highlight-def {
  color: #00f;
}
.highlight-string-2 {
  color: #f50;
}
.highlight-qualifier {
  color: #555;
}
.highlight-bracket {
  color: #997;
}
.highlight-tag {
  color: #170;
}
.highlight-attribute {
  color: #00c;
}
.highlight-header {
  color: blue;
}
.highlight-quote {
  color: #090;
}
.highlight-link {
  color: #00c;
}
/* apply the same style to codemirror */
.cm-s-ipython span.cm-keyword {
  color: #008000;
  font-weight: bold;
}
.cm-s-ipython span.cm-atom {
  color: #88F;
}
.cm-s-ipython span.cm-number {
  color: #080;
}
.cm-s-ipython span.cm-def {
  color: #00f;
}
.cm-s-ipython span.cm-variable {
  color: #000;
}
.cm-s-ipython span.cm-operator {
  color: #AA22FF;
  font-weight: bold;
}
.cm-s-ipython span.cm-variable-2 {
  color: #1a1a1a;
}
.cm-s-ipython span.cm-variable-3 {
  color: #333333;
}
.cm-s-ipython span.cm-comment {
  color: #408080;
  font-style: italic;
}
.cm-s-ipython span.cm-string {
  color: #BA2121;
}
.cm-s-ipython span.cm-string-2 {
  color: #f50;
}
.cm-s-ipython span.cm-meta {
  color: #AA22FF;
}
.cm-s-ipython span.cm-qualifier {
  color: #555;
}
.cm-s-ipython span.cm-builtin {
  color: #008000;
}
.cm-s-ipython span.cm-bracket {
  color: #997;
}
.cm-s-ipython span.cm-tag {
  color: #170;
}
.cm-s-ipython span.cm-attribute {
  color: #00c;
}
.cm-s-ipython span.cm-header {
  color: blue;
}
.cm-s-ipython span.cm-quote {
  color: #090;
}
.cm-s-ipython span.cm-link {
  color: #00c;
}
.cm-s-ipython span.cm-error {
  color: #f00;
}
.cm-s-ipython span.cm-tab {
  background: url();
  background-position: right;
  background-repeat: no-repeat;
}
div.output_wrapper {
  /* this position must be relative to enable descendents to be absolute within it */
  position: relative;
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: vertical;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: vertical;
  -moz-box-align: stretch;
  display: box;
  box-orient: vertical;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: column;
  align-items: stretch;
  z-index: 1;
}
/* class for the output area when it should be height-limited */
div.output_scroll {
  /* ideally, this would be max-height, but FF barfs all over that */
  height: 24em;
  /* FF needs this *and the wrapper* to specify full width, or it will shrinkwrap */
  width: 100%;
  overflow: auto;
  border-radius: 2px;
  -webkit-box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
  box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8);
  display: block;
}
/* output div while it is collapsed */
div.output_collapsed {
  margin: 0px;
  padding: 0px;
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: vertical;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: vertical;
  -moz-box-align: stretch;
  display: box;
  box-orient: vertical;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: column;
  align-items: stretch;
}
div.out_prompt_overlay {
  height: 100%;
  padding: 0px 0.4em;
  position: absolute;
  border-radius: 2px;
}
div.out_prompt_overlay:hover {
  /* use inner shadow to get border that is computed the same on WebKit/FF */
  -webkit-box-shadow: inset 0 0 1px #000;
  box-shadow: inset 0 0 1px #000;
  background: rgba(240, 240, 240, 0.5);
}
div.output_prompt {
  color: #D84315;
}
/* This class is the outer container of all output sections. */
div.output_area {
  padding: 0px;
  page-break-inside: avoid;
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: horizontal;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: horizontal;
  -moz-box-align: stretch;
  display: box;
  box-orient: horizontal;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: row;
  align-items: stretch;
}
div.output_area .MathJax_Display {
  text-align: left !important;
}
div.output_area .rendered_html table {
  margin-left: 0;
  margin-right: 0;
}
div.output_area .rendered_html img {
  margin-left: 0;
  margin-right: 0;
}
div.output_area img,
div.output_area svg {
  max-width: 100%;
  height: auto;
}
div.output_area img.unconfined,
div.output_area svg.unconfined {
  max-width: none;
}
div.output_area .mglyph > img {
  max-width: none;
}
/* This is needed to protect the pre formating from global settings such
   as that of bootstrap */
.output {
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: vertical;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: vertical;
  -moz-box-align: stretch;
  display: box;
  box-orient: vertical;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: column;
  align-items: stretch;
}
@media (max-width: 540px) {
  div.output_area {
    /* Old browsers */
    display: -webkit-box;
    -webkit-box-orient: vertical;
    -webkit-box-align: stretch;
    display: -moz-box;
    -moz-box-orient: vertical;
    -moz-box-align: stretch;
    display: box;
    box-orient: vertical;
    box-align: stretch;
    /* Modern browsers */
    display: flex;
    flex-direction: column;
    align-items: stretch;
  }
}
div.output_area pre {
  margin: 0;
  padding: 1px 0 1px 0;
  border: 0;
  vertical-align: baseline;
  color: black;
  background-color: transparent;
  border-radius: 0;
}
/* This class is for the output subarea inside the output_area and after
   the prompt div. */
div.output_subarea {
  overflow-x: auto;
  padding: 0.4em;
  /* Old browsers */
  -webkit-box-flex: 1;
  -moz-box-flex: 1;
  box-flex: 1;
  /* Modern browsers */
  flex: 1;
  max-width: calc(100% - 14ex);
}
div.output_scroll div.output_subarea {
  overflow-x: visible;
}
/* The rest of the output_* classes are for special styling of the different
   output types */
/* all text output has this class: */
div.output_text {
  text-align: left;
  color: #000;
  /* This has to match that of the the CodeMirror class line-height below */
  line-height: 1.21429em;
}
/* stdout/stderr are 'text' as well as 'stream', but execute_result/error are *not* streams */
div.output_stderr {
  background: #fdd;
  /* very light red background for stderr */
}
div.output_latex {
  text-align: left;
}
/* Empty output_javascript divs should have no height */
div.output_javascript:empty {
  padding: 0;
}
.js-error {
  color: darkred;
}
/* raw_input styles */
div.raw_input_container {
  line-height: 1.21429em;
  padding-top: 5px;
}
pre.raw_input_prompt {
  /* nothing needed here. */
}
input.raw_input {
  font-family: monospace;
  font-size: inherit;
  color: inherit;
  width: auto;
  /* make sure input baseline aligns with prompt */
  vertical-align: baseline;
  /* padding + margin = 0.5em between prompt and cursor */
  padding: 0em 0.25em;
  margin: 0em 0.25em;
}
input.raw_input:focus {
  box-shadow: none;
}
p.p-space {
  margin-bottom: 10px;
}
div.output_unrecognized {
  padding: 5px;
  font-weight: bold;
  color: red;
}
div.output_unrecognized a {
  color: inherit;
  text-decoration: none;
}
div.output_unrecognized a:hover {
  color: inherit;
  text-decoration: none;
}
.rendered_html {
  color: #000;
  /* any extras will just be numbers: */
}
.rendered_html em {
  font-style: italic;
}
.rendered_html strong {
  font-weight: bold;
}
.rendered_html u {
  text-decoration: underline;
}
.rendered_html :link {
  text-decoration: underline;
}
.rendered_html :visited {
  text-decoration: underline;
}
.rendered_html h1 {
  font-size: 185.7%;
  margin: 1.08em 0 0 0;
  font-weight: bold;
  line-height: 1.0;
}
.rendered_html h2 {
  font-size: 157.1%;
  margin: 1.27em 0 0 0;
  font-weight: bold;
  line-height: 1.0;
}
.rendered_html h3 {
  font-size: 128.6%;
  margin: 1.55em 0 0 0;
  font-weight: bold;
  line-height: 1.0;
}
.rendered_html h4 {
  font-size: 100%;
  margin: 2em 0 0 0;
  font-weight: bold;
  line-height: 1.0;
}
.rendered_html h5 {
  font-size: 100%;
  margin: 2em 0 0 0;
  font-weight: bold;
  line-height: 1.0;
  font-style: italic;
}
.rendered_html h6 {
  font-size: 100%;
  margin: 2em 0 0 0;
  font-weight: bold;
  line-height: 1.0;
  font-style: italic;
}
.rendered_html h1:first-child {
  margin-top: 0.538em;
}
.rendered_html h2:first-child {
  margin-top: 0.636em;
}
.rendered_html h3:first-child {
  margin-top: 0.777em;
}
.rendered_html h4:first-child {
  margin-top: 1em;
}
.rendered_html h5:first-child {
  margin-top: 1em;
}
.rendered_html h6:first-child {
  margin-top: 1em;
}
.rendered_html ul:not(.list-inline),
.rendered_html ol:not(.list-inline) {
  padding-left: 2em;
}
.rendered_html ul {
  list-style: disc;
}
.rendered_html ul ul {
  list-style: square;
  margin-top: 0;
}
.rendered_html ul ul ul {
  list-style: circle;
}
.rendered_html ol {
  list-style: decimal;
}
.rendered_html ol ol {
  list-style: upper-alpha;
  margin-top: 0;
}
.rendered_html ol ol ol {
  list-style: lower-alpha;
}
.rendered_html ol ol ol ol {
  list-style: lower-roman;
}
.rendered_html ol ol ol ol ol {
  list-style: decimal;
}
.rendered_html * + ul {
  margin-top: 1em;
}
.rendered_html * + ol {
  margin-top: 1em;
}
.rendered_html hr {
  color: black;
  background-color: black;
}
.rendered_html pre {
  margin: 1em 2em;
  padding: 0px;
  background-color: #fff;
}
.rendered_html code {
  background-color: #eff0f1;
}
.rendered_html p code {
  padding: 1px 5px;
}
.rendered_html pre code {
  background-color: #fff;
}
.rendered_html pre,
.rendered_html code {
  border: 0;
  color: #000;
  font-size: 100%;
}
.rendered_html blockquote {
  margin: 1em 2em;
}
.rendered_html table {
  margin-left: auto;
  margin-right: auto;
  border: none;
  border-collapse: collapse;
  border-spacing: 0;
  color: black;
  font-size: 12px;
  table-layout: fixed;
}
.rendered_html thead {
  border-bottom: 1px solid black;
  vertical-align: bottom;
}
.rendered_html tr,
.rendered_html th,
.rendered_html td {
  text-align: right;
  vertical-align: middle;
  padding: 0.5em 0.5em;
  line-height: normal;
  white-space: normal;
  max-width: none;
  border: none;
}
.rendered_html th {
  font-weight: bold;
}
.rendered_html tbody tr:nth-child(odd) {
  background: #f5f5f5;
}
.rendered_html tbody tr:hover {
  background: rgba(66, 165, 245, 0.2);
}
.rendered_html * + table {
  margin-top: 1em;
}
.rendered_html p {
  text-align: left;
}
.rendered_html * + p {
  margin-top: 1em;
}
.rendered_html img {
  display: block;
  margin-left: auto;
  margin-right: auto;
}
.rendered_html * + img {
  margin-top: 1em;
}
.rendered_html img,
.rendered_html svg {
  max-width: 100%;
  height: auto;
}
.rendered_html img.unconfined,
.rendered_html svg.unconfined {
  max-width: none;
}
.rendered_html .alert {
  margin-bottom: initial;
}
.rendered_html * + .alert {
  margin-top: 1em;
}
[dir="rtl"] .rendered_html p {
  text-align: right;
}
div.text_cell {
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: horizontal;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: horizontal;
  -moz-box-align: stretch;
  display: box;
  box-orient: horizontal;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: row;
  align-items: stretch;
}
@media (max-width: 540px) {
  div.text_cell > div.prompt {
    display: none;
  }
}
div.text_cell_render {
  /*font-family: "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif;*/
  outline: none;
  resize: none;
  width: inherit;
  border-style: none;
  padding: 0.5em 0.5em 0.5em 0.4em;
  color: #000;
  box-sizing: border-box;
  -moz-box-sizing: border-box;
  -webkit-box-sizing: border-box;
}
a.anchor-link:link {
  text-decoration: none;
  padding: 0px 20px;
  visibility: hidden;
}
h1:hover .anchor-link,
h2:hover .anchor-link,
h3:hover .anchor-link,
h4:hover .anchor-link,
h5:hover .anchor-link,
h6:hover .anchor-link {
  visibility: visible;
}
.text_cell.rendered .input_area {
  display: none;
}
.text_cell.rendered .rendered_html {
  overflow-x: auto;
  overflow-y: hidden;
}
.text_cell.rendered .rendered_html tr,
.text_cell.rendered .rendered_html th,
.text_cell.rendered .rendered_html td {
  max-width: none;
}
.text_cell.unrendered .text_cell_render {
  display: none;
}
.text_cell .dropzone .input_area {
  border: 2px dashed #bababa;
  margin: -1px;
}
.cm-header-1,
.cm-header-2,
.cm-header-3,
.cm-header-4,
.cm-header-5,
.cm-header-6 {
  font-weight: bold;
  font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
}
.cm-header-1 {
  font-size: 185.7%;
}
.cm-header-2 {
  font-size: 157.1%;
}
.cm-header-3 {
  font-size: 128.6%;
}
.cm-header-4 {
  font-size: 110%;
}
.cm-header-5 {
  font-size: 100%;
  font-style: italic;
}
.cm-header-6 {
  font-size: 100%;
  font-style: italic;
}
/*!
*
* IPython notebook webapp
*
*/
@media (max-width: 767px) {
  .notebook_app {
    padding-left: 0px;
    padding-right: 0px;
  }
}
#ipython-main-app {
  box-sizing: border-box;
  -moz-box-sizing: border-box;
  -webkit-box-sizing: border-box;
  height: 100%;
}
div#notebook_panel {
  margin: 0px;
  padding: 0px;
  box-sizing: border-box;
  -moz-box-sizing: border-box;
  -webkit-box-sizing: border-box;
  height: 100%;
}
div#notebook {
  font-size: 14px;
  line-height: 20px;
  overflow-y: hidden;
  overflow-x: auto;
  width: 100%;
  /* This spaces the page away from the edge of the notebook area */
  padding-top: 20px;
  margin: 0px;
  outline: none;
  box-sizing: border-box;
  -moz-box-sizing: border-box;
  -webkit-box-sizing: border-box;
  min-height: 100%;
}
@media not print {
  #notebook-container {
    padding: 15px;
    background-color: #fff;
    min-height: 0;
    -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
    box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
  }
}
@media print {
  #notebook-container {
    width: 100%;
  }
}
div.ui-widget-content {
  border: 1px solid #ababab;
  outline: none;
}
pre.dialog {
  background-color: #f7f7f7;
  border: 1px solid #ddd;
  border-radius: 2px;
  padding: 0.4em;
  padding-left: 2em;
}
p.dialog {
  padding: 0.2em;
}
/* Word-wrap output correctly.  This is the CSS3 spelling, though Firefox seems
   to not honor it correctly.  Webkit browsers (Chrome, rekonq, Safari) do.
 */
pre,
code,
kbd,
samp {
  white-space: pre-wrap;
}
#fonttest {
  font-family: monospace;
}
p {
  margin-bottom: 0;
}
.end_space {
  min-height: 100px;
  transition: height .2s ease;
}
.notebook_app > #header {
  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
}
@media not print {
  .notebook_app {
    background-color: #EEE;
  }
}
kbd {
  border-style: solid;
  border-width: 1px;
  box-shadow: none;
  margin: 2px;
  padding-left: 2px;
  padding-right: 2px;
  padding-top: 1px;
  padding-bottom: 1px;
}
.jupyter-keybindings {
  padding: 1px;
  line-height: 24px;
  border-bottom: 1px solid gray;
}
.jupyter-keybindings input {
  margin: 0;
  padding: 0;
  border: none;
}
.jupyter-keybindings i {
  padding: 6px;
}
.well code {
  background-color: #ffffff;
  border-color: #ababab;
  border-width: 1px;
  border-style: solid;
  padding: 2px;
  padding-top: 1px;
  padding-bottom: 1px;
}
/* CSS for the cell toolbar */
.celltoolbar {
  border: thin solid #CFCFCF;
  border-bottom: none;
  background: #EEE;
  border-radius: 2px 2px 0px 0px;
  width: 100%;
  height: 29px;
  padding-right: 4px;
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: horizontal;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: horizontal;
  -moz-box-align: stretch;
  display: box;
  box-orient: horizontal;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: row;
  align-items: stretch;
  /* Old browsers */
  -webkit-box-pack: end;
  -moz-box-pack: end;
  box-pack: end;
  /* Modern browsers */
  justify-content: flex-end;
  display: -webkit-flex;
}
@media print {
  .celltoolbar {
    display: none;
  }
}
.ctb_hideshow {
  display: none;
  vertical-align: bottom;
}
/* ctb_show is added to the ctb_hideshow div to show the cell toolbar.
   Cell toolbars are only shown when the ctb_global_show class is also set.
*/
.ctb_global_show .ctb_show.ctb_hideshow {
  display: block;
}
.ctb_global_show .ctb_show + .input_area,
.ctb_global_show .ctb_show + div.text_cell_input,
.ctb_global_show .ctb_show ~ div.text_cell_render {
  border-top-right-radius: 0px;
  border-top-left-radius: 0px;
}
.ctb_global_show .ctb_show ~ div.text_cell_render {
  border: 1px solid #cfcfcf;
}
.celltoolbar {
  font-size: 87%;
  padding-top: 3px;
}
.celltoolbar select {
  display: block;
  width: 100%;
  height: 32px;
  padding: 6px 12px;
  font-size: 13px;
  line-height: 1.42857143;
  color: #555555;
  background-color: #fff;
  background-image: none;
  border: 1px solid #ccc;
  border-radius: 2px;
  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
  -webkit-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
  -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
  transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
  height: 30px;
  padding: 5px 10px;
  font-size: 12px;
  line-height: 1.5;
  border-radius: 1px;
  width: inherit;
  font-size: inherit;
  height: 22px;
  padding: 0px;
  display: inline-block;
}
.celltoolbar select:focus {
  border-color: #66afe9;
  outline: 0;
  -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
  box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
}
.celltoolbar select::-moz-placeholder {
  color: #999;
  opacity: 1;
}
.celltoolbar select:-ms-input-placeholder {
  color: #999;
}
.celltoolbar select::-webkit-input-placeholder {
  color: #999;
}
.celltoolbar select::-ms-expand {
  border: 0;
  background-color: transparent;
}
.celltoolbar select[disabled],
.celltoolbar select[readonly],
fieldset[disabled] .celltoolbar select {
  background-color: #eeeeee;
  opacity: 1;
}
.celltoolbar select[disabled],
fieldset[disabled] .celltoolbar select {
  cursor: not-allowed;
}
textarea.celltoolbar select {
  height: auto;
}
select.celltoolbar select {
  height: 30px;
  line-height: 30px;
}
textarea.celltoolbar select,
select[multiple].celltoolbar select {
  height: auto;
}
.celltoolbar label {
  margin-left: 5px;
  margin-right: 5px;
}
.tags_button_container {
  width: 100%;
  display: flex;
}
.tag-container {
  display: flex;
  flex-direction: row;
  flex-grow: 1;
  overflow: hidden;
  position: relative;
}
.tag-container > * {
  margin: 0 4px;
}
.remove-tag-btn {
  margin-left: 4px;
}
.tags-input {
  display: flex;
}
.cell-tag:last-child:after {
  content: "";
  position: absolute;
  right: 0;
  width: 40px;
  height: 100%;
  /* Fade to background color of cell toolbar */
  background: linear-gradient(to right, rgba(0, 0, 0, 0), #EEE);
}
.tags-input > * {
  margin-left: 4px;
}
.cell-tag,
.tags-input input,
.tags-input button {
  display: block;
  width: 100%;
  height: 32px;
  padding: 6px 12px;
  font-size: 13px;
  line-height: 1.42857143;
  color: #555555;
  background-color: #fff;
  background-image: none;
  border: 1px solid #ccc;
  border-radius: 2px;
  -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
  box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075);
  -webkit-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
  -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
  transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;
  height: 30px;
  padding: 5px 10px;
  font-size: 12px;
  line-height: 1.5;
  border-radius: 1px;
  box-shadow: none;
  width: inherit;
  font-size: inherit;
  height: 22px;
  line-height: 22px;
  padding: 0px 4px;
  display: inline-block;
}
.cell-tag:focus,
.tags-input input:focus,
.tags-input button:focus {
  border-color: #66afe9;
  outline: 0;
  -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
  box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6);
}
.cell-tag::-moz-placeholder,
.tags-input input::-moz-placeholder,
.tags-input button::-moz-placeholder {
  color: #999;
  opacity: 1;
}
.cell-tag:-ms-input-placeholder,
.tags-input input:-ms-input-placeholder,
.tags-input button:-ms-input-placeholder {
  color: #999;
}
.cell-tag::-webkit-input-placeholder,
.tags-input input::-webkit-input-placeholder,
.tags-input button::-webkit-input-placeholder {
  color: #999;
}
.cell-tag::-ms-expand,
.tags-input input::-ms-expand,
.tags-input button::-ms-expand {
  border: 0;
  background-color: transparent;
}
.cell-tag[disabled],
.tags-input input[disabled],
.tags-input button[disabled],
.cell-tag[readonly],
.tags-input input[readonly],
.tags-input button[readonly],
fieldset[disabled] .cell-tag,
fieldset[disabled] .tags-input input,
fieldset[disabled] .tags-input button {
  background-color: #eeeeee;
  opacity: 1;
}
.cell-tag[disabled],
.tags-input input[disabled],
.tags-input button[disabled],
fieldset[disabled] .cell-tag,
fieldset[disabled] .tags-input input,
fieldset[disabled] .tags-input button {
  cursor: not-allowed;
}
textarea.cell-tag,
textarea.tags-input input,
textarea.tags-input button {
  height: auto;
}
select.cell-tag,
select.tags-input input,
select.tags-input button {
  height: 30px;
  line-height: 30px;
}
textarea.cell-tag,
textarea.tags-input input,
textarea.tags-input button,
select[multiple].cell-tag,
select[multiple].tags-input input,
select[multiple].tags-input button {
  height: auto;
}
.cell-tag,
.tags-input button {
  padding: 0px 4px;
}
.cell-tag {
  background-color: #fff;
  white-space: nowrap;
}
.tags-input input[type=text]:focus {
  outline: none;
  box-shadow: none;
  border-color: #ccc;
}
.completions {
  position: absolute;
  z-index: 110;
  overflow: hidden;
  border: 1px solid #ababab;
  border-radius: 2px;
  -webkit-box-shadow: 0px 6px 10px -1px #adadad;
  box-shadow: 0px 6px 10px -1px #adadad;
  line-height: 1;
}
.completions select {
  background: white;
  outline: none;
  border: none;
  padding: 0px;
  margin: 0px;
  overflow: auto;
  font-family: monospace;
  font-size: 110%;
  color: #000;
  width: auto;
}
.completions select option.context {
  color: #286090;
}
#kernel_logo_widget .current_kernel_logo {
  display: none;
  margin-top: -1px;
  margin-bottom: -1px;
  width: 32px;
  height: 32px;
}
[dir="rtl"] #kernel_logo_widget {
  float: left !important;
  float: left;
}
.modal .modal-body .move-path {
  display: flex;
  flex-direction: row;
  justify-content: space;
  align-items: center;
}
.modal .modal-body .move-path .server-root {
  padding-right: 20px;
}
.modal .modal-body .move-path .path-input {
  flex: 1;
}
#menubar {
  box-sizing: border-box;
  -moz-box-sizing: border-box;
  -webkit-box-sizing: border-box;
  margin-top: 1px;
}
#menubar .navbar {
  border-top: 1px;
  border-radius: 0px 0px 2px 2px;
  margin-bottom: 0px;
}
#menubar .navbar-toggle {
  float: left;
  padding-top: 7px;
  padding-bottom: 7px;
  border: none;
}
#menubar .navbar-collapse {
  clear: left;
}
[dir="rtl"] #menubar .navbar-toggle {
  float: right;
}
[dir="rtl"] #menubar .navbar-collapse {
  clear: right;
}
[dir="rtl"] #menubar .navbar-nav {
  float: right;
}
[dir="rtl"] #menubar .nav {
  padding-right: 0px;
}
[dir="rtl"] #menubar .navbar-nav > li {
  float: right;
}
[dir="rtl"] #menubar .navbar-right {
  float: left !important;
}
[dir="rtl"] ul.dropdown-menu {
  text-align: right;
  left: auto;
}
[dir="rtl"] ul#new-menu.dropdown-menu {
  right: auto;
  left: 0;
}
.nav-wrapper {
  border-bottom: 1px solid #e7e7e7;
}
i.menu-icon {
  padding-top: 4px;
}
[dir="rtl"] i.menu-icon.pull-right {
  float: left !important;
  float: left;
}
ul#help_menu li a {
  overflow: hidden;
  padding-right: 2.2em;
}
ul#help_menu li a i {
  margin-right: -1.2em;
}
[dir="rtl"] ul#help_menu li a {
  padding-left: 2.2em;
}
[dir="rtl"] ul#help_menu li a i {
  margin-right: 0;
  margin-left: -1.2em;
}
[dir="rtl"] ul#help_menu li a i.pull-right {
  float: left !important;
  float: left;
}
.dropdown-submenu {
  position: relative;
}
.dropdown-submenu > .dropdown-menu {
  top: 0;
  left: 100%;
  margin-top: -6px;
  margin-left: -1px;
}
[dir="rtl"] .dropdown-submenu > .dropdown-menu {
  right: 100%;
  margin-right: -1px;
}
.dropdown-submenu:hover > .dropdown-menu {
  display: block;
}
.dropdown-submenu > a:after {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  display: block;
  content: "\f0da";
  float: right;
  color: #333333;
  margin-top: 2px;
  margin-right: -10px;
}
.dropdown-submenu > a:after.fa-pull-left {
  margin-right: .3em;
}
.dropdown-submenu > a:after.fa-pull-right {
  margin-left: .3em;
}
.dropdown-submenu > a:after.pull-left {
  margin-right: .3em;
}
.dropdown-submenu > a:after.pull-right {
  margin-left: .3em;
}
[dir="rtl"] .dropdown-submenu > a:after {
  float: left;
  content: "\f0d9";
  margin-right: 0;
  margin-left: -10px;
}
.dropdown-submenu:hover > a:after {
  color: #262626;
}
.dropdown-submenu.pull-left {
  float: none;
}
.dropdown-submenu.pull-left > .dropdown-menu {
  left: -100%;
  margin-left: 10px;
}
#notification_area {
  float: right !important;
  float: right;
  z-index: 10;
}
[dir="rtl"] #notification_area {
  float: left !important;
  float: left;
}
.indicator_area {
  float: right !important;
  float: right;
  color: #777;
  margin-left: 5px;
  margin-right: 5px;
  width: 11px;
  z-index: 10;
  text-align: center;
  width: auto;
}
[dir="rtl"] .indicator_area {
  float: left !important;
  float: left;
}
#kernel_indicator {
  float: right !important;
  float: right;
  color: #777;
  margin-left: 5px;
  margin-right: 5px;
  width: 11px;
  z-index: 10;
  text-align: center;
  width: auto;
  border-left: 1px solid;
}
#kernel_indicator .kernel_indicator_name {
  padding-left: 5px;
  padding-right: 5px;
}
[dir="rtl"] #kernel_indicator {
  float: left !important;
  float: left;
  border-left: 0;
  border-right: 1px solid;
}
#modal_indicator {
  float: right !important;
  float: right;
  color: #777;
  margin-left: 5px;
  margin-right: 5px;
  width: 11px;
  z-index: 10;
  text-align: center;
  width: auto;
}
[dir="rtl"] #modal_indicator {
  float: left !important;
  float: left;
}
#readonly-indicator {
  float: right !important;
  float: right;
  color: #777;
  margin-left: 5px;
  margin-right: 5px;
  width: 11px;
  z-index: 10;
  text-align: center;
  width: auto;
  margin-top: 2px;
  margin-bottom: 0px;
  margin-left: 0px;
  margin-right: 0px;
  display: none;
}
.modal_indicator:before {
  width: 1.28571429em;
  text-align: center;
}
.edit_mode .modal_indicator:before {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  content: "\f040";
}
.edit_mode .modal_indicator:before.fa-pull-left {
  margin-right: .3em;
}
.edit_mode .modal_indicator:before.fa-pull-right {
  margin-left: .3em;
}
.edit_mode .modal_indicator:before.pull-left {
  margin-right: .3em;
}
.edit_mode .modal_indicator:before.pull-right {
  margin-left: .3em;
}
.command_mode .modal_indicator:before {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  content: ' ';
}
.command_mode .modal_indicator:before.fa-pull-left {
  margin-right: .3em;
}
.command_mode .modal_indicator:before.fa-pull-right {
  margin-left: .3em;
}
.command_mode .modal_indicator:before.pull-left {
  margin-right: .3em;
}
.command_mode .modal_indicator:before.pull-right {
  margin-left: .3em;
}
.kernel_idle_icon:before {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  content: "\f10c";
}
.kernel_idle_icon:before.fa-pull-left {
  margin-right: .3em;
}
.kernel_idle_icon:before.fa-pull-right {
  margin-left: .3em;
}
.kernel_idle_icon:before.pull-left {
  margin-right: .3em;
}
.kernel_idle_icon:before.pull-right {
  margin-left: .3em;
}
.kernel_busy_icon:before {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  content: "\f111";
}
.kernel_busy_icon:before.fa-pull-left {
  margin-right: .3em;
}
.kernel_busy_icon:before.fa-pull-right {
  margin-left: .3em;
}
.kernel_busy_icon:before.pull-left {
  margin-right: .3em;
}
.kernel_busy_icon:before.pull-right {
  margin-left: .3em;
}
.kernel_dead_icon:before {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  content: "\f1e2";
}
.kernel_dead_icon:before.fa-pull-left {
  margin-right: .3em;
}
.kernel_dead_icon:before.fa-pull-right {
  margin-left: .3em;
}
.kernel_dead_icon:before.pull-left {
  margin-right: .3em;
}
.kernel_dead_icon:before.pull-right {
  margin-left: .3em;
}
.kernel_disconnected_icon:before {
  display: inline-block;
  font: normal normal normal 14px/1 FontAwesome;
  font-size: inherit;
  text-rendering: auto;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  content: "\f127";
}
.kernel_disconnected_icon:before.fa-pull-left {
  margin-right: .3em;
}
.kernel_disconnected_icon:before.fa-pull-right {
  margin-left: .3em;
}
.kernel_disconnected_icon:before.pull-left {
  margin-right: .3em;
}
.kernel_disconnected_icon:before.pull-right {
  margin-left: .3em;
}
.notification_widget {
  color: #777;
  z-index: 10;
  background: rgba(240, 240, 240, 0.5);
  margin-right: 4px;
  color: #333;
  background-color: #fff;
  border-color: #ccc;
}
.notification_widget:focus,
.notification_widget.focus {
  color: #333;
  background-color: #e6e6e6;
  border-color: #8c8c8c;
}
.notification_widget:hover {
  color: #333;
  background-color: #e6e6e6;
  border-color: #adadad;
}
.notification_widget:active,
.notification_widget.active,
.open > .dropdown-toggle.notification_widget {
  color: #333;
  background-color: #e6e6e6;
  border-color: #adadad;
}
.notification_widget:active:hover,
.notification_widget.active:hover,
.open > .dropdown-toggle.notification_widget:hover,
.notification_widget:active:focus,
.notification_widget.active:focus,
.open > .dropdown-toggle.notification_widget:focus,
.notification_widget:active.focus,
.notification_widget.active.focus,
.open > .dropdown-toggle.notification_widget.focus {
  color: #333;
  background-color: #d4d4d4;
  border-color: #8c8c8c;
}
.notification_widget:active,
.notification_widget.active,
.open > .dropdown-toggle.notification_widget {
  background-image: none;
}
.notification_widget.disabled:hover,
.notification_widget[disabled]:hover,
fieldset[disabled] .notification_widget:hover,
.notification_widget.disabled:focus,
.notification_widget[disabled]:focus,
fieldset[disabled] .notification_widget:focus,
.notification_widget.disabled.focus,
.notification_widget[disabled].focus,
fieldset[disabled] .notification_widget.focus {
  background-color: #fff;
  border-color: #ccc;
}
.notification_widget .badge {
  color: #fff;
  background-color: #333;
}
.notification_widget.warning {
  color: #fff;
  background-color: #f0ad4e;
  border-color: #eea236;
}
.notification_widget.warning:focus,
.notification_widget.warning.focus {
  color: #fff;
  background-color: #ec971f;
  border-color: #985f0d;
}
.notification_widget.warning:hover {
  color: #fff;
  background-color: #ec971f;
  border-color: #d58512;
}
.notification_widget.warning:active,
.notification_widget.warning.active,
.open > .dropdown-toggle.notification_widget.warning {
  color: #fff;
  background-color: #ec971f;
  border-color: #d58512;
}
.notification_widget.warning:active:hover,
.notification_widget.warning.active:hover,
.open > .dropdown-toggle.notification_widget.warning:hover,
.notification_widget.warning:active:focus,
.notification_widget.warning.active:focus,
.open > .dropdown-toggle.notification_widget.warning:focus,
.notification_widget.warning:active.focus,
.notification_widget.warning.active.focus,
.open > .dropdown-toggle.notification_widget.warning.focus {
  color: #fff;
  background-color: #d58512;
  border-color: #985f0d;
}
.notification_widget.warning:active,
.notification_widget.warning.active,
.open > .dropdown-toggle.notification_widget.warning {
  background-image: none;
}
.notification_widget.warning.disabled:hover,
.notification_widget.warning[disabled]:hover,
fieldset[disabled] .notification_widget.warning:hover,
.notification_widget.warning.disabled:focus,
.notification_widget.warning[disabled]:focus,
fieldset[disabled] .notification_widget.warning:focus,
.notification_widget.warning.disabled.focus,
.notification_widget.warning[disabled].focus,
fieldset[disabled] .notification_widget.warning.focus {
  background-color: #f0ad4e;
  border-color: #eea236;
}
.notification_widget.warning .badge {
  color: #f0ad4e;
  background-color: #fff;
}
.notification_widget.success {
  color: #fff;
  background-color: #5cb85c;
  border-color: #4cae4c;
}
.notification_widget.success:focus,
.notification_widget.success.focus {
  color: #fff;
  background-color: #449d44;
  border-color: #255625;
}
.notification_widget.success:hover {
  color: #fff;
  background-color: #449d44;
  border-color: #398439;
}
.notification_widget.success:active,
.notification_widget.success.active,
.open > .dropdown-toggle.notification_widget.success {
  color: #fff;
  background-color: #449d44;
  border-color: #398439;
}
.notification_widget.success:active:hover,
.notification_widget.success.active:hover,
.open > .dropdown-toggle.notification_widget.success:hover,
.notification_widget.success:active:focus,
.notification_widget.success.active:focus,
.open > .dropdown-toggle.notification_widget.success:focus,
.notification_widget.success:active.focus,
.notification_widget.success.active.focus,
.open > .dropdown-toggle.notification_widget.success.focus {
  color: #fff;
  background-color: #398439;
  border-color: #255625;
}
.notification_widget.success:active,
.notification_widget.success.active,
.open > .dropdown-toggle.notification_widget.success {
  background-image: none;
}
.notification_widget.success.disabled:hover,
.notification_widget.success[disabled]:hover,
fieldset[disabled] .notification_widget.success:hover,
.notification_widget.success.disabled:focus,
.notification_widget.success[disabled]:focus,
fieldset[disabled] .notification_widget.success:focus,
.notification_widget.success.disabled.focus,
.notification_widget.success[disabled].focus,
fieldset[disabled] .notification_widget.success.focus {
  background-color: #5cb85c;
  border-color: #4cae4c;
}
.notification_widget.success .badge {
  color: #5cb85c;
  background-color: #fff;
}
.notification_widget.info {
  color: #fff;
  background-color: #5bc0de;
  border-color: #46b8da;
}
.notification_widget.info:focus,
.notification_widget.info.focus {
  color: #fff;
  background-color: #31b0d5;
  border-color: #1b6d85;
}
.notification_widget.info:hover {
  color: #fff;
  background-color: #31b0d5;
  border-color: #269abc;
}
.notification_widget.info:active,
.notification_widget.info.active,
.open > .dropdown-toggle.notification_widget.info {
  color: #fff;
  background-color: #31b0d5;
  border-color: #269abc;
}
.notification_widget.info:active:hover,
.notification_widget.info.active:hover,
.open > .dropdown-toggle.notification_widget.info:hover,
.notification_widget.info:active:focus,
.notification_widget.info.active:focus,
.open > .dropdown-toggle.notification_widget.info:focus,
.notification_widget.info:active.focus,
.notification_widget.info.active.focus,
.open > .dropdown-toggle.notification_widget.info.focus {
  color: #fff;
  background-color: #269abc;
  border-color: #1b6d85;
}
.notification_widget.info:active,
.notification_widget.info.active,
.open > .dropdown-toggle.notification_widget.info {
  background-image: none;
}
.notification_widget.info.disabled:hover,
.notification_widget.info[disabled]:hover,
fieldset[disabled] .notification_widget.info:hover,
.notification_widget.info.disabled:focus,
.notification_widget.info[disabled]:focus,
fieldset[disabled] .notification_widget.info:focus,
.notification_widget.info.disabled.focus,
.notification_widget.info[disabled].focus,
fieldset[disabled] .notification_widget.info.focus {
  background-color: #5bc0de;
  border-color: #46b8da;
}
.notification_widget.info .badge {
  color: #5bc0de;
  background-color: #fff;
}
.notification_widget.danger {
  color: #fff;
  background-color: #d9534f;
  border-color: #d43f3a;
}
.notification_widget.danger:focus,
.notification_widget.danger.focus {
  color: #fff;
  background-color: #c9302c;
  border-color: #761c19;
}
.notification_widget.danger:hover {
  color: #fff;
  background-color: #c9302c;
  border-color: #ac2925;
}
.notification_widget.danger:active,
.notification_widget.danger.active,
.open > .dropdown-toggle.notification_widget.danger {
  color: #fff;
  background-color: #c9302c;
  border-color: #ac2925;
}
.notification_widget.danger:active:hover,
.notification_widget.danger.active:hover,
.open > .dropdown-toggle.notification_widget.danger:hover,
.notification_widget.danger:active:focus,
.notification_widget.danger.active:focus,
.open > .dropdown-toggle.notification_widget.danger:focus,
.notification_widget.danger:active.focus,
.notification_widget.danger.active.focus,
.open > .dropdown-toggle.notification_widget.danger.focus {
  color: #fff;
  background-color: #ac2925;
  border-color: #761c19;
}
.notification_widget.danger:active,
.notification_widget.danger.active,
.open > .dropdown-toggle.notification_widget.danger {
  background-image: none;
}
.notification_widget.danger.disabled:hover,
.notification_widget.danger[disabled]:hover,
fieldset[disabled] .notification_widget.danger:hover,
.notification_widget.danger.disabled:focus,
.notification_widget.danger[disabled]:focus,
fieldset[disabled] .notification_widget.danger:focus,
.notification_widget.danger.disabled.focus,
.notification_widget.danger[disabled].focus,
fieldset[disabled] .notification_widget.danger.focus {
  background-color: #d9534f;
  border-color: #d43f3a;
}
.notification_widget.danger .badge {
  color: #d9534f;
  background-color: #fff;
}
div#pager {
  background-color: #fff;
  font-size: 14px;
  line-height: 20px;
  overflow: hidden;
  display: none;
  position: fixed;
  bottom: 0px;
  width: 100%;
  max-height: 50%;
  padding-top: 8px;
  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
  /* Display over codemirror */
  z-index: 100;
  /* Hack which prevents jquery ui resizable from changing top. */
  top: auto !important;
}
div#pager pre {
  line-height: 1.21429em;
  color: #000;
  background-color: #f7f7f7;
  padding: 0.4em;
}
div#pager #pager-button-area {
  position: absolute;
  top: 8px;
  right: 20px;
}
div#pager #pager-contents {
  position: relative;
  overflow: auto;
  width: 100%;
  height: 100%;
}
div#pager #pager-contents #pager-container {
  position: relative;
  padding: 15px 0px;
  box-sizing: border-box;
  -moz-box-sizing: border-box;
  -webkit-box-sizing: border-box;
}
div#pager .ui-resizable-handle {
  top: 0px;
  height: 8px;
  background: #f7f7f7;
  border-top: 1px solid #cfcfcf;
  border-bottom: 1px solid #cfcfcf;
  /* This injects handle bars (a short, wide = symbol) for 
        the resize handle. */
}
div#pager .ui-resizable-handle::after {
  content: '';
  top: 2px;
  left: 50%;
  height: 3px;
  width: 30px;
  margin-left: -15px;
  position: absolute;
  border-top: 1px solid #cfcfcf;
}
.quickhelp {
  /* Old browsers */
  display: -webkit-box;
  -webkit-box-orient: horizontal;
  -webkit-box-align: stretch;
  display: -moz-box;
  -moz-box-orient: horizontal;
  -moz-box-align: stretch;
  display: box;
  box-orient: horizontal;
  box-align: stretch;
  /* Modern browsers */
  display: flex;
  flex-direction: row;
  align-items: stretch;
  line-height: 1.8em;
}
.shortcut_key {
  display: inline-block;
  width: 21ex;
  text-align: right;
  font-family: monospace;
}
.shortcut_descr {
  display: inline-block;
  /* Old browsers */
  -webkit-box-flex: 1;
  -moz-box-flex: 1;
  box-flex: 1;
  /* Modern browsers */
  flex: 1;
}
span.save_widget {
  height: 30px;
  margin-top: 4px;
  display: flex;
  justify-content: flex-start;
  align-items: baseline;
  width: 50%;
  flex: 1;
}
span.save_widget span.filename {
  height: 100%;
  line-height: 1em;
  margin-left: 16px;
  border: none;
  font-size: 146.5%;
  text-overflow: ellipsis;
  overflow: hidden;
  white-space: nowrap;
  border-radius: 2px;
}
span.save_widget span.filename:hover {
  background-color: #e6e6e6;
}
[dir="rtl"] span.save_widget.pull-left {
  float: right !important;
  float: right;
}
[dir="rtl"] span.save_widget span.filename {
  margin-left: 0;
  margin-right: 16px;
}
span.checkpoint_status,
span.autosave_status {
  font-size: small;
  white-space: nowrap;
  padding: 0 5px;
}
@media (max-width: 767px) {
  span.save_widget {
    font-size: small;
    padding: 0 0 0 5px;
  }
  span.checkpoint_status,
  span.autosave_status {
    display: none;
  }
}
@media (min-width: 768px) and (max-width: 991px) {
  span.checkpoint_status {
    display: none;
  }
  span.autosave_status {
    font-size: x-small;
  }
}
.toolbar {
  padding: 0px;
  margin-left: -5px;
  margin-top: 2px;
  margin-bottom: 5px;
  box-sizing: border-box;
  -moz-box-sizing: border-box;
  -webkit-box-sizing: border-box;
}
.toolbar select,
.toolbar label {
  width: auto;
  vertical-align: middle;
  margin-right: 2px;
  margin-bottom: 0px;
  display: inline;
  font-size: 92%;
  margin-left: 0.3em;
  margin-right: 0.3em;
  padding: 0px;
  padding-top: 3px;
}
.toolbar .btn {
  padding: 2px 8px;
}
.toolbar .btn-group {
  margin-top: 0px;
  margin-left: 5px;
}
.toolbar-btn-label {
  margin-left: 6px;
}
#maintoolbar {
  margin-bottom: -3px;
  margin-top: -8px;
  border: 0px;
  min-height: 27px;
  margin-left: 0px;
  padding-top: 11px;
  padding-bottom: 3px;
}
#maintoolbar .navbar-text {
  float: none;
  vertical-align: middle;
  text-align: right;
  margin-left: 5px;
  margin-right: 0px;
  margin-top: 0px;
}
.select-xs {
  height: 24px;
}
[dir="rtl"] .btn-group > .btn,
.btn-group-vertical > .btn {
  float: right;
}
.pulse,
.dropdown-menu > li > a.pulse,
li.pulse > a.dropdown-toggle,
li.pulse.open > a.dropdown-toggle {
  background-color: #F37626;
  color: white;
}
/**
 * Primary styles
 *
 * Author: Jupyter Development Team
 */
/** WARNING IF YOU ARE EDITTING THIS FILE, if this is a .css file, It has a lot
 * of chance of beeing generated from the ../less/[samename].less file, you can
 * try to get back the less file by reverting somme commit in history
 **/
/*
 * We'll try to get something pretty, so we
 * have some strange css to have the scroll bar on
 * the left with fix button on the top right of the tooltip
 */
@-moz-keyframes fadeOut {
  from {
    opacity: 1;
  }
  to {
    opacity: 0;
  }
}
@-webkit-keyframes fadeOut {
  from {
    opacity: 1;
  }
  to {
    opacity: 0;
  }
}
@-moz-keyframes fadeIn {
  from {
    opacity: 0;
  }
  to {
    opacity: 1;
  }
}
@-webkit-keyframes fadeIn {
  from {
    opacity: 0;
  }
  to {
    opacity: 1;
  }
}
/*properties of tooltip after "expand"*/
.bigtooltip {
  overflow: auto;
  height: 200px;
  -webkit-transition-property: height;
  -webkit-transition-duration: 500ms;
  -moz-transition-property: height;
  -moz-transition-duration: 500ms;
  transition-property: height;
  transition-duration: 500ms;
}
/*properties of tooltip before "expand"*/
.smalltooltip {
  -webkit-transition-property: height;
  -webkit-transition-duration: 500ms;
  -moz-transition-property: height;
  -moz-transition-duration: 500ms;
  transition-property: height;
  transition-duration: 500ms;
  text-overflow: ellipsis;
  overflow: hidden;
  height: 80px;
}
.tooltipbuttons {
  position: absolute;
  padding-right: 15px;
  top: 0px;
  right: 0px;
}
.tooltiptext {
  /*avoid the button to overlap on some docstring*/
  padding-right: 30px;
}
.ipython_tooltip {
  max-width: 700px;
  /*fade-in animation when inserted*/
  -webkit-animation: fadeOut 400ms;
  -moz-animation: fadeOut 400ms;
  animation: fadeOut 400ms;
  -webkit-animation: fadeIn 400ms;
  -moz-animation: fadeIn 400ms;
  animation: fadeIn 400ms;
  vertical-align: middle;
  background-color: #f7f7f7;
  overflow: visible;
  border: #ababab 1px solid;
  outline: none;
  padding: 3px;
  margin: 0px;
  padding-left: 7px;
  font-family: monospace;
  min-height: 50px;
  -moz-box-shadow: 0px 6px 10px -1px #adadad;
  -webkit-box-shadow: 0px 6px 10px -1px #adadad;
  box-shadow: 0px 6px 10px -1px #adadad;
  border-radius: 2px;
  position: absolute;
  z-index: 1000;
}
.ipython_tooltip a {
  float: right;
}
.ipython_tooltip .tooltiptext pre {
  border: 0;
  border-radius: 0;
  font-size: 100%;
  background-color: #f7f7f7;
}
.pretooltiparrow {
  left: 0px;
  margin: 0px;
  top: -16px;
  width: 40px;
  height: 16px;
  overflow: hidden;
  position: absolute;
}
.pretooltiparrow:before {
  background-color: #f7f7f7;
  border: 1px #ababab solid;
  z-index: 11;
  content: "";
  position: absolute;
  left: 15px;
  top: 10px;
  width: 25px;
  height: 25px;
  -webkit-transform: rotate(45deg);
  -moz-transform: rotate(45deg);
  -ms-transform: rotate(45deg);
  -o-transform: rotate(45deg);
}
ul.typeahead-list i {
  margin-left: -10px;
  width: 18px;
}
[dir="rtl"] ul.typeahead-list i {
  margin-left: 0;
  margin-right: -10px;
}
ul.typeahead-list {
  max-height: 80vh;
  overflow: auto;
}
ul.typeahead-list > li > a {
  /** Firefox bug **/
  /* see https://github.com/jupyter/notebook/issues/559 */
  white-space: normal;
}
ul.typeahead-list  > li > a.pull-right {
  float: left !important;
  float: left;
}
[dir="rtl"] .typeahead-list {
  text-align: right;
}
.cmd-palette .modal-body {
  padding: 7px;
}
.cmd-palette form {
  background: white;
}
.cmd-palette input {
  outline: none;
}
.no-shortcut {
  min-width: 20px;
  color: transparent;
}
[dir="rtl"] .no-shortcut.pull-right {
  float: left !important;
  float: left;
}
[dir="rtl"] .command-shortcut.pull-right {
  float: left !important;
  float: left;
}
.command-shortcut:before {
  content: "(command mode)";
  padding-right: 3px;
  color: #777777;
}
.edit-shortcut:before {
  content: "(edit)";
  padding-right: 3px;
  color: #777777;
}
[dir="rtl"] .edit-shortcut.pull-right {
  float: left !important;
  float: left;
}
#find-and-replace #replace-preview .match,
#find-and-replace #replace-preview .insert {
  background-color: #BBDEFB;
  border-color: #90CAF9;
  border-style: solid;
  border-width: 1px;
  border-radius: 0px;
}
[dir="ltr"] #find-and-replace .input-group-btn + .form-control {
  border-left: none;
}
[dir="rtl"] #find-and-replace .input-group-btn + .form-control {
  border-right: none;
}
#find-and-replace #replace-preview .replace .match {
  background-color: #FFCDD2;
  border-color: #EF9A9A;
  border-radius: 0px;
}
#find-and-replace #replace-preview .replace .insert {
  background-color: #C8E6C9;
  border-color: #A5D6A7;
  border-radius: 0px;
}
#find-and-replace #replace-preview {
  max-height: 60vh;
  overflow: auto;
}
#find-and-replace #replace-preview pre {
  padding: 5px 10px;
}
.terminal-app {
  background: #EEE;
}
.terminal-app #header {
  background: #fff;
  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2);
}
.terminal-app .terminal {
  width: 100%;
  float: left;
  font-family: monospace;
  color: white;
  background: black;
  padding: 0.4em;
  border-radius: 2px;
  -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.4);
  box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.4);
}
.terminal-app .terminal,
.terminal-app .terminal dummy-screen {
  line-height: 1em;
  font-size: 14px;
}
.terminal-app .terminal .xterm-rows {
  padding: 10px;
}
.terminal-app .terminal-cursor {
  color: black;
  background: white;
}
.terminal-app #terminado-container {
  margin-top: 20px;
}
/*# sourceMappingURL=style.min.css.map */
    </style>
<style type="text/css">
    .highlight .hll { background-color: #ffffcc }
.highlight  { background: #f8f8f8; }
.highlight .c { color: #408080; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #008000; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #BC7A00 } /* Comment.Preproc */
.highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */
.highlight .cs { color: #408080; font-style: italic } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0044DD } /* Generic.Traceback */
.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008000 } /* Keyword.Pseudo */
.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #B00040 } /* Keyword.Type */
.highlight .m { color: #666666 } /* Literal.Number */
.highlight .s { color: #BA2121 } /* Literal.String */
.highlight .na { color: #7D9029 } /* Name.Attribute */
.highlight .nb { color: #008000 } /* Name.Builtin */
.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
.highlight .no { color: #880000 } /* Name.Constant */
.highlight .nd { color: #AA22FF } /* Name.Decorator */
.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0000FF } /* Name.Function */
.highlight .nl { color: #A0A000 } /* Name.Label */
.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #19177C } /* Name.Variable */
.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #666666 } /* Literal.Number.Bin */
.highlight .mf { color: #666666 } /* Literal.Number.Float */
.highlight .mh { color: #666666 } /* Literal.Number.Hex */
.highlight .mi { color: #666666 } /* Literal.Number.Integer */
.highlight .mo { color: #666666 } /* Literal.Number.Oct */
.highlight .sa { color: #BA2121 } /* Literal.String.Affix */
.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
.highlight .sc { color: #BA2121 } /* Literal.String.Char */
.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */
.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
.highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
.highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
.highlight .sx { color: #008000 } /* Literal.String.Other */
.highlight .sr { color: #BB6688 } /* Literal.String.Regex */
.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
.highlight .ss { color: #19177C } /* Literal.String.Symbol */
.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0000FF } /* Name.Function.Magic */
.highlight .vc { color: #19177C } /* Name.Variable.Class */
.highlight .vg { color: #19177C } /* Name.Variable.Global */
.highlight .vi { color: #19177C } /* Name.Variable.Instance */
.highlight .vm { color: #19177C } /* Name.Variable.Magic */
.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */
    </style>
<style type="text/css">
    
/* Temporary definitions which will become obsolete with Notebook release 5.0 */
.ansi-black-fg { color: #3E424D; }
.ansi-black-bg { background-color: #3E424D; }
.ansi-black-intense-fg { color: #282C36; }
.ansi-black-intense-bg { background-color: #282C36; }
.ansi-red-fg { color: #E75C58; }
.ansi-red-bg { background-color: #E75C58; }
.ansi-red-intense-fg { color: #B22B31; }
.ansi-red-intense-bg { background-color: #B22B31; }
.ansi-green-fg { color: #00A250; }
.ansi-green-bg { background-color: #00A250; }
.ansi-green-intense-fg { color: #007427; }
.ansi-green-intense-bg { background-color: #007427; }
.ansi-yellow-fg { color: #DDB62B; }
.ansi-yellow-bg { background-color: #DDB62B; }
.ansi-yellow-intense-fg { color: #B27D12; }
.ansi-yellow-intense-bg { background-color: #B27D12; }
.ansi-blue-fg { color: #208FFB; }
.ansi-blue-bg { background-color: #208FFB; }
.ansi-blue-intense-fg { color: #0065CA; }
.ansi-blue-intense-bg { background-color: #0065CA; }
.ansi-magenta-fg { color: #D160C4; }
.ansi-magenta-bg { background-color: #D160C4; }
.ansi-magenta-intense-fg { color: #A03196; }
.ansi-magenta-intense-bg { background-color: #A03196; }
.ansi-cyan-fg { color: #60C6C8; }
.ansi-cyan-bg { background-color: #60C6C8; }
.ansi-cyan-intense-fg { color: #258F8F; }
.ansi-cyan-intense-bg { background-color: #258F8F; }
.ansi-white-fg { color: #C5C1B4; }
.ansi-white-bg { background-color: #C5C1B4; }
.ansi-white-intense-fg { color: #A1A6B2; }
.ansi-white-intense-bg { background-color: #A1A6B2; }

.ansi-bold { font-weight: bold; }

    </style>


<style type="text/css">
/* Overrides of notebook CSS for static HTML export */
body {
  overflow: visible;
  padding: 8px;
}

div#notebook {
  overflow: visible;
  border-top: none;
}@media print {
  div.cell {
    display: block;
    page-break-inside: avoid;
  } 
  div.output_wrapper { 
    display: block;
    page-break-inside: avoid; 
  }
  div.output { 
    display: block;
    page-break-inside: avoid; 
  }
}
</style>

<!-- Custom stylesheet, it must be in the same directory as the html file -->
<link rel="stylesheet" href="custom.css">

<!-- Loading mathjax macro -->
<!-- Load mathjax -->
    <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS_HTML"></script>
    <!-- MathJax configuration -->
    <script type="text/x-mathjax-config">
    MathJax.Hub.Config({
        tex2jax: {
            inlineMath: [ ['$','$'], ["\\(","\\)"] ],
            displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
            processEscapes: true,
            processEnvironments: true
        },
        // Center justify equations in code and markdown cells. Elsewhere
        // we use CSS to left justify single line equations in code cells.
        displayAlign: 'center',
        "HTML-CSS": {
            styles: {'.MathJax_Display': {"margin": 0}},
            linebreaks: { automatic: true }
        }
    });
    </script>
    <!-- End of mathjax configuration --></head>
<body>
  <div tabindex="-1" id="notebook" class="border-box-sizing">
    <div class="container" id="notebook-container">

<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Predicting-Credit--Default">Predicting Credit  Default<a class="anchor-link" href="#Predicting-Credit--Default">&#182;</a></h1><p>Varsha Waingankar</p>

</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Overview">Overview<a class="anchor-link" href="#Overview">&#182;</a></h1><h1 id="Data-source">Data source<a class="anchor-link" href="#Data-source">&#182;</a></h1><h1 id="Data-cleaning-and-preprocessing">Data cleaning and preprocessing<a class="anchor-link" href="#Data-cleaning-and-preprocessing">&#182;</a></h1><h1 id="Visualization-of-Data-distribution">Visualization of Data distribution<a class="anchor-link" href="#Visualization-of-Data-distribution">&#182;</a></h1><h1 id="Scaling-normalizing-data">Scaling normalizing data<a class="anchor-link" href="#Scaling-normalizing-data">&#182;</a></h1><h1 id="Handling-imbalanced-data">Handling imbalanced data<a class="anchor-link" href="#Handling-imbalanced-data">&#182;</a></h1><h1 id="Feature-engineering">Feature engineering<a class="anchor-link" href="#Feature-engineering">&#182;</a></h1><h1 id="Predictive-modeling">Predictive modeling<a class="anchor-link" href="#Predictive-modeling">&#182;</a></h1><h1 id="Accuracy-and-best-model">Accuracy and best model<a class="anchor-link" href="#Accuracy-and-best-model">&#182;</a></h1><h1 id="Learning-Process">Learning Process<a class="anchor-link" href="#Learning-Process">&#182;</a></h1><h1 id="Conclusion">Conclusion<a class="anchor-link" href="#Conclusion">&#182;</a></h1>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Data-source-UCI-Machine-Learning-Repository">Data source UCI Machine Learning Repository<a class="anchor-link" href="#Data-source-UCI-Machine-Learning-Repository">&#182;</a></h1><p><a href="https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients">https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients</a></p>

</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Abstract:">Abstract:<a class="anchor-link" href="#Abstract:">&#182;</a></h1><p>This research aimed at the case of customers default payments in Taiwan and compares the predictive accuracy of probability of default using various methods</p>
<p>There are 25 variables and each indicated below</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[162]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># There are 25 variables:</span>

<span class="c1">#ID: ID of each client</span>
<span class="c1">#LIMIT_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit</span>
<span class="c1">#SEX: Gender (1=male, 2=female)</span>
<span class="c1">#EDUCATION: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown, 6=unknown)</span>
<span class="c1">#MARRIAGE: Marital status (1=married, 2=single, 3=others)</span>
<span class="c1">#AGE: Age in years</span>
<span class="c1">#PAY_0: Repayment status in September, 2005 </span>
<span class="c1">#(-1=pay duly, 1=payment delay for one month, 2=payment delay for two months, ... 8=payment delay for eight months, 9=payment delay for nine months and above)</span>
<span class="c1">#PAY_2: Repayment status in August, 2005 (scale same as above)</span>
<span class="c1">#PAY_3: Repayment status in July, 2005 (scale same as above)</span>
<span class="c1">#PAY_4: Repayment status in June, 2005 (scale same as above)</span>
<span class="c1">#PAY_5: Repayment status in May, 2005 (scale same as above)</span>
<span class="c1">#PAY_6: Repayment status in April, 2005 (scale same as above)</span>
<span class="c1">#BILL_AMT1: Amount of bill statement in September, 2005 (NT dollar)</span>
<span class="c1">#BILL_AMT2: Amount of bill statement in August, 2005 (NT dollar)</span>
<span class="c1">#BILL_AMT3: Amount of bill statement in July, 2005 (NT dollar)</span>
<span class="c1">#BILL_AMT4: Amount of bill statement in June, 2005 (NT dollar)</span>
<span class="c1">#BILL_AMT5: Amount of bill statement in May, 2005 (NT dollar)</span>
<span class="c1">#BILL_AMT6: Amount of bill statement in April, 2005 (NT dollar)</span>
<span class="c1">#PAY_AMT1: Amount of previous payment in September, 2005 (NT dollar)</span>
<span class="c1">#PAY_AMT2: Amount of previous payment in August, 2005 (NT dollar)</span>
<span class="c1">#PAY_AMT3: Amount of previous payment in July, 2005 (NT dollar)</span>
<span class="c1">#PAY_AMT4: Amount of previous payment in June, 2005 (NT dollar)</span>
<span class="c1">#PAY_AMT5: Amount of previous payment in May, 2005 (NT dollar)</span>
<span class="c1">#PAY_AMT6: Amount of previous payment in April, 2005 (NT dollar)</span>
<span class="c1">#default.payment.next.month: Default payment (1=yes, 0=no)</span>
</pre></div>

    </div>
</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[210]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#importing all the necessary packages</span>

<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="o">%</span><span class="k">matplotlib</span> inline
<span class="kn">import</span> <span class="nn">seaborn</span> <span class="k">as</span> <span class="nn">sns</span>
<span class="kn">import</span> <span class="nn">warnings</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">filterwarnings</span><span class="p">(</span><span class="s1">&#39;ignore&#39;</span><span class="p">)</span>
<span class="kn">from</span> <span class="nn">sklearn</span> <span class="k">import</span> <span class="n">preprocessing</span>
<span class="kn">from</span> <span class="nn">imblearn.pipeline</span> <span class="k">import</span> <span class="n">make_pipeline</span> <span class="k">as</span> <span class="n">make_pipeline_imb</span> <span class="c1"># To do our transformation in a unique time</span>
<span class="kn">from</span> <span class="nn">imblearn.over_sampling</span> <span class="k">import</span> <span class="n">SMOTE</span>
<span class="kn">from</span> <span class="nn">sklearn.pipeline</span> <span class="k">import</span> <span class="n">make_pipeline</span>
<span class="kn">from</span> <span class="nn">imblearn.metrics</span> <span class="k">import</span> <span class="n">classification_report_imbalanced</span>

<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="k">import</span> <span class="n">train_test_split</span>
<span class="kn">from</span> <span class="nn">collections</span> <span class="k">import</span> <span class="n">Counter</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="k">import</span> <span class="n">roc_curve</span><span class="p">,</span> <span class="n">auc</span>

<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="k">import</span> <span class="n">LogisticRegression</span>
<span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="k">import</span> <span class="n">RandomForestClassifier</span>
<span class="kn">from</span> <span class="nn">sklearn.preprocessing</span> <span class="k">import</span> <span class="n">OneHotEncoder</span>
<span class="kn">from</span> <span class="nn">sklearn.preprocessing</span> <span class="k">import</span> <span class="n">LabelEncoder</span>    
<span class="kn">from</span> <span class="nn">sklearn</span> <span class="k">import</span> <span class="n">preprocessing</span>
<span class="kn">from</span> <span class="nn">sklearn.tree</span> <span class="k">import</span> <span class="n">DecisionTreeClassifier</span>

<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="k">import</span> <span class="n">precision_score</span><span class="p">,</span> <span class="n">recall_score</span><span class="p">,</span> <span class="n">fbeta_score</span><span class="p">,</span> <span class="n">confusion_matrix</span><span class="p">,</span> <span class="n">precision_recall_curve</span><span class="p">,</span> <span class="n">accuracy_score</span>
</pre></div>

    </div>
</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[211]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Reading the data using pandas</span>

<span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_excel</span><span class="p">(</span><span class="s2">&quot;default of credit card clients.xls&quot;</span><span class="p">)</span>

<span class="c1">#default of credit card clients.xls</span>
</pre></div>

    </div>
</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[212]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[212]:</div>



<div class="output_html rendered_html output_subarea output_execute_result">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>ID</th>
      <th>LIMIT_BAL</th>
      <th>SEX</th>
      <th>EDUCATION</th>
      <th>MARRIAGE</th>
      <th>AGE</th>
      <th>PAY_0</th>
      <th>PAY_2</th>
      <th>PAY_3</th>
      <th>PAY_4</th>
      <th>...</th>
      <th>BILL_AMT4</th>
      <th>BILL_AMT5</th>
      <th>BILL_AMT6</th>
      <th>PAY_AMT1</th>
      <th>PAY_AMT2</th>
      <th>PAY_AMT3</th>
      <th>PAY_AMT4</th>
      <th>PAY_AMT5</th>
      <th>PAY_AMT6</th>
      <th>default payment next month</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0</th>
      <td>1</td>
      <td>20000</td>
      <td>2</td>
      <td>2</td>
      <td>1</td>
      <td>24</td>
      <td>2</td>
      <td>2</td>
      <td>-1</td>
      <td>-1</td>
      <td>...</td>
      <td>0</td>
      <td>0</td>
      <td>0</td>
      <td>0</td>
      <td>689</td>
      <td>0</td>
      <td>0</td>
      <td>0</td>
      <td>0</td>
      <td>1</td>
    </tr>
    <tr>
      <th>1</th>
      <td>2</td>
      <td>120000</td>
      <td>2</td>
      <td>2</td>
      <td>2</td>
      <td>26</td>
      <td>-1</td>
      <td>2</td>
      <td>0</td>
      <td>0</td>
      <td>...</td>
      <td>3272</td>
      <td>3455</td>
      <td>3261</td>
      <td>0</td>
      <td>1000</td>
      <td>1000</td>
      <td>1000</td>
      <td>0</td>
      <td>2000</td>
      <td>1</td>
    </tr>
    <tr>
      <th>2</th>
      <td>3</td>
      <td>90000</td>
      <td>2</td>
      <td>2</td>
      <td>2</td>
      <td>34</td>
      <td>0</td>
      <td>0</td>
      <td>0</td>
      <td>0</td>
      <td>...</td>
      <td>14331</td>
      <td>14948</td>
      <td>15549</td>
      <td>1518</td>
      <td>1500</td>
      <td>1000</td>
      <td>1000</td>
      <td>1000</td>
      <td>5000</td>
      <td>0</td>
    </tr>
    <tr>
      <th>3</th>
      <td>4</td>
      <td>50000</td>
      <td>2</td>
      <td>2</td>
      <td>1</td>
      <td>37</td>
      <td>0</td>
      <td>0</td>
      <td>0</td>
      <td>0</td>
      <td>...</td>
      <td>28314</td>
      <td>28959</td>
      <td>29547</td>
      <td>2000</td>
      <td>2019</td>
      <td>1200</td>
      <td>1100</td>
      <td>1069</td>
      <td>1000</td>
      <td>0</td>
    </tr>
    <tr>
      <th>4</th>
      <td>5</td>
      <td>50000</td>
      <td>1</td>
      <td>2</td>
      <td>1</td>
      <td>57</td>
      <td>-1</td>
      <td>0</td>
      <td>-1</td>
      <td>0</td>
      <td>...</td>
      <td>20940</td>
      <td>19146</td>
      <td>19131</td>
      <td>2000</td>
      <td>36681</td>
      <td>10000</td>
      <td>9000</td>
      <td>689</td>
      <td>679</td>
      <td>0</td>
    </tr>
  </tbody>
</table>
<p>5 rows × 25 columns</p>
</div>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[213]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Replacing the column name for convenience</span>

<span class="n">df</span><span class="o">.</span><span class="n">rename</span><span class="p">(</span><span class="n">columns</span><span class="o">=</span><span class="p">{</span><span class="s2">&quot;default payment next month&quot;</span><span class="p">:</span> <span class="s2">&quot;default&quot;</span><span class="p">},</span> <span class="n">inplace</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
</pre></div>

    </div>
</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[214]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#checking the columns</span>

<span class="n">df</span><span class="o">.</span><span class="n">columns</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[214]:</div>




<div class="output_text output_subarea output_execute_result">
<pre>Index([&#39;ID&#39;, &#39;LIMIT_BAL&#39;, &#39;SEX&#39;, &#39;EDUCATION&#39;, &#39;MARRIAGE&#39;, &#39;AGE&#39;, &#39;PAY_0&#39;,
       &#39;PAY_2&#39;, &#39;PAY_3&#39;, &#39;PAY_4&#39;, &#39;PAY_5&#39;, &#39;PAY_6&#39;, &#39;BILL_AMT1&#39;, &#39;BILL_AMT2&#39;,
       &#39;BILL_AMT3&#39;, &#39;BILL_AMT4&#39;, &#39;BILL_AMT5&#39;, &#39;BILL_AMT6&#39;, &#39;PAY_AMT1&#39;,
       &#39;PAY_AMT2&#39;, &#39;PAY_AMT3&#39;, &#39;PAY_AMT4&#39;, &#39;PAY_AMT5&#39;, &#39;PAY_AMT6&#39;, &#39;default&#39;],
      dtype=&#39;object&#39;)</pre>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[215]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[215]:</div>




<div class="output_text output_subarea output_execute_result">
<pre>0    23364
1     6636
Name: default, dtype: int64</pre>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Distribution-of-Defaulted-Credit-cards-vs-Non--defaulted">Distribution of Defaulted Credit cards vs Non- defaulted<a class="anchor-link" href="#Distribution-of-Defaulted-Credit-cards-vs-Non--defaulted">&#182;</a></h1><p>Data is highly imbalanced with a ratio of about 78 :22 percent</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[216]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="n">labels</span> <span class="o">=</span>  <span class="s1">&#39;No default- 0&#39;</span><span class="p">,</span><span class="s1">&#39;Default - 1&#39;</span>
<span class="n">colors</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;gold&#39;</span><span class="p">,</span> <span class="s1">&#39;yellowgreen&#39;</span><span class="p">]</span>
<span class="n">plt</span><span class="o">.</span><span class="n">pie</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">groupby</span><span class="p">(</span><span class="s1">&#39;default&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">size</span><span class="p">(),</span><span class="n">labels</span><span class="o">=</span><span class="n">labels</span><span class="p">,</span> <span class="n">colors</span><span class="o">=</span><span class="n">colors</span><span class="p">,</span><span class="n">autopct</span><span class="o">=</span><span class="s1">&#39;</span><span class="si">%1.1f%%</span><span class="s1">&#39;</span><span class="p">,</span> <span class="n">shadow</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">startangle</span><span class="o">=</span><span class="mi">140</span><span class="p">)</span>
<span class="c1">#plt.axis(&#39;equal&#39;)</span>

<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[217]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Checking for null values</span>
<span class="c1">#function to do it</span>
<span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="n">df</span><span class="p">:</span>
    <span class="k">if</span> <span class="n">df</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="o">.</span><span class="n">isnull</span><span class="p">()</span><span class="o">.</span><span class="n">values</span><span class="o">.</span><span class="n">any</span><span class="p">():</span>
        <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;nan values present&quot;</span> <span class="o">+</span><span class="n">c</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;</span><span class="si">{}</span><span class="s2"> No null values&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">c</span><span class="p">))</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>ID No null values
LIMIT_BAL No null values
SEX No null values
EDUCATION No null values
MARRIAGE No null values
AGE No null values
PAY_0 No null values
PAY_2 No null values
PAY_3 No null values
PAY_4 No null values
PAY_5 No null values
PAY_6 No null values
BILL_AMT1 No null values
BILL_AMT2 No null values
BILL_AMT3 No null values
BILL_AMT4 No null values
BILL_AMT5 No null values
BILL_AMT6 No null values
PAY_AMT1 No null values
PAY_AMT2 No null values
PAY_AMT3 No null values
PAY_AMT4 No null values
PAY_AMT5 No null values
PAY_AMT6 No null values
default No null values
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Data-Manipulation:">Data Manipulation:<a class="anchor-link" href="#Data-Manipulation:">&#182;</a></h1><p>Reduced unknown values to category 4 (Education)</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[218]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;EDUCATION&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">unique</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[218]:</div>




<div class="output_text output_subarea output_execute_result">
<pre>array([2, 1, 3, 5, 4, 6, 0])</pre>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[219]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Change values for education  (1 = graduate school; 2 = university; 3 = high school; 4 = others)</span>
<span class="c1">#Anything other than 4 will be changed to 4</span>

<span class="n">fil</span> <span class="o">=</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;EDUCATION&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="mi">5</span><span class="p">)</span> <span class="o">|</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;EDUCATION&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="mi">6</span><span class="p">)</span> <span class="o">|</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;EDUCATION&#39;</span><span class="p">]</span><span class="o">==</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">df</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">fil</span><span class="p">,</span> <span class="s1">&#39;EDUCATION&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mi">4</span>
<span class="n">df</span><span class="p">[</span><span class="s1">&#39;EDUCATION&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[219]:</div>




<div class="output_text output_subarea output_execute_result">
<pre>2    14030
1    10585
3     4917
4      468
Name: EDUCATION, dtype: int64</pre>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[220]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;MARRIAGE&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">unique</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[220]:</div>




<div class="output_text output_subarea output_execute_result">
<pre>array([1, 2, 3, 0])</pre>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Data-Manipulation:">Data Manipulation:<a class="anchor-link" href="#Data-Manipulation:">&#182;</a></h1><p>Reduced unknown values to category 3 (Marital Status)</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[221]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;MARRIAGE&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="s1">&#39;MARRIAGE&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mi">3</span>
<span class="n">df</span><span class="p">[</span><span class="s1">&#39;MARRIAGE&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[221]:</div>




<div class="output_text output_subarea output_execute_result">
<pre>2    15964
1    13659
3      377
Name: MARRIAGE, dtype: int64</pre>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[222]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">sns</span><span class="o">.</span><span class="n">distplot</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;LIMIT_BAL&#39;</span><span class="p">],</span><span class="n">kde</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[222]:</div>




<div class="output_text output_subarea output_execute_result">
<pre>&lt;matplotlib.axes._subplots.AxesSubplot at 0x1a25b4e198&gt;</pre>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[223]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">sns</span><span class="o">.</span><span class="n">distplot</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;AGE&#39;</span><span class="p">],</span><span class="n">kde</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[223]:</div>




<div class="output_text output_subarea output_execute_result">
<pre>&lt;matplotlib.axes._subplots.AxesSubplot at 0x1a152f06a0&gt;</pre>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[176]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#: -1 = pay duly; 1 = payment delay for one month; 2 = payment delay for two months; . . .; 8 = payment delay for eight months; 9 = payment delay for nine months and above. </span>
<span class="c1">#X12-X17: Amount of bill statement (NT dollar). X12 = amount of bill statement in September, 2005; X13 = amount of bill statement in August, 2005; . . .; X17 = amount of bill statement in April, 2005. </span>
</pre></div>

    </div>
</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Correlation-matrix-of-all-variables">Correlation matrix of all variables<a class="anchor-link" href="#Correlation-matrix-of-all-variables">&#182;</a></h1><p>The target variable "default" is correlated to "Repayment status" 
 Which indicates that Repayment status is the best feature interms of predicting default</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[224]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">seaborn</span> <span class="k">as</span> <span class="nn">sns</span>

<span class="n">corr</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">drop</span><span class="p">([</span><span class="s1">&#39;ID&#39;</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">corr</span><span class="p">()</span>
<span class="n">f</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">7</span><span class="p">,</span> <span class="mi">7</span><span class="p">))</span>

<span class="c1"># Generate a custom diverging colormap</span>
<span class="n">cmap</span> <span class="o">=</span> <span class="n">sns</span><span class="o">.</span><span class="n">diverging_palette</span><span class="p">(</span><span class="mi">220</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="n">as_cmap</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>

<span class="c1"># Draw the heatmap with the mask and correct aspect ratio</span>
<span class="n">sns</span><span class="o">.</span><span class="n">heatmap</span><span class="p">(</span><span class="n">corr</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="n">cmap</span><span class="p">,</span> <span class="n">vmin</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span><span class="n">vmax</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">center</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
            <span class="n">square</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">linewidths</span><span class="o">=.</span><span class="mi">5</span><span class="p">)</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[224]:</div>




<div class="output_text output_subarea output_execute_result">
<pre>&lt;matplotlib.axes._subplots.AxesSubplot at 0x1a15679630&gt;</pre>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Distribution-of-all-variables">Distribution of all variables<a class="anchor-link" href="#Distribution-of-all-variables">&#182;</a></h1>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[228]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">continuous_var</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">describe</span><span class="p">()</span><span class="o">.</span><span class="n">columns</span>

<span class="n">_</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">column</span><span class="o">=</span><span class="n">continuous_var</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span><span class="mi">20</span><span class="p">))</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Applying-the-MinMax-Scaler:">Applying the MinMax Scaler:<a class="anchor-link" href="#Applying-the-MinMax-Scaler:">&#182;</a></h1><p>Transformation to normalize values ( If the distribution is not Gaussian or the standard deviation is very small, the min-max scaler works better.)</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[229]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">minmax_scale</span> <span class="o">=</span> <span class="n">preprocessing</span><span class="o">.</span><span class="n">MinMaxScaler</span><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">df</span><span class="p">)</span>
<span class="n">df_minmax</span> <span class="o">=</span> <span class="n">minmax_scale</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">df</span><span class="p">)</span>
<span class="n">df_minmax</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">df_minmax</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">df</span><span class="p">))</span>
<span class="n">df_minmax</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span><span class="mi">20</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[230]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Checking if gender has any association with the Limit Balance.</span>
<span class="c1">#Equally distributed , no such relationship</span>

<span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">()</span>
<span class="n">fig</span><span class="o">.</span><span class="n">set_size_inches</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="n">sns</span><span class="o">.</span><span class="n">barplot</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="s1">&#39;SEX&#39;</span><span class="p">,</span><span class="n">y</span><span class="o">=</span><span class="s1">&#39;LIMIT_BAL&#39;</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">df</span><span class="p">,</span><span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">)</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[230]:</div>




<div class="output_text output_subarea output_execute_result">
<pre>&lt;matplotlib.axes._subplots.AxesSubplot at 0x1a28729780&gt;</pre>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[231]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Education also doesnt provide insights if a person will default or not</span>

<span class="n">pd</span><span class="o">.</span><span class="n">crosstab</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;EDUCATION&#39;</span><span class="p">],</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">kind</span><span class="o">=</span><span class="s1">&#39;bar&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;Frequency for educational qualification&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Education&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Frequency of default&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;1 : graduate school; 2 : university; 3 : high school; 4 : others&quot;</span><span class="p">)</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>1 : graduate school; 2 : university; 3 : high school; 4 : others
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[182]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Marital status also doesn&#39;t provide insights if a person will default or not</span>


<span class="n">pd</span><span class="o">.</span><span class="n">crosstab</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;MARRIAGE&#39;</span><span class="p">],</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">kind</span><span class="o">=</span><span class="s1">&#39;bar&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;Frequency of marital status&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Marital Status&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Frequency of default&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;1 : married; 2 : single; 3 : others &quot;</span><span class="p">)</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>1 : married; 2 : single; 3 : others 
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[183]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#VALUES AFTER APPLYING MINMAX SCALER</span>

<span class="n">pd</span><span class="o">.</span><span class="n">crosstab</span><span class="p">(</span><span class="n">df_minmax</span><span class="p">[</span><span class="s1">&#39;MARRIAGE&#39;</span><span class="p">],</span><span class="n">df_minmax</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">kind</span><span class="o">=</span><span class="s1">&#39;bar&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;Frequency of marital status&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Marital Status&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Frequency of default&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
<span class="c1">#print(&quot;1 : married; 2 : single; 3 : others &quot;)</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Distribution-of-values-for-each-field">Distribution of values for each field<a class="anchor-link" href="#Distribution-of-values-for-each-field">&#182;</a></h1>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[184]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">()</span>
<span class="n">fig</span><span class="o">.</span><span class="n">set_size_inches</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="n">sns</span><span class="o">.</span><span class="n">barplot</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="s1">&#39;EDUCATION&#39;</span><span class="p">,</span><span class="n">y</span><span class="o">=</span><span class="s1">&#39;LIMIT_BAL&#39;</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">df</span><span class="p">,</span><span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Education level and amount of limit balance&quot;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;1 : graduate school; 2 : university; 3 : high school; 4 : others&quot;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>1 : graduate school; 2 : university; 3 : high school; 4 : others
</pre>
</div>
</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[185]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">temp</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s2">&quot;default&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span>
<span class="n">df1</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">&#39;default&#39;</span><span class="p">:</span> <span class="n">temp</span><span class="o">.</span><span class="n">index</span><span class="p">,</span><span class="s1">&#39;values&#39;</span><span class="p">:</span> <span class="n">temp</span><span class="o">.</span><span class="n">values</span><span class="p">})</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span> <span class="o">=</span> <span class="p">(</span><span class="mi">6</span><span class="p">,</span><span class="mi">6</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;Default Credit Card Clients - target value - data unbalance</span><span class="se">\n</span><span class="s1"> (Default = 1, Not Default = 0)&#39;</span><span class="p">)</span>
<span class="n">sns</span><span class="o">.</span><span class="n">barplot</span><span class="p">(</span><span class="n">x</span> <span class="o">=</span> <span class="s1">&#39;default&#39;</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="s2">&quot;values&quot;</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">df1</span><span class="p">)</span>
<span class="n">locs</span><span class="p">,</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">xticks</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Running-the-model-on-imbalanced-data">Running the model on imbalanced data<a class="anchor-link" href="#Running-the-model-on-imbalanced-data">&#182;</a></h1>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[240]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Perform oversampling to balance the data</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">df_minmax</span><span class="o">.</span><span class="n">drop</span><span class="p">([</span><span class="s2">&quot;default&quot;</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">values</span> <span class="c1">#Setting the X to do the split</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">df_minmax</span><span class="p">[</span><span class="s2">&quot;default&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">values</span> <span class="c1"># transforming the values in array</span>


<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span><span class="o">=</span><span class="n">train_test_split</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.20</span><span class="p">)</span>


<span class="c1"># Separate majority and minority classes</span>
<span class="n">df_majority</span> <span class="o">=</span> <span class="n">df_minmax</span><span class="p">[</span><span class="n">df_minmax</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">]</span><span class="o">==</span><span class="mi">0</span><span class="p">]</span>
<span class="n">df_minority</span> <span class="o">=</span> <span class="n">df_minmax</span><span class="p">[</span><span class="n">df_minmax</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">]</span><span class="o">==</span><span class="mi">1</span><span class="p">]</span>

<span class="nb">print</span><span class="p">(</span><span class="n">df_majority</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">count</span><span class="p">())</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;-----------&quot;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">df_minority</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">count</span><span class="p">())</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;-----------&quot;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">())</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>23364
-----------
6636
-----------
0    23364
1     6636
Name: default, dtype: int64
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[242]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="k">import</span> <span class="n">cross_val_score</span>

<span class="kn">from</span> <span class="nn">sklearn</span> <span class="k">import</span> <span class="n">linear_model</span>
<span class="n">logreg</span> <span class="o">=</span> <span class="n">linear_model</span><span class="o">.</span><span class="n">LogisticRegression</span><span class="p">(</span><span class="n">C</span><span class="o">=</span><span class="mf">1e5</span><span class="p">)</span>
<span class="n">logreg</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="n">prediction</span> <span class="o">=</span> <span class="n">logreg</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;accuaracy of model&quot;</span><span class="p">)</span>
<span class="n">a</span><span class="o">=</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">)</span>
<span class="n">a</span><span class="o">=</span><span class="n">a</span><span class="o">*</span><span class="mi">100</span>
<span class="nb">print</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>accuaracy of model
81.01666666666667
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Conclusion-of-running-model-on-imbalanced-data:">Conclusion of running model on imbalanced data:<a class="anchor-link" href="#Conclusion-of-running-model-on-imbalanced-data:">&#182;</a></h1><p>Since distribution is 78:22 ratio, so running a model yeilds an 80 percent accuarcy. So it makes no sense to run a model on imbalanced data. Even random guess will give this result.</p>

</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Since-Data-is-highly-imbalanced-:">Since Data is highly imbalanced :<a class="anchor-link" href="#Since-Data-is-highly-imbalanced-:">&#182;</a></h1><p>Random Oversampling of minority class is performed, to get equal proportion of both classes. Random oversampling just replicates the existing minority class data points.</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[243]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.utils</span> <span class="k">import</span> <span class="n">resample</span>

<span class="c1"># Upsample minority class</span>
<span class="n">df_minority_oversampling</span> <span class="o">=</span> <span class="n">resample</span><span class="p">(</span><span class="n">df_minority</span><span class="p">,</span> 
                                 <span class="n">replace</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>     <span class="c1"># sample with replacement</span>
                                 <span class="n">n_samples</span><span class="o">=</span><span class="mi">22677</span><span class="p">,</span>    <span class="c1"># to match majority class</span>
                                 <span class="n">random_state</span><span class="o">=</span><span class="mi">587</span><span class="p">)</span> <span class="c1"># reproducible results</span>
<span class="c1"># Combine majority class with upsampled minority class</span>
<span class="n">df_oversample</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">df_majority</span><span class="p">,</span> <span class="n">df_minority_oversampling</span><span class="p">])</span>
<span class="c1"># Display new class counts</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Now the distribution of non default and default are almost close&quot;</span><span class="p">)</span>
<span class="n">df_oversample</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>Now the distribution of non default and default are almost close
</pre>
</div>
</div>

<div class="output_area">

    <div class="prompt output_prompt">Out[243]:</div>




<div class="output_text output_subarea output_execute_result">
<pre>0.0    23364
1.0    22677
Name: default, dtype: int64</pre>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Splitting-into-train-and-test-80-percent-train,-20-percent-test">Splitting into train and test 80 percent train, 20 percent test<a class="anchor-link" href="#Splitting-into-train-and-test-80-percent-train,-20-percent-test">&#182;</a></h1>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[244]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#using the new data frame - oversampled dataframe --- oversampling of minority class</span>

<span class="n">X</span> <span class="o">=</span> <span class="n">df_oversample</span><span class="o">.</span><span class="n">drop</span><span class="p">([</span><span class="s2">&quot;default&quot;</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">values</span> <span class="c1">#Setting the X to do the split</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">df_oversample</span><span class="p">[</span><span class="s2">&quot;default&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">values</span> <span class="c1"># transforming the values in array</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span><span class="o">=</span><span class="n">train_test_split</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.20</span><span class="p">)</span>
</pre></div>

    </div>
</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Using-logistic-regression">Using logistic regression<a class="anchor-link" href="#Using-logistic-regression">&#182;</a></h1><h1 id="Most-widely-used-for-Binary-classification-problem.The-sigmoid-function-snaps-values-to-0-and-1,-and-we-predict-a-class-value.">Most widely used for Binary classification problem.The sigmoid function snaps values to 0 and 1, and we predict a class value.<a class="anchor-link" href="#Most-widely-used-for-Binary-classification-problem.The-sigmoid-function-snaps-values-to-0-and-1,-and-we-predict-a-class-value.">&#182;</a></h1>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[245]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Create dictionary for storing values of all models</span>

<span class="n">prediction</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">()</span>

<span class="c1">#Run the logistic Regression model</span>
<span class="c1">#import the linear_model class from sklearn package</span>
<span class="kn">from</span> <span class="nn">sklearn</span> <span class="k">import</span> <span class="n">linear_model</span>

<span class="c1">#create an object of the class, logreg is the object of class LogisticRegression</span>
<span class="n">logreg</span> <span class="o">=</span> <span class="n">linear_model</span><span class="o">.</span><span class="n">LogisticRegression</span><span class="p">(</span><span class="n">C</span><span class="o">=</span><span class="mf">1e5</span><span class="p">)</span>

<span class="c1">#call object.fir on (X_train----Set of predictors, Y_train ------target variable. 80 percent is used for training)</span>
<span class="n">logreg</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="c1">#Model learns from training process</span>
<span class="c1">#After training the model -- predict the the class for rest of 20 percent of data</span>
<span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;Logistic&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">logreg</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>

<span class="c1">#after predicting we check for the accuracy</span>
<span class="c1">#Accuracy is defined as comparison between the actual class of target variable from the test data vs predicted</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;accuaracy of model&quot;</span><span class="p">)</span>
<span class="n">a</span><span class="o">=</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;Logistic&#39;</span><span class="p">])</span>
<span class="n">a</span><span class="o">=</span><span class="n">a</span><span class="o">*</span><span class="mi">100</span>
<span class="nb">print</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>


<span class="c1">#Print the confusion matrix</span>
<span class="c1">#Confusion matrix is classifying Actual and predicted</span>
<span class="c1">#False negative ---Predicted as negative but actually positive</span>
<span class="c1">#True Positive ----Predicted as positive and actually positive</span>
<span class="c1">#True Negative ---- Predicted as negative  and actually negative</span>
<span class="c1">#False Positive----Predicted as positive but actually negative</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="k">import</span> <span class="n">confusion_matrix</span>
<span class="n">confusion_matrix</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span><span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;Logistic&#39;</span><span class="p">])</span>

<span class="c1">#print(confusion_matrix)  </span>


<span class="kn">import</span> <span class="nn">scikitplot</span> <span class="k">as</span> <span class="nn">skplt</span> 
<span class="n">skplt</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">plot_confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;Logistic&#39;</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>

<span class="n">skplt</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">plot_confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;Logistic&#39;</span><span class="p">],</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>

<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="k">import</span> <span class="n">average_precision_score</span>
<span class="n">average_precision</span> <span class="o">=</span> <span class="n">average_precision_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span><span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;Logistic&#39;</span><span class="p">])</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Average precision-recall score: </span><span class="si">{0:0.2f}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
      <span class="n">average_precision</span><span class="p">))</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>accuaracy of model
67.83581279183407
</pre>
</div>
</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>Average precision-recall score: 0.62
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Using-K-Nearest-Neighbors">Using K Nearest Neighbors<a class="anchor-link" href="#Using-K-Nearest-Neighbors">&#182;</a></h1><p>For a data point to be classified into two different categories, We find the k nearest neighbors (k is any odd value)
Then we use majority voting on the labels. The majority class label is assigned to the data point
If k is even then distance is calculated. The shorted distance is used</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[246]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.neighbors</span> <span class="k">import</span> <span class="n">KNeighborsClassifier</span>  
<span class="n">classifier</span> <span class="o">=</span> <span class="n">KNeighborsClassifier</span><span class="p">(</span><span class="n">n_neighbors</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>  
<span class="n">classifier</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span> 
<span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;KNN&#39;</span><span class="p">]</span><span class="o">=</span> <span class="n">classifier</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>  
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;accuaracy of model&quot;</span><span class="p">)</span>
<span class="n">a</span><span class="o">=</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;KNN&#39;</span><span class="p">])</span>
<span class="n">a</span><span class="o">=</span><span class="n">a</span><span class="o">*</span><span class="mi">100</span>
<span class="nb">print</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>


<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="k">import</span> <span class="n">confusion_matrix</span>
<span class="n">confusion_matrix</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span><span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;KNN&#39;</span><span class="p">])</span>

<span class="c1">#print(confusion_matrix)  </span>
<span class="kn">import</span> <span class="nn">scikitplot</span> <span class="k">as</span> <span class="nn">skplt</span> 
<span class="n">skplt</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">plot_confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;KNN&#39;</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>

<span class="n">skplt</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">plot_confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;KNN&#39;</span><span class="p">],</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>


<span class="n">average_precision</span> <span class="o">=</span> <span class="n">average_precision_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span><span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;KNN&#39;</span><span class="p">])</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Average precision-recall score: </span><span class="si">{0:0.2f}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
      <span class="n">average_precision</span><span class="p">))</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>accuaracy of model
75.93658377674014
</pre>
</div>
</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>Average precision-recall score: 0.69
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Using-Decision-Tree-Classifier">Using Decision Tree Classifier<a class="anchor-link" href="#Using-Decision-Tree-Classifier">&#182;</a></h1><p>Gini impurity is a measure of how often a randomly chosen element from the set would be incorrectly labeled 
if it was randomly labeled according to the distribution of labels in the subset.</p>
<p>DTC  will segregate the data points based on all values of variables and identify the variable, 
which creates the best homogeneous sets of data points (which are heterogeneous to each other)</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[247]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Calling the Decision TRee Classifier class</span>
<span class="n">clf_gini</span> <span class="o">=</span> <span class="n">DecisionTreeClassifier</span><span class="p">(</span><span class="n">criterion</span> <span class="o">=</span> <span class="s2">&quot;gini&quot;</span><span class="p">,</span> <span class="n">random_state</span> <span class="o">=</span> <span class="mi">100</span><span class="p">,</span>
                               <span class="n">max_depth</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">min_samples_leaf</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="n">clf_gini</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>

<span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;DecisionTree&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">clf_gini</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;accuracy of the model&quot;</span><span class="p">)</span>
<span class="n">a</span><span class="o">=</span><span class="n">accuracy_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;DecisionTree&#39;</span><span class="p">])</span>
<span class="n">a</span><span class="o">=</span><span class="n">a</span><span class="o">*</span><span class="mi">100</span>
<span class="nb">print</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>



<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="k">import</span> <span class="n">confusion_matrix</span>
<span class="n">confusion_matrix</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span><span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;DecisionTree&#39;</span><span class="p">])</span>

<span class="c1">#print(confusion_matrix)  </span>


<span class="kn">import</span> <span class="nn">scikitplot</span> <span class="k">as</span> <span class="nn">skplt</span> 
<span class="n">skplt</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">plot_confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;DecisionTree&#39;</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>


<span class="n">skplt</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">plot_confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;DecisionTree&#39;</span><span class="p">],</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>



<span class="n">average_precision</span> <span class="o">=</span> <span class="n">average_precision_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span><span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;DecisionTree&#39;</span><span class="p">])</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Average precision-recall score: </span><span class="si">{0:0.2f}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
      <span class="n">average_precision</span><span class="p">))</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>accuracy of the model
69.26919318058421
</pre>
</div>
</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>Average precision-recall score: 0.64
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Picture-of-the-tree">Picture of the tree<a class="anchor-link" href="#Picture-of-the-tree">&#182;</a></h1>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[248]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.externals.six</span> <span class="k">import</span> <span class="n">StringIO</span>  
<span class="kn">from</span> <span class="nn">IPython.display</span> <span class="k">import</span> <span class="n">Image</span>  
<span class="kn">from</span> <span class="nn">sklearn.tree</span> <span class="k">import</span> <span class="n">export_graphviz</span>
<span class="kn">import</span> <span class="nn">pydotplus</span>
<span class="n">dot_data</span> <span class="o">=</span> <span class="n">StringIO</span><span class="p">()</span>
<span class="n">export_graphviz</span><span class="p">(</span><span class="n">clf_gini</span><span class="p">,</span> <span class="n">out_file</span><span class="o">=</span><span class="n">dot_data</span><span class="p">,</span>  
                <span class="n">filled</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">rounded</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
                <span class="n">special_characters</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">graph</span> <span class="o">=</span> <span class="n">pydotplus</span><span class="o">.</span><span class="n">graph_from_dot_data</span><span class="p">(</span><span class="n">dot_data</span><span class="o">.</span><span class="n">getvalue</span><span class="p">())</span>  
<span class="n">Image</span><span class="p">(</span><span class="n">graph</span><span class="o">.</span><span class="n">create_png</span><span class="p">())</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[248]:</div>




<div class="output_png output_subarea output_execute_result">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Using-Random-Forest---Ensemble-learning-,-deeper-Decision-trees">Using Random Forest-- Ensemble learning , deeper Decision trees<a class="anchor-link" href="#Using-Random-Forest---Ensemble-learning-,-deeper-Decision-trees">&#182;</a></h1><p>Particularly, trees that are grown very deep tend to learn highly irregular patterns: they overfit their training sets, i.e. have low bias, but very high variance. Random forests are a way of averaging multiple deep decision trees, trained on different parts of the same training set, 
with the goal of reducing the variance</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[249]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#calling the RandomForest Classifier</span>


<span class="n">clf</span> <span class="o">=</span> <span class="n">RandomForestClassifier</span><span class="p">(</span><span class="n">n_jobs</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> 
                             <span class="n">random_state</span><span class="o">=</span><span class="mi">9</span><span class="p">,</span>
                             <span class="c1">#criterion=RFC_METRIC,</span>
                             <span class="n">n_estimators</span><span class="o">=</span><span class="mi">11</span><span class="p">,</span>
                             <span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span><span class="n">y_train</span><span class="p">)</span>
<span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;RandomForest&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
<span class="n">a</span><span class="o">=</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;RandomForest&#39;</span><span class="p">],</span> <span class="n">y_test</span><span class="p">)</span>
<span class="n">a</span><span class="o">=</span> <span class="n">a</span><span class="o">*</span><span class="mi">100</span>
<span class="nb">print</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>


<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="k">import</span> <span class="n">confusion_matrix</span>
<span class="n">confusion_matrix</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span><span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;RandomForest&#39;</span><span class="p">])</span>

<span class="c1">#print(confusion_matrix)  </span>


<span class="kn">import</span> <span class="nn">scikitplot</span> <span class="k">as</span> <span class="nn">skplt</span> 
<span class="n">skplt</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">plot_confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;RandomForest&#39;</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>


<span class="n">skplt</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">plot_confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;RandomForest&#39;</span><span class="p">],</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>


<span class="n">average_precision</span> <span class="o">=</span> <span class="n">average_precision_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span><span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;RandomForest&#39;</span><span class="p">])</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Average precision-recall score: </span><span class="si">{0:0.2f}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
      <span class="n">average_precision</span><span class="p">))</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>91.91008795743295
</pre>
</div>
</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>Average precision-recall score: 0.87
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[250]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">pydot</span>

<span class="c1"># Limit depth of tree to 3 levels</span>
<span class="n">rf_small</span> <span class="o">=</span> <span class="n">RandomForestClassifier</span><span class="p">(</span><span class="n">n_estimators</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">max_depth</span> <span class="o">=</span> <span class="mi">3</span><span class="p">)</span>
<span class="n">rf_small</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="c1"># Extract the small tree</span>
<span class="n">tree_small</span> <span class="o">=</span> <span class="n">rf_small</span><span class="o">.</span><span class="n">estimators_</span><span class="p">[</span><span class="mi">5</span><span class="p">]</span>
<span class="n">dfnew</span> <span class="o">=</span> <span class="n">df_minmax</span><span class="o">.</span><span class="n">iloc</span><span class="p">[:,</span> <span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="n">feature_list</span> <span class="o">=</span><span class="nb">list</span><span class="p">(</span><span class="n">dfnew</span><span class="o">.</span><span class="n">columns</span><span class="p">)</span>
<span class="c1"># Save the tree as a png image</span>
<span class="n">export_graphviz</span><span class="p">(</span><span class="n">tree_small</span><span class="p">,</span> <span class="n">out_file</span> <span class="o">=</span> <span class="s1">&#39;small_tree.dot&#39;</span><span class="p">,</span> <span class="n">feature_names</span> <span class="o">=</span> <span class="n">feature_list</span><span class="p">,</span> <span class="n">rounded</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> <span class="n">filled</span> <span class="o">=</span><span class="kc">True</span><span class="p">,</span><span class="n">precision</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="p">(</span><span class="n">graph</span><span class="p">,</span> <span class="p">)</span> <span class="o">=</span> <span class="n">pydot</span><span class="o">.</span><span class="n">graph_from_dot_file</span><span class="p">(</span><span class="s1">&#39;small_tree.dot&#39;</span><span class="p">)</span>
<span class="n">graph</span><span class="o">.</span><span class="n">write_png</span><span class="p">(</span><span class="s1">&#39;small_tree.png&#39;</span><span class="p">);</span>
<span class="n">Image</span><span class="p">(</span><span class="n">graph</span><span class="o">.</span><span class="n">create_png</span><span class="p">())</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[250]:</div>




<div class="output_png output_subarea output_execute_result">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Feature-Selection">Feature Selection<a class="anchor-link" href="#Feature-Selection">&#182;</a></h1><p>Check the best features to used for predictive Modeling</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[251]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Shows the plot of best features to use , while modeling, importance of features</span>
<span class="c1">#The esitmators can be assigned a value, change in the values will result in different values of accuarcy</span>

<span class="n">target</span> <span class="o">=</span> <span class="s1">&#39;default&#39;</span>
<span class="n">predictors</span> <span class="o">=</span> <span class="p">[</span>  <span class="s1">&#39;LIMIT_BAL&#39;</span><span class="p">,</span> <span class="s1">&#39;SEX&#39;</span><span class="p">,</span> <span class="s1">&#39;EDUCATION&#39;</span><span class="p">,</span> <span class="s1">&#39;MARRIAGE&#39;</span><span class="p">,</span> <span class="s1">&#39;AGE&#39;</span><span class="p">,</span> 
                <span class="s1">&#39;PAY_0&#39;</span><span class="p">,</span> <span class="s1">&#39;PAY_2&#39;</span><span class="p">,</span> <span class="s1">&#39;PAY_3&#39;</span><span class="p">,</span> <span class="s1">&#39;PAY_4&#39;</span><span class="p">,</span> <span class="s1">&#39;PAY_5&#39;</span><span class="p">,</span> <span class="s1">&#39;PAY_6&#39;</span><span class="p">,</span> 
                <span class="s1">&#39;BILL_AMT1&#39;</span><span class="p">,</span><span class="s1">&#39;BILL_AMT2&#39;</span><span class="p">,</span> <span class="s1">&#39;BILL_AMT3&#39;</span><span class="p">,</span> <span class="s1">&#39;BILL_AMT4&#39;</span><span class="p">,</span> <span class="s1">&#39;BILL_AMT5&#39;</span><span class="p">,</span> <span class="s1">&#39;BILL_AMT6&#39;</span><span class="p">,</span>
                <span class="s1">&#39;PAY_AMT1&#39;</span><span class="p">,</span> <span class="s1">&#39;PAY_AMT2&#39;</span><span class="p">,</span> <span class="s1">&#39;PAY_AMT3&#39;</span><span class="p">,</span> <span class="s1">&#39;PAY_AMT4&#39;</span><span class="p">,</span> <span class="s1">&#39;PAY_AMT5&#39;</span><span class="p">,</span> <span class="s1">&#39;PAY_AMT6&#39;</span><span class="p">]</span>
<span class="n">train_df</span><span class="p">,</span> <span class="n">val_df</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span><span class="n">df_minmax</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mi">20</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span> <span class="p">)</span>
<span class="n">clf</span> <span class="o">=</span> <span class="n">RandomForestClassifier</span><span class="p">(</span><span class="n">n_jobs</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> 
                             <span class="n">random_state</span><span class="o">=</span><span class="mi">9</span><span class="p">,</span>
                             <span class="c1">#criterion=RFC_METRIC,</span>
                             <span class="n">n_estimators</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span>
                             <span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">train_df</span><span class="p">[</span><span class="n">predictors</span><span class="p">],</span> <span class="n">train_df</span><span class="p">[</span><span class="n">target</span><span class="p">]</span><span class="o">.</span><span class="n">values</span><span class="p">)</span>
<span class="n">preds</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">val_df</span><span class="p">[</span><span class="n">predictors</span><span class="p">])</span>

<span class="n">tmp</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">&#39;Feature&#39;</span><span class="p">:</span> <span class="n">predictors</span><span class="p">,</span> <span class="s1">&#39;Feature importance&#39;</span><span class="p">:</span> <span class="n">clf</span><span class="o">.</span><span class="n">feature_importances_</span><span class="p">})</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">tmp</span><span class="o">.</span><span class="n">sort_values</span><span class="p">(</span><span class="n">by</span><span class="o">=</span><span class="s1">&#39;Feature importance&#39;</span><span class="p">,</span><span class="n">ascending</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span> <span class="o">=</span> <span class="p">(</span><span class="mi">7</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;Features importance&#39;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">14</span><span class="p">)</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">sns</span><span class="o">.</span><span class="n">barplot</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="s1">&#39;Feature&#39;</span><span class="p">,</span><span class="n">y</span><span class="o">=</span><span class="s1">&#39;Feature importance&#39;</span><span class="p">,</span><span class="n">data</span><span class="o">=</span><span class="n">tmp</span><span class="p">)</span>
<span class="n">s</span><span class="o">.</span><span class="n">set_xticklabels</span><span class="p">(</span><span class="n">s</span><span class="o">.</span><span class="n">get_xticklabels</span><span class="p">(),</span><span class="n">rotation</span><span class="o">=</span><span class="mi">90</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>   

<span class="n">accuracy_score</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span><span class="n">val_df</span><span class="p">[</span><span class="n">target</span><span class="p">])</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

<div class="output_area">

    <div class="prompt output_prompt">Out[251]:</div>




<div class="output_text output_subarea output_execute_result">
<pre>0.85</pre>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[252]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="k">import</span> <span class="n">accuracy_score</span>

<span class="nb">cmp</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">model</span><span class="p">,</span> <span class="n">predicted</span> <span class="ow">in</span> <span class="n">prediction</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
    <span class="n">accuracy</span> <span class="o">=</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">predicted</span><span class="p">)</span>
    <span class="n">accuracy</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">accuracy</span><span class="o">*</span><span class="mi">100</span><span class="p">)</span>
    <span class="nb">cmp</span> <span class="o">+=</span> <span class="mi">1</span>
    
    
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>Logistic 67.83581279183407
KNN 75.93658377674014
DecisionTree 69.26919318058421
RandomForest 91.91008795743295
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Area-under-the-curve---Receiver-Operator-characteristic">Area under the curve - Receiver Operator characteristic<a class="anchor-link" href="#Area-under-the-curve---Receiver-Operator-characteristic">&#182;</a></h1><p>Shows how well the model performs
In regression problems , accuracy is used as a solid metric to identify model performance
Whereas in classification problems, Confusion matrix and AUC is used as solid metric to check models performance</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[253]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Plotting the ROC - Area Under the Curve for all the models</span>

<span class="k">def</span> <span class="nf">formatt</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
    <span class="k">if</span> <span class="n">x</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
        <span class="k">return</span> <span class="mi">0</span>
    <span class="k">return</span> <span class="mi">1</span>
<span class="n">vfunc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vectorize</span><span class="p">(</span><span class="n">formatt</span><span class="p">)</span>

<span class="nb">cmp</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">colors</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;b&#39;</span><span class="p">,</span> <span class="s1">&#39;g&#39;</span><span class="p">,</span> <span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="s1">&#39;m&#39;</span><span class="p">,</span> <span class="s1">&#39;k&#39;</span><span class="p">]</span>
<span class="k">for</span> <span class="n">model</span><span class="p">,</span> <span class="n">predicted</span> <span class="ow">in</span> <span class="n">prediction</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
    <span class="n">false_positive_rate</span><span class="p">,</span> <span class="n">true_positive_rate</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">predicted</span><span class="p">)</span>
    <span class="n">roc_auc</span> <span class="o">=</span> <span class="n">auc</span><span class="p">(</span><span class="n">false_positive_rate</span><span class="p">,</span> <span class="n">true_positive_rate</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">false_positive_rate</span><span class="p">,</span> <span class="n">true_positive_rate</span><span class="p">,</span> <span class="n">colors</span><span class="p">[</span><span class="nb">cmp</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;</span><span class="si">%s</span><span class="s1">: AUC </span><span class="si">%0.2f</span><span class="s1">&#39;</span><span class="o">%</span> <span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="n">roc_auc</span><span class="p">))</span>
    <span class="nb">cmp</span> <span class="o">+=</span> <span class="mi">1</span>

<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;Classifiers comparison with ROC&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">&#39;lower right&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">],[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="s1">&#39;r--&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">([</span><span class="o">-</span><span class="mf">0.1</span><span class="p">,</span><span class="mf">1.2</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">([</span><span class="o">-</span><span class="mf">0.1</span><span class="p">,</span><span class="mf">1.2</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span> 
</pre></div>

    </div>
</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Using-SMOTE---Synthetic-Minority-Oversampling-Technique">Using SMOTE - Synthetic Minority Oversampling Technique<a class="anchor-link" href="#Using-SMOTE---Synthetic-Minority-Oversampling-Technique">&#182;</a></h1><p>over-sampling approach in which the minority class is over-sampled by creating ``synthetic'' examples rather than by over-sampling with replacement.</p>
<p>Reduces the chance of overfitting</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[254]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Perform oversampling to balance the data</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">df_minmax</span><span class="o">.</span><span class="n">drop</span><span class="p">([</span><span class="s2">&quot;default&quot;</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">values</span> <span class="c1">#Setting the X to do the split</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">df_minmax</span><span class="p">[</span><span class="s2">&quot;default&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">values</span> <span class="c1"># transforming the values in array</span>


<span class="c1"># splitting data into training and test set</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.20</span><span class="p">)</span>

<span class="n">classifier</span> <span class="o">=</span> <span class="n">RandomForestClassifier</span>

<span class="c1"># build model with SMOTE imblearn</span>
<span class="n">smote_pipeline</span> <span class="o">=</span> <span class="n">make_pipeline_imb</span><span class="p">(</span><span class="n">SMOTE</span><span class="p">(</span><span class="n">random_state</span><span class="o">=</span><span class="mi">4</span><span class="p">),</span> \
                                   <span class="n">classifier</span><span class="p">(</span><span class="n">random_state</span><span class="o">=</span><span class="mi">42</span><span class="p">))</span>

<span class="n">smote_model</span> <span class="o">=</span> <span class="n">smote_pipeline</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
<span class="n">smote_prediction</span> <span class="o">=</span> <span class="n">smote_model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>

<span class="c1">#Showing the diference before and after the transformation used</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;normal data distribution: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">Counter</span><span class="p">(</span><span class="n">y</span><span class="p">)))</span>
<span class="n">X_smote</span><span class="p">,</span> <span class="n">y_smote</span> <span class="o">=</span> <span class="n">SMOTE</span><span class="p">()</span><span class="o">.</span><span class="n">fit_sample</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;SMOTE data distribution: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">Counter</span><span class="p">(</span><span class="n">y_smote</span><span class="p">)))</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>normal data distribution: Counter({0.0: 23364, 1.0: 6636})
SMOTE data distribution: Counter({1.0: 23364, 0.0: 23364})
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[255]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Train test split</span>

<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span><span class="o">=</span><span class="n">train_test_split</span><span class="p">(</span><span class="n">X_smote</span><span class="p">,</span> <span class="n">y_smote</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.20</span><span class="p">)</span>
</pre></div>

    </div>
</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[256]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">prediction</span><span class="o">=</span><span class="nb">dict</span><span class="p">()</span>

<span class="kn">from</span> <span class="nn">sklearn.neighbors</span> <span class="k">import</span> <span class="n">KNeighborsClassifier</span>  
<span class="n">classifier</span> <span class="o">=</span> <span class="n">KNeighborsClassifier</span><span class="p">(</span><span class="n">n_neighbors</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>  
<span class="n">classifier</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span> 
<span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;KNN&#39;</span><span class="p">]</span><span class="o">=</span> <span class="n">classifier</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>  
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;accuaracy of model&quot;</span><span class="p">)</span>
<span class="n">a</span><span class="o">=</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;KNN&#39;</span><span class="p">])</span>
<span class="n">a</span><span class="o">=</span><span class="n">a</span><span class="o">*</span><span class="mi">100</span>
<span class="nb">print</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>


<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="k">import</span> <span class="n">confusion_matrix</span>
<span class="n">confusion_matrix</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span><span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;KNN&#39;</span><span class="p">])</span>

<span class="n">skplt</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">plot_confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;KNN&#39;</span><span class="p">],</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>


<span class="n">average_precision</span> <span class="o">=</span> <span class="n">average_precision_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span><span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;KNN&#39;</span><span class="p">])</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Average precision-recall score: </span><span class="si">{0:0.2f}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
      <span class="n">average_precision</span><span class="p">))</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>accuaracy of model
79.02846137384978
</pre>
</div>
</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>Average precision-recall score: 0.72
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[257]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">clf</span> <span class="o">=</span> <span class="n">RandomForestClassifier</span><span class="p">(</span><span class="n">n_jobs</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> 
                             <span class="n">random_state</span><span class="o">=</span><span class="mi">9</span><span class="p">,</span>
                             <span class="c1">#criterion=RFC_METRIC,</span>
                             <span class="n">n_estimators</span><span class="o">=</span><span class="mi">11</span><span class="p">,</span>
                             <span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span><span class="n">y_train</span><span class="p">)</span>
<span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;RandomForest&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
<span class="n">a</span><span class="o">=</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;RandomForest&#39;</span><span class="p">],</span> <span class="n">y_test</span><span class="p">)</span>
<span class="n">a</span><span class="o">=</span> <span class="n">a</span><span class="o">*</span><span class="mi">100</span>
<span class="nb">print</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="n">skplt</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">plot_confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;RandomForest&#39;</span><span class="p">],</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>


<span class="n">average_precision</span> <span class="o">=</span> <span class="n">average_precision_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span><span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;RandomForest&#39;</span><span class="p">])</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Average precision-recall score: </span><span class="si">{0:0.2f}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span>
      <span class="n">average_precision</span><span class="p">))</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>82.90177616092446
</pre>
</div>
</div>

<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>Average precision-recall score: 0.78
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[258]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="k">import</span> <span class="n">accuracy_score</span>

<span class="nb">cmp</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">model</span><span class="p">,</span> <span class="n">predicted</span> <span class="ow">in</span> <span class="n">prediction</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
    <span class="n">accuracy</span> <span class="o">=</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">predicted</span><span class="p">)</span>
    <span class="n">accuracy</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="n">accuracy</span><span class="o">*</span><span class="mi">100</span><span class="p">)</span>
    <span class="nb">cmp</span> <span class="o">+=</span> <span class="mi">1</span>
    
    
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>KNN 79.02846137384978
RandomForest 82.90177616092446
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[259]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">formatt</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
    <span class="k">if</span> <span class="n">x</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
        <span class="k">return</span> <span class="mi">0</span>
    <span class="k">return</span> <span class="mi">1</span>
<span class="n">vfunc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vectorize</span><span class="p">(</span><span class="n">formatt</span><span class="p">)</span>

<span class="nb">cmp</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">colors</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;b&#39;</span><span class="p">,</span> <span class="s1">&#39;g&#39;</span><span class="p">,</span> <span class="s1">&#39;y&#39;</span><span class="p">,</span> <span class="s1">&#39;m&#39;</span><span class="p">,</span> <span class="s1">&#39;k&#39;</span><span class="p">]</span>
<span class="k">for</span> <span class="n">model</span><span class="p">,</span> <span class="n">predicted</span> <span class="ow">in</span> <span class="n">prediction</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
    <span class="n">false_positive_rate</span><span class="p">,</span> <span class="n">true_positive_rate</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">predicted</span><span class="p">)</span>
    <span class="n">roc_auc</span> <span class="o">=</span> <span class="n">auc</span><span class="p">(</span><span class="n">false_positive_rate</span><span class="p">,</span> <span class="n">true_positive_rate</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">false_positive_rate</span><span class="p">,</span> <span class="n">true_positive_rate</span><span class="p">,</span> <span class="n">colors</span><span class="p">[</span><span class="nb">cmp</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;</span><span class="si">%s</span><span class="s1">: AUC </span><span class="si">%0.2f</span><span class="s1">&#39;</span><span class="o">%</span> <span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="n">roc_auc</span><span class="p">))</span>
    <span class="nb">cmp</span> <span class="o">+=</span> <span class="mi">1</span>

<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;Classifiers comparison with ROC&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s1">&#39;lower right&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">],[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="s1">&#39;r--&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">([</span><span class="o">-</span><span class="mf">0.1</span><span class="p">,</span><span class="mf">1.2</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">([</span><span class="o">-</span><span class="mf">0.1</span><span class="p">,</span><span class="mf">1.2</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>




<div class="output_png output_subarea ">
<img src="
"
>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Random-Undersampling-of-Majority-class">Random Undersampling of Majority class<a class="anchor-link" href="#Random-Undersampling-of-Majority-class">&#182;</a></h1><p>Not expected to produce good results cause lesser number of observations.
Good number of observations are need for model to perform well
Sample size has to be large</p>

</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[260]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Perform oversampling to balance the data</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">df_minmax</span><span class="o">.</span><span class="n">drop</span><span class="p">([</span><span class="s2">&quot;default&quot;</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">values</span> <span class="c1">#Setting the X to do the split</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">df_minmax</span><span class="p">[</span><span class="s2">&quot;default&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">values</span> <span class="c1"># transforming the values in array</span>


<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span><span class="o">=</span><span class="n">train_test_split</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.20</span><span class="p">)</span>


<span class="c1"># Separate majority and minority classes</span>
<span class="n">df_majority</span> <span class="o">=</span> <span class="n">df_minmax</span><span class="p">[</span><span class="n">df_minmax</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">]</span><span class="o">==</span><span class="mi">0</span><span class="p">]</span>
<span class="n">df_minority</span> <span class="o">=</span> <span class="n">df_minmax</span><span class="p">[</span><span class="n">df_minmax</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">]</span><span class="o">==</span><span class="mi">1</span><span class="p">]</span>

<span class="nb">print</span><span class="p">(</span><span class="n">df_majority</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">count</span><span class="p">())</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;-----------&quot;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">df_minority</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">count</span><span class="p">())</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;-----------&quot;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">())</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>23364
-----------
6636
-----------
0    23364
1     6636
Name: default, dtype: int64
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[261]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.utils</span> <span class="k">import</span> <span class="n">resample</span>

<span class="c1"># Upsample minority class</span>
<span class="n">df_majority_undersampling</span> <span class="o">=</span> <span class="n">resample</span><span class="p">(</span><span class="n">df_majority</span><span class="p">,</span> 
                                 <span class="n">replace</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>     <span class="c1"># sample with replacement</span>
                                 <span class="n">n_samples</span><span class="o">=</span><span class="mi">6677</span><span class="p">,</span>    <span class="c1"># to match majority class</span>
                                 <span class="n">random_state</span><span class="o">=</span><span class="mi">587</span><span class="p">)</span> <span class="c1"># reproducible results</span>
<span class="c1"># Combine majority class with upsampled minority class</span>
<span class="n">df_undersample</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">df_minority</span><span class="p">,</span> <span class="n">df_majority_undersampling</span><span class="p">])</span>
<span class="c1"># Display new class counts</span>
<span class="n">df_undersample</span><span class="p">[</span><span class="s1">&#39;default&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span>
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt output_prompt">Out[261]:</div>




<div class="output_text output_subarea output_execute_result">
<pre>0.0    6677
1.0    6636
Name: default, dtype: int64</pre>
</div>

</div>

</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[262]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#using the new data frame - oversampled dataframe --- oversampling of minority class</span>

<span class="n">X</span> <span class="o">=</span> <span class="n">df_undersample</span><span class="o">.</span><span class="n">drop</span><span class="p">([</span><span class="s2">&quot;default&quot;</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">values</span> <span class="c1">#Setting the X to do the split</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">df_undersample</span><span class="p">[</span><span class="s2">&quot;default&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">values</span> <span class="c1"># transforming the values in array</span>
<span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span><span class="o">=</span><span class="n">train_test_split</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.20</span><span class="p">)</span>
</pre></div>

    </div>
</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[263]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">classifier</span> <span class="o">=</span> <span class="n">KNeighborsClassifier</span><span class="p">(</span><span class="n">n_neighbors</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>  
<span class="n">classifier</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span> 
<span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;KNN&#39;</span><span class="p">]</span><span class="o">=</span> <span class="n">classifier</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>  

<span class="n">clf</span> <span class="o">=</span> <span class="n">RandomForestClassifier</span><span class="p">(</span><span class="n">n_jobs</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> 
                             <span class="n">random_state</span><span class="o">=</span><span class="mi">9</span><span class="p">,</span>
                             <span class="c1">#criterion=RFC_METRIC,</span>
                             <span class="n">n_estimators</span><span class="o">=</span><span class="mi">11</span><span class="p">,</span>
                             <span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span><span class="n">y_train</span><span class="p">)</span>
<span class="n">prediction</span><span class="p">[</span><span class="s1">&#39;RandomForest&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>

<span class="nb">cmp</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">model</span><span class="p">,</span> <span class="n">predicted</span> <span class="ow">in</span> <span class="n">prediction</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
    <span class="n">accuracy</span> <span class="o">=</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">predicted</span><span class="p">)</span>
    <span class="n">accuracy</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">model</span><span class="p">,</span><span class="n">accuracy</span><span class="o">*</span><span class="mi">100</span><span class="p">)</span>
    <span class="nb">cmp</span> <span class="o">+=</span> <span class="mi">1</span>
    
    
</pre></div>

    </div>
</div>
</div>

<div class="output_wrapper">
<div class="output">


<div class="output_area">

    <div class="prompt"></div>


<div class="output_subarea output_stream output_stdout output_text">
<pre>KNN 66.99211415696583
RandomForest 72.62485918137439
</pre>
</div>
</div>

</div>
</div>

</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Learning-Process">Learning Process<a class="anchor-link" href="#Learning-Process">&#182;</a></h1><h1 id="Understanding-various-new-concepts">Understanding various new concepts<a class="anchor-link" href="#Understanding-various-new-concepts">&#182;</a></h1><h1 id="Using-MinMax-Scaler-to-Normalize-data.">Using MinMax Scaler to Normalize data.<a class="anchor-link" href="#Using-MinMax-Scaler-to-Normalize-data.">&#182;</a></h1><h1 id="Understanding-the-effect-of-unbalanced-data">Understanding the effect of unbalanced data<a class="anchor-link" href="#Understanding-the-effect-of-unbalanced-data">&#182;</a></h1><h1 id="Random-oversampling-of-minority-class,-under-sampling-of-majority-class,-SMOTE.">Random oversampling of minority class, under sampling of majority class, SMOTE.<a class="anchor-link" href="#Random-oversampling-of-minority-class,-under-sampling-of-majority-class,-SMOTE.">&#182;</a></h1><h1 id="Using-Sklearn-library-for-running-various-models.">Using Sklearn library for running various models.<a class="anchor-link" href="#Using-Sklearn-library-for-running-various-models.">&#182;</a></h1><h1 id="Using-feature-engineering.">Using feature engineering.<a class="anchor-link" href="#Using-feature-engineering.">&#182;</a></h1><h1 id="Understanding-confusion-matrix-,-accuracy-and-Reciever-Operator-characteristic-concepts.">Understanding confusion matrix , accuracy and Reciever Operator characteristic concepts.<a class="anchor-link" href="#Understanding-confusion-matrix-,-accuracy-and-Reciever-Operator-characteristic-concepts.">&#182;</a></h1>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Conclusion">Conclusion<a class="anchor-link" href="#Conclusion">&#182;</a></h1><h1 id="The-most-important-parameters-in-determining-default-of-credit-cards-are-the-repayment-status-variable.">The most important parameters in determining default of credit cards are the repayment status variable.<a class="anchor-link" href="#The-most-important-parameters-in-determining-default-of-credit-cards-are-the-repayment-status-variable.">&#182;</a></h1><h1 id="With-Random-oversampling-of-data-and--Random-Forest-classifier,-achieves-the-best-accuracy-of-91-percent-,-with-precision-&#8211;-recall-score-of-0.87-and-area-under-curve-of-0.92">With Random oversampling of data and  Random Forest classifier, achieves the best accuracy of 91 percent , with precision &#8211; recall score of 0.87 and area under curve of 0.92<a class="anchor-link" href="#With-Random-oversampling-of-data-and--Random-Forest-classifier,-achieves-the-best-accuracy-of-91-percent-,-with-precision-&#8211;-recall-score-of-0.87-and-area-under-curve-of-0.92">&#182;</a></h1><h1 id="With-,-SMOTE-Random-Forest-Classifier-,-achieves-the-best-accuracy-of-82-percent-,-with-precision-&#8211;-recall-score-of-0.79-and-area-under-curve-of-0.83">With , SMOTE Random Forest Classifier , achieves the best accuracy of 82 percent , with precision &#8211; recall score of 0.79 and area under curve of 0.83<a class="anchor-link" href="#With-,-SMOTE-Random-Forest-Classifier-,-achieves-the-best-accuracy-of-82-percent-,-with-precision-&#8211;-recall-score-of-0.79-and-area-under-curve-of-0.83">&#182;</a></h1><h1 id="KNN-is-the-next-best-model.">KNN is the next best model.<a class="anchor-link" href="#KNN-is-the-next-best-model.">&#182;</a></h1><h1 id="Random-Under-sampling-didn&#8217;t-yield-great-results-because-of-less-data-points.">Random Under sampling didn&#8217;t yield great results because of less data points.<a class="anchor-link" href="#Random-Under-sampling-didn&#8217;t-yield-great-results-because-of-less-data-points.">&#182;</a></h1><h1 id="Random-oversampling-can-lead-to-overfitting-as-it-duplicates-data-points-,-SMOTE-is-better.">Random oversampling can lead to overfitting as it duplicates data points , SMOTE is better.<a class="anchor-link" href="#Random-oversampling-can-lead-to-overfitting-as-it-duplicates-data-points-,-SMOTE-is-better.">&#182;</a></h1>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span> 
</pre></div>

    </div>
</div>
</div>

</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
<div class="inner_cell">
    <div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span> 
</pre></div>

    </div>
</div>
</div>

</div>
    </div>
  </div>
</body>

 


</html>